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Although time-dependent random media with short range correlations lead to (possibly biased)
normal tracer diffusion, anomalous fluctuations occur away from the most probable direction. This
was pointed out recently in 1D lattice random walks, where statistics related to the 1D Kardar-Parisi-
Zhang (KPZ) universality class, i.e. the GUE Tracy Widom distribution, were shown to arise. Here
we provide a simple picture for this correspondence, directly in the continuum , which allows to study
arbitrary space dimension and to predict a variety of universal distributions. In d = 1 we predict
and verify numerically the emergence of the GOE Tracy-Widom distribution for the fluctuations
of the transition probability. In d = 3 we predict a phase transition from Gaussian fluctuations to
3D-KPZ type fluctuations as the bias is increased. We predict KPZ universal distributions for the
arrival time of a first particle from a cloud diffusing in such media.

Diffusion in random media arises in numerous fields,
e.g. oil exploration in porous rocks [1], spreading of pol-
lutants in inhomogeneous flows [2], diffusion of charge
carriers in conductors [3], relaxation properties of glasses
[4], defect motions in solids, econophysics, population dy-
namics [5, 6]. Many works have studied time indepen-
dent, i.e. static, random environments [7], in d = 1 [8]
or in higher dimensions, with short-range (SR) [9, 10] of
long-range (LR) spatial correlations [11]. It was found
that static disorder with SR correlations is generically
irrrelevant above the upper-critical dimension dc = 2,
leading to normal diffusion in d = 3, while LR disorder
can lead to anomalous diffusion in any d.

Another important class of random media are time-
dependent, studied e.g. in wave propagation [12], disper-
sion of particles in turbulent flows [2] (Richardson’s law
[13]), and the passive scalar [14]. The latter cases involve
long range correlations in the flow, and lead to anoma-
lous transport or multiscaling. The, a priori more benign,
case of SR space-time correlations received much atten-
tion recently in probability theory, within random walks
in time-dependent random environments (TD-RWRE).
Although then dc = 0, and the diffusion is proved to be
normal (in a given sample [15]), interesting effects were
shown, such as a tendency for walkers in the same sample
to coalesce [16], anomalous fluctuations [17] and large de-
viations [18]. Note that TD-RWRE can be generated in
a static environment by studying directed random walks.

An a priori unrelated topic is stochastic growth and
the celebrated Kardar-Parisi-Zhang (KPZ) equation [19]

∂th = ν0∇2
xh+
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√
D0η (1)

where h(x, t) ∈ R is the interface height at time t and
point x ∈ Rd, ν is the diffusivity, η(x, t) is the driv-
ing noise which, for most of our applications, will be SR
space-time correlated. The non-linearity leads to a a non-
trivial fixed point and exponents for the scaling of the
fluctuations at large time, i.e. h(x, t) = v∞t + δh(x, t),
with δh ∼ tθd ∼ xθd/ζd and θd = 2ζd − 1 from Galilean
symmetry [20]. The vast universality class of the contin-

t uc u > uc

p
t t⇣d

et✓d

‘Large’ Large deviations: 
KPZ regime and 
Directed Polymer 

superdiffusive behavior 

Bulk and ‘small’ large deviations: 
normal diffusive behavior 

�uc

~x 2 Rd

FIG. 1: Conjectural picture for TD-RWRE in arbitrary di-
mension d. While particles tyically diffuse normally as if the
random environment had been averaged out, particles condi-
tioned on arriving away from the Gaussian bulk of the distri-
bution in the ‘large large deviations regime’ (for |x(t)| > uct)
are superdiffusive with the roughness exponent of the directed
polymer in the pinned phase ζd > 1/2. In this regime, fluctu-
ations of the logarithm of the transition probability are large
(scale with tθd with θd = −1+2ζd > 0) and identical to those
of the height in the rough phase of the KPZ equation. The
two phases are separated by an Edward-Wilkinson regime of
fluctuations when x = uct+ o(t). In d = 1, 2 uc = 0 while for
d ≥ 3 there is a phase transition with uc 6= 0. If an external

bias ~f is added, the bulk is around ~x ∼ ~ft and the transition

occurs for ~x = ~ut with |(~f + ~u)| = uc.

uum KPZ equation (1) contains discrete growth models
[21], particle transport models [22], dimer covering, di-
rected polymers [20, 23] and more, subject in d = 1 of
much recent progress, due to discovery of integrable prop-
erties [24]. Beyond exponents ζd=1 = 2/3, the statistics
of δh(x, t) was shown to be related to the universal Tracy-
Widom (TW) distributions of random matrix theory [25],
with e.g. the GUE (resp. GOE) TW distribution for
growth starting from a droplet [26] (resp. a flat inter-
face). For general d little is known exactly, but exponents
and universal distributions were obtained numerically in
d = 1, 2, 3 [27–29] and compared with experiments [30].

Recently, Barraquand and Corwin obtained an exact
solution of a discrete TD-RWRE on Z with SR corre-
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lated jump probabilities, the Beta polymer. The sample
to sample fluctuations of the logarithm of the cumulative
[31] and transition [32] probability distribution function
(PDF) in the large deviations regime of the RW, ie. away
from the most probable direction, were found to be dis-
tributed with the characteristic KPZ exponent and GUE
TW distribution[46]. This was followed by a proof of
the universality of the 1D KPZ equation for the diffusive
scaling limit of TD-RWRE on Z with weak disorder [33].

These recent results hint at a general connection be-
tween TD-RWRE and KPZ growth. The aim of this Let-
ter is to unveil a simple and general mechanism that ex-
plains the appearance of KPZ-type fluctuations in the
TD-RWRE problem, beyond exactly solvable models,
and for general d. We consider a continuum setting and
we conjecture the emergence of KPZ fluctuations every-
where in the large deviations regime of TD-RWRE in
dimension d = 1, 2, and a a phase transition in d ≥ 3
between a low-fluctuations phase for small large devia-
tions and a phase with KPZ class high-fluctuations for
large large deviations (see Fig. 1). Using this picture, we
identify in d = 1 a setting where GOE TW type distribu-
tion for the fluctuations of the logarithm of the PDF are
expected. This is checked using simulations of a discrete
model. We finally discuss the emergence of KPZuniver-
sality in the extreme value statistics of N � 1 random
walkers diffusing in the same time-dependent random en-
vironment: universality of the PDF of the largest dis-
tance travelled by a particle in a cloud of pollutant and
of the PDF of the first arrival time in a given domain.

We consider the Langevin equation for the diffusion of
a particle ~x(t) ∈ Rd in a d−dimensional time-dependent

random force field ~ξ(~x, t) + ~f , with ~ξ(~x, t) = 0 and ~f the
uniform applied force,

d

dt
~x(t) = ~ξ(~x(t), t) + ~f + ~η(t) , (2)

with ~η ∈ Rd a thermal Gaussian white noise,
〈ηi(t)ηj(t′)〉 = 2Dδijδ(t− t′), and D is the bare diffusion
coefficient. Here and below 〈.〉 refers to the average over

thermal fluctuations ~η, and (.) over the disorder ~ξ(~x, t).

In a given random environment (i.e. sample) ~ξ(~x, t)
one defines the transition probability P (~x2, t2|~x1, t1) for a
particle which starts at ~x1 at time t1 to end up to position
~x2 at time t2. It is convenient for now to consider the
(backward) transition probability Q(~x, t) = P (0, 0|~x,−t)
that a particle starting at position ~x at time −t ≤ 0,
ends up at the origin at time 0 (the forward is considered
later). The latter obeys the following random backward
Kolmogorov equation

∂tQ = D∇2
xQ+ ~f · ~∇xQ+ ~ξ · ~∇xQ, (3)

with final condition Q(~x, t = 0) = δ(d)(~x). For simplicity

we focus on ~ξ(~x, t) being a space-time Gaussian white

noise (interpreting (3) in the Îto sense) with variance

ξi(~x, t)ξj(~x′, t′) = Drd0δ
(d)(~x− ~x′)δ(t− t′)δij , (4)

where the parameter r0 has dimension of a length. Our
results on the large scale properties should hold for more
general distribution of the disorder, as long as correla-

tions of ~ξ(~x, t) are short-ranged in space and time. When
short-scales regularization are needed we will think of
this model as an approximation of a model with disor-
der of (dimensionless) magnitude σξ, a finite correlation
length rc, and a finite correlation time τc. In that case

ξi(~x, t)ξj(~x′, t′) = D
τc
σ2
ξR1(~x−~x

′

rc
)R2( t−t

′

τc
)δij with R1 and

R2 two dimensionless rapidly decaying functions, and one
relates r0 to the space-time correlation volume of the
noise as rd0 ∼ σ2

ξr
d
c

∫
dd~ydsR1(~y)R2(s).

In the following we analyze this RW locally around a
given space-time direction (moving frame velocity) ~u ∈
Rd, i.e. for ~x = ~ut+ ~x′ with ~x′ = o(t). This is equivalent
to looking around the origin ~x = o(t) in the model with

an effective bias ~f~u = ~f + ~u: using the equality in law

between white noises ~ξ(t~u+ ~x′, t)∼in law
~ξ′(~x′, t) one gets

Q~f (~ut+~x′, t)∼in lawQ~f+~u(~x′, t). We drop the subscript ~u

in ~f~u unless needed, but ~f should thus be thought of as a
control parameter analogous to the velocity of the frame
of observation compared to the mean velocity of the par-
ticles. We first note that the averaged value of the tran-
sition probability is equal to the transition probability of
a RW in the averaged environment[47], hence it is Gaus-

sian and given byQ(~x, t) = 1

(4πDt)
d
2
e−
|~x+t~f|2

4Dt . The regime

|~x| = o(t) is thus characterized by an exponential decay of

the averaged probability: − |~x+t~f |
2

4Dt ' −
~f ·~x
2D −

t|~f |2
4D , hence

corresponds to a large deviation regime, far away from
the bulk of the probability, i.e. the optimal direction of

the RW ~x = −~ft. To study the local fluctuations around
this average profile of the probability, we introduce the
partition-sum Z(~x, t) and height h(~x, t) as

Z(~x, t) := e
~f·~x
2D +t

~f2

4DQ(~x, t) , h(~x, t) := lnZ(~x, t) .
(5)

Inserting (5) in (3) we obtain

∂tZ = D∇2
xZ + ξDPZ + ~ξ · ~∇xZ , (6)

∂th = D∇2h+D(~∇h)2 + ξDP + ~ξ · ~∇h . (7)

with the ‘droplet’ initial condition Z(~x, 0) = δ(~x). In (6),
(7) we introduced the ‘directed polymer (DP) noise term’

ξDP(~x, t) = −
~f · ~ξ(~x, t)

2D
. (8)

a Gaussian white noise with 〈ξDP(~x, t)ξDP(~x′, t′)〉 =

σ2
DPδ(t − t′)δ(d)(~x − ~x′) and (with f = |~f | the norm of

the bias)

σ2
DP =

rd0
4D

f2 . (9)

The equations (6)-(7), contain two (mutually correlated)
noises. While the second source of noise (last term) is a
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signature of the RW nature of the problem (it is already
present in the original backward Kolmogorov equation
(3)), the first was generated by our rescaling of the tran-
sition probability (5) and is a signature of the fact that
we are looking at the large deviation regime: it is the only
term in (6)-(7) that depends on f . A crucial observation
is that if, in a first stage (justified below), one neglects the
second source of noise, the equations (6) and (7) become
respectively the multiplicative stochastic-heat-equation
(MSHE) and the KPZ equation (1). The solution of the
MSHE is known to be the partition sum ZDP(~x, t) of
the continuum directed polymer problem, i.e. the equi-
librium statistical mechanics at temperature T = 2D of
directed paths of length t, ~x : τ ∈ [0, t]→ ~x(τ) ∈ Rd with
fixed endpoints ~x(0) = 0 and ~x(t) = ~x in a quenched
random potential −2DξDP(t′, ~x(t′)). It can formally be
written as a path-integral

ZDP(~x, t) =

∫ x(t)=x

x(0)=0

D[x]e−
1

2D

∫ t
0
dτ{ 1

2 (
d~x
dτ )

2−2DξDP(τ,~x(τ))} .

(10)
while the solution of the KPZ equation with the droplet
initial condition is given by hKPZ(~x, t) = lnZDP(~x, t), the
two problems hence being, as is well known, equivalent.

The emergence of the MSHE and KPZ equations in this
problem is at the core of the connection between TD-
RWRE and the KPZ universality-class (KPZUC). Let
us now explore some consequences of this connection in
the DP language, which is more adapted to the physics
of the RW problem in terms of space-time paths. It is
known [20, 35] that the DP exhibits a phase transition
as a function of the noise strength σDP between: (i) a
diffusive phase at small σDP < σc where polymer paths
are diffusive x(τ) ∼ τ1/2 and do not feel the disorder; (ii)
a pinned phase at large σDP > σc where directed polymer
paths are superdiffusive x(τ) ∼ τ ζd with ζd > 1/2 the
universal (dimension-dependent) roughness exponent. In
the diffusive phase the fluctuations of the DP free-energy
are small, lnZDP(t) ∼ O(1). In the pinned phase the DP
optimizes its energy: the partition sum is concentrated
on a few optimal paths and the fluctuations of the DP
free-energy scale with the length as lnZDP(t) ∼ tθd with
θd = −1 + 2ζd > 0. While for d > 2 there is a transition
at a non-trivial value σc > 0[48], σc = 0 in d = 1, 2 and
the system is always in the pinned phase.

We now argue, using the interface language, that the
second source of noise in (6)-(7) is always irrelevant in the
pinned phase at large time. In this phase the KPZ field
displays scale invariant fluctuations and we can rescale
h(~x, t) = bαh̃(~x/b, t/bz) with b large and z = 1/ζd and
α = θd/ζd the dynamic and roughness exponent of the

KPZUC, with h̃ = O(1). From the scale invariance of the
Gaussian white noise, under rescaling the second source
of noise in (7) receives an additional factor bα−1 as com-
pared to the first one. This heuristic suggests that the
second source of noise is irrelevant as long as α < 1.
This condition is always satisfied in the rough phase, with
α = 1/2 in d = 1 and α decreases with d.

tt⇤tf = D/f

diffusion bias dominated regime

EW regime KPZ regimeStandard RW

FIG. 2: The behavior of the RW crosses over from a diffusive
to a bias dominated regime when t ∼ tf . The latter is also
subdivided in between a EW regime and a KPZ regime for
t∗ � tf (see text for an estimation of t∗ in d = 1, 2).

This leads us to the following conjecture. In the RW
problem, looking locally[49] in the large deviation region
~x = o(t), the system undergoes a phase transition as a
function of the bias from: (i) a diffusive phase for f < fc
where the local fluctuations of lnQ(~x, t) are O(1) and
the random walk paths are diffusive with the same law
as the RW in an averaged environment (for f = 0 this
was shown rigorously in [15]); (ii) a pinned phase for
f > fc where lnQ(~x, t) has larger fluctuations scaling as
tθd and random walk paths are superdiffusive with the
DP roughness exponent ζd. In addition the full multi-
point distribution of lnQ(~x, t) at large t are expected
to be universal and identical to those of the free-energy
lnZDP(~x, t) of the DP problem in the pinned phase. Fur-
thermore fc = 0 in d = 1, 2 and in d > 2 we can give an
estimate of the transition point. For the KPZ equation
(1), d = 2 + ε renormalization group (RG) calculations
indicate that the transition for d > 2 occurs for the di-

mensionless coupling[50] g := KdΛ
d−2 λ2

0D0

8ν3
0

= gc of or-

der ε: gc = ε + O(ε2), with Λ−1 a short distance cutoff
[19, 36]. Translating into the RW with Λ = 1/rc we find
gc = Kdσ

2
ξr

2
cf

2
c /(8D

2), which provides an estimate for fc.
As we mentionned the bias also incorporates the effect of
looking at the problem in a moving frame of velocity ~u.
The phase transtion can thus be driven by ~u and occurs

when |~f~u| = |~f +~u| = fc: the pinned phase occurs every-
where in space outside a ‘light-cone’ around the optimal
direction of the RW (see Fig. 1). This picture agrees with
known results: it was shown in [37–39] that the annealed
and quenched large deviations rate functions Ia(u) and
Iq(u)[51] of an unbiased lattice RW coincide for small u in
d ≥ 3, but always differ in d = 1, 2 and for large enough
u in d ≥ 3. This confirms our scenario of a transition
in d ≥ 3, and our arguments show that the strong bias
phase is in the KPZ class.

Let us now discuss the scale at which KPZUC emerges,
first in the simpler one-dimensional case. To that aim,
note that rescaling time, space and height in (7) as
t = t∗t′, x = x∗x′ and h′(t′, x′) := 1

h∗h(t∗t′, x∗x′) with

the characteristic scales t∗ = (4D)3

r20f
4 , x∗ = 8D2

r0f2 and

h∗ = 1, leads to a rescaled KPZ-like equation for h′(t′, x′)
identical to (1) with λ0 = D0 = 2, ν = 1, up to the sec-
ond source of noise of (7) which now involves a unit white

noise multiplied by the dimensionless ratio fr0/(2D
√

2).
Hence for fr0/D � 1 (weak-bias/weak-noise or large dif-
fusivity limit) the ‘deformed’ KPZ-equation (7) becomes
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FIG. 3: Some typical polymer geometries for DP in d = 2.
See text for applications to the RW problem.

equivalent to the standard KPZ equation (this is remi-
niscent of the ‘weak-universality’ of the KPZ equation).
Hence in this weak bias regime, we can apply the known
results for the continuum KPZ equation, see [40]. Thus,
for t/t∗ � 1, we predict that the KPZUC appears in
the RW problem. At short scale t′, x′ � 1, the behav-
ior of the height in the KPZ equation becomes similar
to the Edward-Wilkinson (EW) behavior [41]. In the
RW problem we expect by inspection of (7) that the first
source of noise (bias) dominates for x� xf = D/f while
the second (diffusion) dominates for x � xf (with an
associated time-scale tf := x2f/D). We conclude that

for fr0/D � 1 there is a regime xf � x � x∗ and
tf � t � t∗ where one can already neglect the second
source of noise but KPZUC type fluctuations have not
yet been build up: this should be an EW regime[52], see
Fig. 2. In general d the scale at which the bias starts
to dominate remains tf and xf , but the scales t∗ and
x∗ where KPZ fluctuations emerge change. For exam-
ple in d = 2 disorder is marginally relevant and from
RG [19, 36, 43] one has x∗ 'g�1 Λ−1e1/g with here (see
above) g = r20f

2/(16πD2), t∗ = (x∗)2/D and for the
RW we take Λ−1 = rc. For g � 1 the scales are well-
separated and we similarly expect an intermediate EW
regime of fluctuations.

It is useful to extend our analysis to the forward tran-
sition probability P (~x, t) = P (~x, t|0, 0). It satisfies the

Fokker-Planck equation ∂tP = D∇2
xP − ~∇x · ((~f + ~ξ)P ).

Considering again the ‘partition sum variable’ Z(~x, t) :=

e−
~f·~x
2D +t f

2

4DP (~x, t) generates additional noise terms in this
equation and our arguments can be repeated (see [40]):
the statistical properties of Z(~x, t) at large scale are iden-
tical to those of the DP partition sum. In fact note that
in law P (~x, t) ∼ Q(−~x, t). We can also consider different
initial/final conditions in the forward/backward setting.
This is of great interest since the KPZUC is splitted in
sub-universality classes [24] that depend on the bound-
ary conditions, and we thus predict universal distribu-
tions for the fluctuations of lnP or lnQ according to the
chosen boundary conditions (see Fig. 3 for examples in
d = 2). These were determined numerically in d = 2
[28] and are known analytically in d = 1, on which we
now focus. Using our argument and KPZ universality,
we conjecture that the rescaled fluctuations of lnP (x, t)

and lnQ(x, t) are universal in the large-deviation region
and distributed as a TW GUE random variable χ2 [24].
This has already been observed analytically and numer-
ically for the exactly solvable Beta polymer, see [31, 32].
For the continuum model (2)-(4) in the absence of bias,
f = 0, but in a moving frame, we obtain (using [26], see
[40]) a sharp prediction for t� t∗

lnP (x = ut, t) ' −Iq(u)t+ λ(u)t1/3χ2 (11)

where Iq(u) ' u2

4D +
2r20u

4

3(8D)3 and λ(u) ' r
2/3
0 u4/3

4D , esti-

mates valid in the weak bias limit r0u/D � 1. Using the
equivalence (for small bias) between the RW and the KPZ
equation at finite t/t∗ [40] the scaling x = yr0(4Dt/r20)3/4

implements the crossover, as a function of y = (t/t∗)1/4,
from EW to KPZ fluctuations for lnP (x, t), the crossover
to diffusion occuring for x ∼ (Dt)1/2.

We now make a prediction related to the flat KPZ sub-
universality class, which is new in the TD-RWRE con-
text. It is known that the large time fluctuations of the
logarithm of the solution of the MSHE ∂tZ = D∇2Z +
ξDPZ with flat initial condition Z(x, t = 0) = 1, properly
scaled, are distributed according to a GOE Tracy-Widom
random variable χ1. Here it means that the initial prob-
ability of the RW [53] must be P (x, t = 0) ∼ efx/(2D). It
is a natural, and normalizable initial condition on an in-
terval of length L with reflecting boundary conditions,
x ∈ [−L/2, L/2]: it is the stationary measure of the
RW in the absence of disorder. Turning on the disorder
at t = 0 we predict that at large time (in the regime
1 � t/t∗ � (L/x∗)3/2 to avoid the influence of the
boundaries), lnP (0, t) fluctuates as c(t/t∗)1/3χ1, where
c = 2−2/3 [44] when t∗ � D/f2. This scenario, and its
universality, is checked explicitly through simulations of
a 1−dimensional discrete TD-RWRE, see Fig.4.

An important application of the large deviation regime
of the RW where the KPZUC emerges, is to extreme
value statistics. Consider N � 1 independent walkers

starting at the origin at t = 0 with no bias, ~f = 0. We
define xmax(t) := maxi=1,··· ,N{~xi(t) · ~e1} the position of
the rightmost walker in the direction of the unit vector
~e1. We show [40] that the KPZ-universality in the fluc-
tuations of the logarithm of the transition probability,
lnP (~x · ~e1 = ut, t|0, 0), implies that as N, t → ∞ with
γ = lnN

t fixed. Then xmax(t) grows ballistically,

xmax(t) ' u∗γt+ c(γ)tθdχ+ o(tθd) . (12)

Here θd is the KPZ exponent, χ has a universal distri-
bution [40] characteristic of the point to hyperplane (of
dimension d− 1) subuniversality KPZUC (see e.g. [28]).
Here c(γ) and u∗γ are non-universal, given in the contin-
uum in [40]. This is valid if the front velocity u∗γ > uc,
so that KPZUC appears (with uc = 0 in d = 1, 2). A
formula such as (12) was rigorously shown in an exactly
solvable 1D model in [31] with θd=1 = 1/3 and χ = χ2

a GUE TW random variable. Similarly, the first arrival
time at ~x · ~e1 = `, THit(`), of a particle from a cloud of
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FIG. 4: Numerical observation of the GOE TW distribution
for the log of the forward transition probability P (0, td) of a
TD-RWRE on [−4096, 4096]∩Z with a reflexive boundary in
a biased random environment (see details in [40]), starting
at time td = 0 with the stationary measure of the RW in
the absence of disorder. Main plot: centered and normalized
histogram (in a logarithmic scale) of lnP (0, td) with td = 2048
compared with the GOE (red line) and GUE (black-dashed
line) TW distribution. The insets show the convergence of the
skewness (top) and of the excess of kurtosis (bottom) of the
distribution of lnP (0, td) to values close to those of the GOE
TW distribution. Error-bars are 3-sigma Gaussian estimates.

N independent particles, behaves, for fixed γ̂ = lnN
` as

THit(`) ' `/v∗γ̂ − d(γ̂)`θdχ+ o(`θd) (13)

with the same universal random variable χ [40]. Arrival

times in compact domains, i.e. a ball, leads instead to
point to point KPZ distribution in any d.

In this Letter we investigated the origin and conse-
quences of the emergence of universal statistics of the
KPZUC in the large deviations regime of TD-RWRE in
arbitrary dimension. We focused on short range cor-
related random media but our method readily extends
to long range (LR) spatial correlations [40], leading to
the distinct LR space correlated KPZ universality classes
[45]. Important questions for the future are how LR cor-
relations in time in the medium, and interactions within
a cloud of N particles, will affect the results, since those
are present in many natural examples, such as the atmo-
sphere or the ocean. We hope that this motivates further
connections between the fields of growth and diffusion.
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