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Abstract
General methods for solving simultaneous nonlinear equations work by generating a sequence of

approximate solutions that successively improve a measure of the total error. However, if the total

error function has a narrow, curved valley, the available techniques tend to find the solution after a

very large number of steps, if ever. The solver first converges rapidly to the valley, but once there

it converges extremely slowly to the solution. In this paper we show that in the specific, physically

important case where these valleys are the result of a softly broken symmetry, the solution can

often be found much more quickly by adding the generators of the softly broken symmetry as

auxiliary variables. This makes the number of variables more than the equations and hence there

will be a family of solutions, any one of which would be acceptable. We present a procedure for

finding solutions in this case, and apply it to several simple examples and an important problem

in the physics of false vacuum decay. We also provide a Mathematica package that implements

Powell’s hybrid method with the generalization to allow more variables than equations.
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I. INTRODUCTION

Numerical methods of solving equations are one of the most important topics in numerical
analysis. There is a plethora of techniques of which each is adequate for specific sets of
problems. For examples refer to Ref. [1] and references therein. All techniques attempt to
successively improve some guess for the variable values and eventually to converge to an
adequate solution.

In order to know whether the new guess is an improvement, we need a single measure of
the total error in all the equations. Successive steps must then improve the total error, and
the ability of the technique to make adequate progress depends on the shape of this function.
In certain cases, the correct solution lies in a narrow, curved valley in the total error. Once
the solver finds the valley, it will be difficult to improve matters further, because there is no
direction in which one can move any substantial distance (in a straight line) without making
the total error worse. Any technique using such a function will be forced to take a very large
number of tiny steps, sometimes so tiny as to make it impractical to reach the solution.

To improve the speed of convergence and the likelihood of finding the answer, we would
like to reformulate such problems using new variables to accomplish two goals. First, we
would like the valley to be straight, as much as possible, in the new variables. Then a
solution procedure that moves in straight lines can take long steps toward the solution.
Second, we would like to encourage the solver to move along the valley, which we expect
to be productive, rather than in other directions. This can be done by rescaling the new
variables, as we discuss below.

However, if one does not know the solution to a set of equations, how could one design
such a reformulation? A general method seems impossible, but if the valley results from a
softly broken symmetry, the generators of the symmetry tell us how to move along the valley
floor. In this case, we propose adding auxiliary variables which are the symmetry generators,
without adding new equations. The idea of adding variables for solving equations is not new,
but it is usually accompanied by adding an equal number of equations. In our method we
add new variables only.

This paper is organized as follows. In Section II we review some of the procedures for
solving simultaneous nonlinear equations. In Section III we describe the problem and lay
out the formalism for adding new variables. In Section IV we present two simple examples
with softly broken symmetries and the reason for adding new unknowns. In Section V we
present a specific theoretical physics problem that can be solved this way. In Section VI we
briefly introduce a Mathematica package for Powell’s hybrid method, and we conclude in
Section VII

II. SOLUTION OF A SET OF NONLINEAR EQUATIONS

In this section, we review techniques for solving simultaneous nonlinear equations. Let
use write the equations in the form

fi(x) = 0 , i = 1, . . . , N , (2.1)

where x is an N -element vector. We define the total error in the usual way,

error(x) =

(
N∑
i=1

fi(x)2

)1/2

. (2.2)
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and demand that successive steps reduce error(x). If a trial step does not decrease the error,
then we reject it and try again with a shorter step.

We will try to find the solution by starting from some initial guess x0 and taking steps
according to a (predetermined) rule for approaching the solution. At each step we will
generate a new trial value, so we have a sequence x1,x2, . . ., which we hope will eventually
reach some x for which the fi(x) vanish to some desired tolerance.

The best known procedure for solving a set of equations is Newton’s method (also called
Newton-Raphson), which works by linearizing the equations around the current guess and
using the solution to the the linearized problem as the next guess. It converges very rapidly
when it gets near the solution, but if it is not close to the solution it can take large steps in
unhelpful directions that make the next guess worse than the previous one. We can modify
Newton’s method to fit into the above framework by trying shorter and shorter steps in the
same direction until we find one which reduces the error.

An alternative, which works better when one is far from the solution, is just to descend
the gradient of the total error. This method improves the solution at each step, but can
be very slow. We can use the linearized equations to determine the direction of steepest
descent and the distance we can travel, assuming the linearized approximation is still good,
before the error starts to become worse. We try this distance and direction, and then back
off as above if that makes the total or worse.

Powell’s hybrid (or “dogleg”) method [2], combines the two techniques. It maintains a
step size which, based on its performance so far, is likely to lead to an improvement. It then
tries a step of this length, which is, in general, a combination of the step recommended by
Newton’s method and a step in the direction of steepest descent of the total error. If a step
does a good job of improving the error, the method increases the step size for future steps. If
the step makes things worse, it tries again with a shorter step size and takes shorter steps in
the future. This method gives many of the advantages of Newton’s method and of gradient
descent. It is the one that we usually use to solve sets of nonlinear equations.

III. PROBLEM AND SOLUTION TECHNIQUE

We now explain the difficulties encountered by algorithms such as those above, when the
total error has narrow valleys, as shown in Fig.1. Consider first a system that works purely
by gradient descent. It starts by descending the total error surface until it reaches the valley.
It will in general not be exactly at the bottom, but somewhere on the valley wall. At the
bottom of the valley, the gradient would point down the valley. But when the valley floor is
fairly level, while the walls are steep, if we are not exactly at the bottom the gradient points
mostly down the valley wall toward the bottom with a small admixture of the direction that
the valley floor descends. Thus the next step will be primarily toward the valley floor. We
will generally fall short of the floor, and it will take a number of steps to get down to the
point where we move along the valley to any significant degree. In a straight valley, we
would move closer and closer to the floor and take larger and larger steps in the direction
of the valley, and soon approach the solution. But if the valley is curved, steps initially
in the right direction are likely to take us up the wall again after a short distance, and so
we can never travel rapidly along the valley floor. Hence, instead of moving towards the
solution, the solver “bounces” very frequently from the walls of the valley and achieves little
improvement. Thus reaching the solution is very laborious, and in sufficiently extreme cases
impractical. When there are more than two equations, several directions may be “along the
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FIG. 1: The error surface for a system of two equations which exhibits a narrow valley in (a). The

trajectory that Powell’s hybrid method took to find the solution (b). The initial guess is shown by

the green asterisk. The solver first quickly converged to the valley, but then it moved very slowly

along the valley (solid line) to the solution (green square) at the origin. If the valley has very sharp

curves, it will take many more steps to find the solution.

valley”, while several other directions are “descending the wall”. There are then many more
ways for the valley to curve.

It is important to understand that the above description is the “bird’s eye” description
of what is happening. The solver itself doesn’t know that it is stuck in a curving valley.
All it knows is that it is analyzing local conditions, choosing what appears to be a good
direction in which to move, discovering that only a very small step yields any improvement,
and repeating these steps, leading to very slow progress.

We know of no general solution to this problem, but in the special case where the valley
results from an approximate symmetry we can resolve it. The idea here is that if the
symmetry were exact, there would be a valley at the bottom of which every point is a
solution. The breaking of the symmetry leads to only one such point being a solution, but
because the symmetry is only softly broken, the function values vary slowly along the valley.
Thus the valley floor is only slightly slanted, and we have the troublesome situation above.
Several examples are given in the next sectionsa.

To make faster progress, we would like to formulate the problem so that some of the
variables generate motion along the valley floor. In these variables the valley will be straight,
which is the first goal discussed in the introduction. The needed variables are just the
generators of the symmetry and are easily chosen. In some cases, it is then possible to
choose other variables to fill out the degrees of freedom of the problem, and the particular
techniques described below are not necessary. But in many other cases there is no simple
formulation of this kind. In such cases, we propose to keep all the original variables and
simply add the symmetry generators as extra variables y = {y1, y2, . . . , yK}, without adding
extra equations.

We then extend our functions fi(x) to some gi(x,y) such that gi(x, 0) = fi(x). It is
now possible to move in new directions given by y. In these directions, the valley will be
straight, so the solver will be able to take large steps that quickly reduce the error and lead
to a solution. We show examples of this phenomenon in Sections IV and V.

Of course, since we add variables without adding constraints, the solution is not unique.
For each solution of fi(x) = 0 there will be a K-dimensional family of solutions to gi(x,y) =
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0. When the process succeeds, we have some solution {x,y}, and we need to get from there
to the solution of the original problem fi(x) = 0. But this is straightforward if the y are
the generators of a symmetry. We can solve the original problem by simply applying the
symmetry transformation to the x that we found.

We now show explicitly how to find a solution of N equations of N + K variables using
Powell’s hybrid method, discussed in Sec. II. This method takes steps which are a combi-
nation of the step recommended by Newton’s method and a step in the direction that most
rapidly reduces error(x), i.e., the negative of the gradient of error(x). In the gradient case,
the procedure is unaffected by additional variables. We simply have a scalar function of
N +K variables whose gradient we descend.

The application of Newton’s method is slightly more complicated. Newton’s method
consists of linearizing the equations around some point x and solving the linearized equations.
With N equations in N +K variables, there will be a K-dimensional subspace of solutions.
In this case, we choose the solution which is nearest to the current guess, in the Euclidean
metric on the N + K variables. This is straightforwardly determined by singular value
decomposition of the rectangular Jacobian.

By introducing new coordinates we have made the valley straight, so the solution pro-
cedure can in principle take large steps along the valley. However, in general it will do so
only to a limited degree. Changing each yi is equivalent to moving the point x. Let dx be
the change equivalent to a displacement of dyi. Suppose that we have chosen the arbitrary
scale of yi so that magnitude of the vector dx/dyi is 1. Then in the linearized equations, the
direction of yi and the direction dx/dyi are equivalent. (They are very different beyond lin-
earized order: the yi direction leads down the valley, while the dx/dyi direction is a straight
line in x that does not follow the valley as it curves.) As a result, the step taken by the
solver will move equally in these two directions.

This is an improvement over moving only in the dx/dyi direction, but only a mild one.
The step size is limited by climbing up the valley wall, so we must still take short steps,
though each one is more effective because in addition to moving in x we move in yi, which
does not take us off the valley floor.

Thus we still need to accomplish the second goal in the introduction, which is to get
the solution procedure to make good use of the additional directions. We can do this by
multiplying the additional variables yi by some factors si > 1. Gradient methods try to
find small steps in the space of variables that will lead to large improvements in the error.
Thus if an additional variable is multiplied by some factor s > 1 before being used in the
function evaluation, the solver will give higher weight by factor s to changes produced by
this variable, and will be thus more likely to exploit that additional variable to simplify the
problem.

The unmodified Newton’s method is invariant under rescaling of the variables (and the
functions), because that doesn’t change the solution to the linearized problem. However,
the modified method here chooses the closest point in the subspace of solutions. The factor
s increases the effect of the additional variable, so the change in that variable to achieve the
same result is smaller. Thus increasing s causes the modified Newton’s method to choose a
solution whose differences are more due to the affected variable and less to the others.

The best choice of s depends on the problem at hand. Larger s cause the solver to move
more in the direction of the broken symmetry, and so make faster progress, but too large a
value may cause the process to fail completely. We have generally found good results with
s = 10, relative to the parameterization of yi that makes |dx/dyi| = 1.
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IV. SIMPLE EXAMPLES

In this section we present two problems with a softly broken symmetry and show the
improvement made by adding a new variable. The problems in this section can straight-
forwardly be solved analytically, but we show these cases as a proof of concept in a simple
set-up where the basic ideas can be seen most vividly. Thus we assume that we have been
given these functions in a “black box” and don’t know their analytic forms. We will try to
solve them numerically, meaning that all we can do is evaluate the functions (and evaluate
or approximate their first derivatives) and search for the solution. In Sec. V we present a
case where there is no analytic solution.

A. Softly broken rotational symmetry

We start from a very easy problem to demonstrate the main idea behind our proposal.
Consider the functions

f1(x, y) = x2 + y2 − 1 ,

f2(x, y) = εx , (4.1)

for some parameter ε. We want to find x and y, such that f1 = f2 = 0. The solution is
y = ±1 and x = 0, but we suppose we don’t know that and are trying to find the solution
by purely numerical methods. In the top panel of Fig. 2, we plot the error for this set of
equations with ε = 0.1, as a function of the variables x and y. The upper right panel shows
a magnified picture of the curving and slanted valley. In the lower left of Fig. 2, we show
the 14 steps taken by Powell’s method to find the solution.

Now let us introduce an extra variable which allows rotation, the broken symmetry.
Instead of using x and y and variables, we use x′, y′, and θ, with x and y given by

x = x′ cos θ + y′ sin θ ,

y = −x′ sin θ + y′ cos θ . (4.2)

Our functions thus become

f1(x, y) = x′2 + y′2 − 1 ,

f2(x, y) = ε(x′ cos θ + y′ sin θ) . (4.3)

Now there will be an infinite number of solutions. For each value of θ, there will be a solution
x′ and y′. We can recover the values of x and y using (4.2). With the extra variable, the
solution takes only 8 steps.

To improve matters further, we can use a rescaled variable. Let the varibles be (x′, y′, φ),
with θ = sφ in (4.3). With s = 10, this choice reduces the number of steps to 6, as shown
in the lower right panel of Fig. 2.

In Fig. 3 we show the path our solver took for ε = 10−4. The symmetry here is broken
softly, so there is not much slant in the valley. Powell’s method took 535 steps to solve
this problem, mostly creeping slowly along the valley. Introducing θ gives only a modest
improvement, down to 151 steps, but with θ = sφ and s = 10, the solution can again be
found in 6 steps.
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FIG. 2: The error as a function of x and y for the functions defined in (4.1) with ε = 0.1 (a).

The problem has an approximate rotational symmetry. To see the breakdown of the symmetry we

zoomed in on the valley, which is slanted (b). The hybrid solver takes many small steps before

finding the solution. We show the path that the solver took without an extra variable in (c). We

show the path in x and y taken when we use the extra variable φ and choose s = 10 in (d). In

this case, the solver takes steps in x′, y′, and φ, but we graph the points x and y given by (4.2)

with θ = sφ. In both cases the starting guess is (−1.2 cos(π/8), 1.2 sin(π/8)). The left panel took

14 steps and the right only 6 steps. We see in the next figure that smaller ε increases the number

of steps rapidly.

This particular problem is rather trivial. Instead of adding a variable one could simply
work in polar coordinates, which manifest the symmetry, and get the solution right away.
This is possible because one can easily parameterize the remaining degree of freedom after
the symmetry has been factored out.

One also can solve this problem by using pure Newton’s method. Since one of the
equations is linear, Newton’s method will solve it exactly in every step by jumping to some
point on the y axis. Newton’s method does not care about rescaling the equations and hence
the smallness of ε is not important and the symmetry is not broken softly.

In the next sections we present two other problems where there is no obvious change of
coordinate and the Newton technique does not necessarily work well.

B. Softly broken translational symmetry

In this section we present a problem where the correct parameterization is not as trivial
as the previous one. Suppose we have some functions f(x) and g(x), chosen from families
of similar functions, and we consider the function given by

F (x) =

{
f(x) f(x) < 0 ,

g(x) g(x) ≥ 0 ,
(4.4)
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FIG. 3: The steps taken by the solver for the example presented in (4.1) for ε = 10−4. Now the

rotational symmetry is broken very softly. Figure (a) shows the steps taken without the extra

variable and (b) with an extra variable φ that generates the broken symmetry and s = 10. In both

cases the starting guess is (−1.2 cos(π/8), 1.2 sin(π/8)). The left panel took 535 steps and the right

only 6 steps.

where f(x) and g(x) are monotonically increasing functions. That is to say that F follows f
from x = −∞ until f(x) reaches 0, and g from x =∞ toward smaller x until g(x) reaches 0.
To have a well-defined function, we would like f(x) and g(x) to reach 0 at the same point,
and to have a C1 function we would like the derivatives of f and g to match also at this
point.

Our f and g will be chosen from the following classes of functions,

f(x) = aex + εe2x − 1 ,

g(x) = 1− be−(1+ε)x . (4.5)

where a and b specify which functions we chose and ε is a fixed small parameter.
To have a problem where the symmetry is easily shown, rather than specifying a and b

we will specify that F takes on a given value F1 < 0 at a point x1 and similarly a given value
F2 > 0 at a given point x2. We will then attempt to vary F1 and F2 to find a well-defined
C1 function F.

First we explain the broken symmetry. If ε = 0, we have

f(x) = aex − 1 (4.6)

g(x) = 1− be−x . (4.7)

We want the two functions to join (vanish) at some x0. For each value x0 in the interval
(x1, x2) there will be a solution in the form

f(x1) = ex1−x0 − 1 , (4.8)

g(x2) = 1− ex0−x2 . (4.9)

Hence the values of F1 and F2 depend only on x1 − x2 and are invariant under a shift in
these two numbers.

The terms which include ε break this translational symmetry softly and there will be
unique values for F1 and F2 which make the function smooth. But because ε is small, it is
difficult to find the correct values once we find some which solve the ε = 0 problem.

We now choose x1 = −5, x2 = 1, and ε = 10−3. Without adding an extra variable it took
299 steps for the solver to find F1 and F2. However, because we know the broken symmetry
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FIG. 4: The values of F1 (blue circles) and F2 (red squares) at steps taken by solver before finding

the solution are shown in (a). The same but this time an extra variable δ (green triangles) is added

in (b). The solution was found in 10 steps.

is translation, we simply allow for a shift in the values of x by changing the equations to

f(x) = aex−sδ + εe2(x−sδ) − 1 , (4.10)

g(x) = 1− be−(1+ε)(x−sδ) . (4.11)

We shifted here by sδ with s = 10 to encourage the solver to make use of δ. Now there will
be an infinite set of solutions {F1, F2, δ}. After finding one such solution, we recover the
original values of F1 and F2, by evaluating (4.10) at x1 + sδ and (4.11) at x2 + sδ. With δ
added, it took only 10 steps for the solver to find the solution. We show the steps that the
solver took for this problem in Fig. 4.

In the next section we present an important physics problem which we solved in much
more generality in Ref. [3] .

V. TUNNELING IN FIELD THEORIES

Problems of differential equations with boundary conditions at two points are common-
place in physics. One important example is the equations used for calculation of cosmological
phase transitions. Here we explain the problem briefly. The details can be found in Ref. [4].
In Fig. 5 we present a potential which has a metastable (false) minimum at φf and a stable
(true) minimum at φt = 0. Finding the lifetime of this metastable minimum is tantamount
to finding the solution of the differential equation

φ′′(r) +
3

r
φ′(r) =

∂U

∂φ
, (5.1)

with two boundary conditions,

φ′(0) = 0 , φ(∞) = φf . (5.2)

This is the same as the motion of a particle in the upside down potential shown in the
red dotted graph in Fig. 5, under the influence of a velocity dependent friction given by
−3φ′(r)/r. The field profile that solves this equation is shown in the right panel of Fig. 5.
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The standard technique to solve such a problem is shooting. We try to find the correct
value of φ(0) such that evolving the fields from this point leads φ to approach φf as r →∞.
It is easy to see that this problem always allows a solution1. If one chooses the value φ(0)
very close to φt the field does not have any significant change until r gets large. But then
the friction term is negligible and the “energy” is conserved and it passes φf . On the other
hand if one chooses φ(0) such that U(φ(0)) < φf , the particle can never reach φf . The
boundary between these two is the correct solution that asymptotes to φf at infinite r.

Unfortunately, when we integrate the differential equation up the hill (in the inverted
potential) toward the false vacuum, we encounter an instability. Numerical errors grow
because of the growing mode in which φ accelerates down the hill. Thus it is better to take
a second differential equation with an initial condition near the false vacuum at large r and
integrate toward smaller r. Then we require that φ and φ′ must agree that a junction in the
middle.

In Ref. [3], we further generalized this method to use more than two shooting regions,
which is especially important in problems with more than one field dimension. By using
sufficiently short shooting regions we can overcome any instabilities in integration of equation
(5.1). We also use analytic solutions near the true and false vacua to avoid extreme sensitivity
on boundary conditions. We describe our method much more fully in Ref. [3].

This method with 3 intervals is shown in Fig. 6. Our variables are the value of the field
at r1 and r4 and the value of the field and its derivative at r2, in short {φ1, φ2, φ

′
2, φ4}. With

these data we can evolve the field equation (5.1) along the blue curves. The goal is finding
the correct values of {φ1, φ2, φ

′
2, φ4} such that the field and its derivative are continuous at

r2 and r3. This creates a system of four equations of four variables.
This technique rapidly finds accurate solutions for many potentials. However, in many

other cases it makes very slow progress or is never able to reach the solution. The problem
is one of an approximate symmetry. If not for the middle (friction) term in (5.1) and the
fact that φ(0) is not exactly zero, Eq. (5.1) would possess a translational symmetry. If φ(r)
satisfied the equations of motion and the boundary conditions, φ(r + δ) would satisfy them
also. Translations in r make only small differences to the equations that we’re trying to
solve, but in terms of our variables {φ1, φ2, φ

′
2, φ4}, such a translation requires a complicated

change which is not a straight line in the space of variable values and which is thus difficult
for the solver to follow.2 As an example, for the simple potential

U(φ) = 0.2φ− 2φ2 + φ4 , φt ≈ −1.024 , φf ≈ 0.9740 , (5.3)

it took the hybrid solver 851 steps to find the solution. (We chose the values of
{r1, r2, r3, r4} = {12.82, 14.03, 15.23, 16.43} using an analogy with the thin-wall solution.
The details can be found in Ref. [3]).

To make use of the approximate translation symmetry, we introduce an additional variable
δ, whose meaning is that the variables {φ1, φ2, φ

′
2, φ4} refer to these quantities at r1+δ, r2+δ,

and r4 + δ (and the point at which the middle and the final regions must agree r3 + δ). With
this additional variable, the hybrid solver could find the solution in 12 steps. Most of the

1 This solution is not necessarily unique, as explained in Ref. [3].
2 One might think that this problem could be solved by fixing φ and using the corresponding values of

r as variables, but this brings a host of other problems including difficulty generalizing to more field

dimensions.
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FIG. 5: A potential with two minima at φt = 0 and φf in solid blue and the upside down potential

as the dotted red graph is shown in (a). The minimum at φf is a metastable minimum and can

tunnel quantum mechanically to the other minimum. Figure (b), the solution to the field equation.
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FIG. 6: An illustration of multi-shooting method. One has to adjust the values of {φ1, φ2, φ′2, φ4}
and evolve the field equations (5.1) along the blue curves such that the field and its derivative are

continuous at r2 and r3. This produces a system of four equations of four variables.

steps were taken in the “valley” which corresponds to a rigid shift of the profile φ(r). In
Fig. 7 we show the change of error with and without adding the auxiliary variable δ.

VI. POWELL-HYBRID PACKAGE

We include with this paper a Mathematica code developed by one of us (K.D.O.), for the
solution of simultaneous nonlinear equations using Powell’s hybrid method [2]. This code
includes the extension described here for solving N +K equations in N variables. However,
it handles only problems where the Jacobian can be computed analytically. Powell [2] also
includes a method for approximating the Jacobian using, mainly, the successive function
evaluations, but we did not implement that.

The code and a manual for using it can be downloaded from
http://cosmos.phy.tufts.edu/Powell. This code is the same one used in Ref. [3].
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FIG. 7: Figure (a), the change of error after each step taken without adding an auxiliary variable

and figure (b) the same when including δ for the potential in (5.3) in order to solve (5.1).

VII. CONCLUSION

In this paper we describe a new method for solving equations with a softly broken sym-
metry. The broken symmetry makes it very difficult for the solver to make progress towards
minimizing the error in the desired equations. The error as a function of the variables usu-
ally has narrow valleys where moving along these valleys does not make large improvement.
As a result the steps that the solver takes are small and it takes a very large number of steps
for the solver to converge on the solution.

We introduced a method where one adds a set of auxiliary variables which are the gen-
erators of the softly broken symmetry. Adding these variables makes the solver take large
steps in the direction along the valley and hence converges very quickly. Our method may be
applicable beyond the theories with softly broken symmetries. We believe whenever such a
valley is present adding variables which make the solver move in the proper direction makes
converging much faster and the basin of attraction larger. However, for general valleys which
are not the results of broken symmetries it may not be easy to identify the correct auxiliary
variables to be added. For this reason we only mentioned these cases which we know the
auxiliary variables must generate the broken symmetry. These techniques will be much more
powerful and versatile if one can find a systematic way to determine the needed auxiliary
variables.
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