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ABSTRACT 19 

 20 

Solute dispersion in fluid flow results from the interaction between advection and diffusion. 21 

The relative contributions of these two mechanisms to mass transport are characterized by the 22 

reduced velocity ν , also referred to as the Péclet number. In the absence of diffusion (i.e., 23 

when the solute diffusion coefficient m 0D =  and ν → ∞ ), divergence-free laminar flow of an 24 

incompressible fluid results in a zero transverse dispersion coefficient T( 0)D =  both in 25 

ordered and random two-dimensional porous media. We demonstrate by numerical simulations 26 

that a more realistic realization of the condition ν → ∞  using m 0D ≠  and letting the fluid flow 27 

velocity approach infinity leads to completely different results for ordered and random two-28 

dimensional porous media. With increasing reduced velocity, TD  approaches an asymptotic 29 

value in ordered two-dimensional porous media, but grows linearly in disordered (random) 30 

structures depending on the geometrical disorder of a structure: a higher degree of 31 

heterogeneity results in a stronger growth of TD  with ν . The obtained results reveal that 32 

disorder in the geometrical structure of a two-dimensional porous medium leads to a growth of 33 

TD  with ν  even in a uniform pore-scale advection field; however, lateral diffusion is a pre-34 

requisite for this growth. By contrast, in ordered two-dimensional porous media the presence of 35 

lateral diffusion leads to a plateau for the transverse dispersion coefficient with increasing ν .36 
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I. INTRODUCTION 37 

 38 

Understanding the transport of solutes in porous media is important in many industrial and 39 

environmental processes, including catalysis, chromatography, ground water contamination and 40 

remediation, oil recovery, and nuclear waste disposal [1–5]. The spreading of passive solutes in 41 

fluid flow through a porous medium results from the interplay of diffusion and advection [6]. 42 

Even laminar flow in a porous medium is characterized by spatial fluctuations of the velocity 43 

within and between individual pores and by tortuous pathways that the fluid follows. This leads 44 

to different migration velocities of solutes in different flow streamlines, which is additionally 45 

affected by shearing, splitting, and merging of fluid streamlets. Diffusion acts as a mechanism 46 

providing exchange (mixing) between solute molecules travelling along different streamlines in 47 

individual pores. The resulting spreading of solutes is referred to as hydrodynamic dispersion. 48 

Thus, the three essential processes giving rise to solute spreading in fluid flow through porous 49 

media are diffusion, intrinsic mechanical dispersion due to flow heterogeneity at the inter-pore 50 

scale, and diffusively coupled mechanical dispersion at the intra-pore scale [7]. 51 

 52 

At the macroscopic scale (that is many times larger than the dimensions of a single pore), the 53 

hydrodynamic dispersion in fluid flow through porous media is traditionally modeled by the 54 

advection–diffusion equation [6]. The basic idea of this approach is to consider dispersion 55 

processes as an anisotropic diffusion-like spreading of the solute concentration characterized by 56 

macroscopic (effective) transport coefficients, i.e., the longitudinal dispersion coefficient LD  57 

and the transverse dispersion coefficient TD  in the direction of and normal to the average fluid 58 

flow, respectively. Dispersion processes in porous media have also been analyzed with a wide 59 

variety of theoretical techniques and geometrical models. For example, Brenner [8] used the 60 

method of spatial moments to develop a general theory for dispersion in granular and sintered, 61 

spatially-periodic porous media and showed that in the long-time limit the dispersion of tracer 62 

particles obeys the advection–diffusion equation. The multiple-scale expansion or 63 

homogenization method was applied to determine dispersion coefficients in spatially-periodic 64 

porous media [9]. The method of volume-averaging [6] was employed to derive proper forms 65 

of the transport equation and to calculate the dispersion coefficients in ordered and random 66 

porous media [10–14]. Koch and Brady [15] used an ensemble-averaging approach to obtain a 67 

macroscopic equation of mass conservation. They analyzed the derived transport equation in 68 

the long-time limit and revealed three contributions to dispersion in fluid flow through a bed of 69 

fixed spheres: (i) intrinsic mechanical dispersion due to the stochastic velocity fluctuations 70 
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induced by the randomly positioned bed particles; (ii) retention of the diffusing species in 71 

permeable particles or in regions with closed streamlines, from which the species can escape 72 

only by diffusion; and (iii) the presence of the diffusive boundary-layer near the solid–liquid 73 

interface. Van Milligen and Bons [16] proposed a heuristic model of dispersion based on the 74 

assumption that transport in each of the pore channels traversed by a tracer is dominated by 75 

either diffusion or mechanical dispersion. The developed expressions for LD  and TD  include 76 

three free parameters (a critical velocity and two geometric proportionality constants), which 77 

depend on the porous medium properties. A fit of the proposed expressions to an ample 78 

collection of experimental data revealed good accuracy of the model for a wide range of flow 79 

velocities. However, values of the parameters in the proposed model can be only determined 80 

from fitting to experimental data. 81 

 82 

Over the past decades, the modeling of solute transport and dispersion in porous media has 83 

been performed also with a pore network approach, where a porous material is represented as 84 

an interconnected network of channels and/or pores [17–37]. In these models, the complex 85 

geometry of the void space in porous media is replaced with a simplified and "equivalent" pore 86 

network. Elements of this network are typically assigned to simple shapes, e.g., spheres and 87 

cylinders, amenable to analytical treatment. This approximation allows to reduce computational 88 

efforts in simulations of transport phenomena. The results obtained with a pore-network 89 

approach show that the morphology of a porous medium strongly affects dispersion. However, 90 

the main challenge arising due to the above simplification is to identify and preserve essential 91 

geometric and topological features of the real void space, which are relevant to both advective 92 

and diffusive transport. 93 

 94 

The lack of detailed information on the geometrical structure of real porous media, which is 95 

required for a direct pore-level modeling of transport phenomena, can be overcome by physical 96 

reconstruction of the pore space morphology. Several experimental techniques, such as nuclear 97 

magnetic resonance imaging, X-ray tomography, confocal laser scanning microscopy, and 98 

scanning transmission electron microscopy, were used for the acquisition of information on the 99 

three-dimensional geometrical structure of the void space in a variety of natural and synthetic 100 

porous media. They include sandstones, packed beds, reservoir rocks, and chromatographic 101 

monoliths. Then, this information was employed for pore-level numerical simulations of mass 102 

transport in these materials [38–51]. However, this simulation approach is computationally 103 
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expensive and commonly requires the use of high-performance parallel computational systems 104 

(supercomputers). 105 

 106 

Results obtained with the aforementioned theoretical and numerical approaches indicate that 107 

LD  and TD  depend on both the geometrical structure of the porous medium and the reduced 108 

flow velocity m/uG Dν =  (also known as the Péclet number), where u is the average velocity 109 

through the medium, G is a characteristic length of the medium (e.g., the grain size or the mean 110 

interstitial void size), and mD  is the free diffusion coefficient of the species in the bulk fluid. 111 

Because the geometrical structure of the void space in a three-dimensional random porous 112 

medium is complex, studies of dispersion in porous media are frequently based on replacing the 113 

random geometry by a periodic structure and on subsequent reduction of the three-dimensional 114 

problem to a two-dimensional one. Though these simplifications allow to reduce significantly 115 

computational expenses and the theoretical complexity of the problem, the applicability of 116 

results obtained with this simplified approach to random three-dimensional porous media is 117 

questionable. 118 

 119 

It is well established that advective transport in two- and three-dimensional porous media is 120 

fundamentally different [52]. In three-dimensional porous domains, the flow streamlines of the 121 

incompressible fluid can twist around and pass each other without intersecting. By contrast, the 122 

streamlines of a steady-state divergence-free flow field can never pass each other in two 123 

dimensions. This, for example, is manifested in completely different behaviors of the transverse 124 

dispersion coefficient in two- and three-dimensional porous media. Attinger et al. [53] showed 125 

theoretically that for pure advective transport ( m 0D = ) TD  is finite in three dimensions and 126 

zero in two dimensions. The unphysical assumption of m 0D =  immediately results in ν → ∞ , 127 

independent of the flow velocity u. However, the condition ν → ∞  can also be realized with 128 

the assumption of a finite mD  and u → ∞ . Brenner [8] and Koch et al. [54] pointed out that 129 

molecular diffusivity must always be accounted for in hydrodynamic dispersion studies. This 130 

requirement arises not only because diffusion is one of the principal transport mechanisms, but 131 

also due to its coupling with advection. 132 

 133 

In the present contribution, we investigate numerically the transverse dispersion coefficient in a 134 

hexagonal array and in disordered arrays of solid (i.e., impermeable), equal discs. While the 135 
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hexagonal disc array represents a two-dimensional porous medium with a regular geometrical 136 

structure, the disordered arrays mimic random two-dimensional porous media. Their structural 137 

disorder was generated through a distortion of the hexagonal array by introducing contacting 138 

discs. Complementary, a completely random arrangement of the discs was realized by adapting 139 

a Jodrey–Tory algorithm [55]. Advective–diffusive transport of passive tracers was simulated 140 

by two different approaches. The first one is based on a random-walk particle-tracking (RWPT) 141 

technique. At the first stage, the pore-scale velocity field of an incompressible Newtonian fluid 142 

in laminar flow was calculated with a lattice-Boltzmann method (LBM). Then, a large number 143 

of point-like tracers was distributed in the void space. The tracer displacements during each 144 

elementary time step were determined as the sum of two independent contributions due to 145 

advection (determined by the local flow velocity) and diffusion (determined by mD ). This 146 

comprehensive approach to the simulation of advective–diffusive transport accounts for the 147 

heterogeneity of the velocity field at the intra- and inter-pore scales of a porous medium. The 148 

second, simplified simulation approach we used in this study is based on modifications of the 149 

Galton-board model [56] and its successor, the Simpson model [57]. With this approach, the 150 

geometrical structure of a porous medium is represented by a set of rectangular void and solid 151 

cells. Velocity in the void cells is assumed to be uniform and along the average flow direction 152 

through the medium. We show that, regardless of the aforementioned geometrical and physical 153 

simplifications, the proposed modification of the Simpson model reproduces qualitatively (and 154 

for the hexagonal array even quantitatively) the behavior of TD  as a function of the reduced 155 

velocity. The main purpose of the simplified model, in addition to the LBM–RWPT approach, 156 

has been to eliminate any factors, except for the geometrical disorder, that eventually affect the 157 

dependence of TD  on ν  in random porous media. 158 

 159 

The two simulation approaches have been used to study the behavior of TD  in the ordered and 160 

disordered/random two-dimensional structures at high reduced velocities when the contribution 161 

of diffusion to mass transport becomes much smaller than the advective contribution, reflecting 162 

the conditions ν → ∞  and m 0D ≠ , and to analyze the effect of order/disorder in the studied 163 

system on TD . The article is organized as follows. First, a brief introduction into the LBM and 164 

RWPT techniques as well as the results obtained with these approaches for the hexagonal and 165 

random arrays of hard discs are presented. Afterwards, the Galton-board and Simpson models 166 

are described with an analysis of their shortcomings. Then, we present our modification of the 167 
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Simpson model. Results with this modification for the hexagonal disc array are compared with 168 

LBM–RWPT simulations and experimental data. In addition, we employ the modified Simpson 169 

model to evaluate the transverse dispersion coefficient in disordered disc arrays as a function of 170 

the reduced velocity. We show that in the presence of diffusion the behavior of TD  is different 171 

in ordered and disordered two-dimensional porous media: With increasing reduced velocity, the 172 

transverse dispersion coefficient approaches an asymptotic value in ordered two-dimensional 173 

porous media, while it grows linearly in disordered (random) structures. These results refute the 174 

assumption frequently met in the literature that a leveling-off in TD  at high ν must be observed 175 

both with ordered and disordered two-dimensional porous media due to the inherent properties 176 

of incompressible fluid flow in two-dimensional systems [58–62]. Though our study focuses on 177 

the analysis of transverse dispersion due to advective–diffusive transport in two-dimensional 178 

porous media, we finalize our discussion of the results by a comparison with data obtained for 179 

three-dimensional ordered and random porous media. 180 

 181 

 182 

II. LATTICE-BOLTZMANN AND RANDOM-WALK PARTICLE-TRACKING 183 

METHODS 184 

 185 

The lattice-Boltzmann method (LBM) is a kinetic approach with discrete space and time, based 186 

on resolving the Boltzmann equation instead of the Navier–Stokes equation to compute the 187 

flow velocity field. Among the advantages of the LBM are its inherent parallelism (supporting 188 

the implementation at high-performance computational systems) and the capability to handle 189 

topologically complex solid−liquid interfaces like in random porous media. With this approach, 190 

the hydrodynamics is simulated by tracking the time-evolution of fictitious particles that are 191 

confined to a cubic lattice and move with discrete velocity eα during discrete time steps along 192 

lattice links. The particle distribution function ( , )f tα r  determines the probability of finding a 193 

particle with velocity αe  at lattice site r and time t. The values of the velocities αe  are chosen 194 

such that in one time step LBtδ  a particle moves along a lattice link from one lattice node to its 195 

neighbor. Next, the particle distributions functions at each time step are redistributed according 196 

to the collision operator. Here, we used the Bhatnagar–Gross–Krook collision operator and the 197 

evolution equation ( , )f tα r  is [63] 198 
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( ) ( ) ( ) ( )
τ

δδ αα
ααα

tftftftttf ,,,,
eq

LBLB
rrrer −−=++ ,     (1) 199 

where eqfα  is the equilibrium distribution function and τ  is the relaxation parameter, which is 200 

related to the fluid viscosity by ( )2 1 / 6η τ= −  [64]. The local fluid density ( , )tρ r  and velocity 201 

( , )tu r  are determined by the first-order and second-order moments of the particle distribution 202 

functions: 203 

( ) ( )∑=
α

αρ tft ,, rr           (2) 204 

and 205 

( )
( )

( )tf
t

t ,
,

1, re
r

ru α
α

α
ρ

∑= .         (3) 206 

Employing the Chapman–Enskog expansion, the equilibrium distribution functions in Eq. (1) 207 

can be calculated according to the following expression [65] 208 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−++=

2
s

4
s

2

2
s

eq

22
1,

ccc
wtf uuueuer αα

αα ρ ,       (4) 209 

where sc  is the speed of sound and wα  are weight factors that depend on the geometry of the 210 

employed lattice. We used the D3Q19 lattice [66,67], a cubic lattice with 18 links at each lattice 211 

node, which can be obtained by projecting the four-dimensional face-centered hypercubic 212 

lattice onto three-dimensional space. In the D3Q19 lattice each node is connected to its six 213 

nearest and twelve diagonal neighbors. It can be shown that Eq. (4) with weight factors of 214 

1/ 3wα =  (for α = 0), 1/18wα =  (for α = 1, 3, 5, 7, 10, 13), and 1/ 36wα =  (for α = 2, 4, 6, 8, 215 

9, 11, 12, 14, 15, 16, 17, 18; conventional numbering for links in a D3Q19 lattice) properly 216 

recovers the Navier–Stokes equation [68]. To realize the no-slip velocity boundary condition, a 217 

halfway bounce-back rule was implemented at the solid–liquid interface [69]. During the last 218 

decade, the LBM was extensively used to calculate pore-scale velocity fields in porous media. 219 

Recently, its accuracy was validated and confirmed by a direct comparison of the hydraulic 220 

permeability simulated in physically reconstructed monolithic porous media with experimental 221 

values obtained for these materials [43,70]. 222 

 223 

In this study, we used the LBM to calculate pore-scale flow velocity fields in the void space of 224 

hexagonal and random disc arrays with a solid volume fraction of 0.6φ = , assuming a laminar 225 

flow regime. The random array of discs (which contains ca. 74.6 10×  discs with diameter pd ) 226 
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was generated by the Jodrey–Tory algorithm [55] in a rectangular domain with dimensions of 227 

p p2000 30000d d×  and periodic boundary conditions. Implementation of periodic boundaries 228 

assumes that the disc position on one side of the domain influences the positions of discs at the 229 

opposite side. Then, hexagonal and random arrays were discretized on a uniform lattice with a 230 

lattice spacing of p /100d , which was used for the LBM simulations of fluid flow. It has been 231 

shown that this grid resolution is sufficient for accurate LBM flow simulations in random 232 

sphere packings [71]. 233 

 234 

In the next step, the computed flow fields were used to simulate advective–diffusive transport 235 

of inert point-like tracers with the RWPT method [9]. It is based on the equivalence of the 236 

advective–diffusive equation, 237 

cDc
t
c 2

m∇=∇⋅+
∂
∂ u ,          (5) 238 

where c denotes concentration, and the stochastic differential equation describing the random 239 

walk of a tracer in an advection velocity field [72]. In two dimensions, the discrete form of the 240 

stochastic differential equation is 241 

( ) ( ) ( ) RWmRWRW 4 tDtttt δδδ ξrurr ++=+ ,       (6) 242 

where ( )tr  stands for the tracer position at time t, RWtδ  is the elementary time step of the 243 

random walk, and ξ is a vector with a random orientation and a length governed by a Gaussian 244 

distribution with zero mean and unity variance. Algorithmically, Eq. (6) was realized to 245 

simulate advective–diffusive transport of tracers in the interstitial void space of the arrays as 246 

follows. Initially, a large number of tracers trN  (106) were uniformly distributed at random 247 

positions in the void space. Then, at each elementary time step RWtδ , the displacement of a 248 

tracer was determined as the sum of advective and diffusive contributions represented by the 249 

second and third terms on the right-hand side of Eq. (6), respectively. The advective 250 

contribution was calculated with the velocity vector u from the nearest node of the lattice used 251 

to simulate the velocity field by the LBM. The time step RWtδ  was defined so that the average 252 

displacement did not exceed p / 200d . A multiple-rejection scheme was implemented to restrict 253 

the movement of tracers to the void space [73]. The time-evolution of tracer coordinates was 254 

monitored and the transverse dispersion coefficient determined from 255 
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( )∑
=

>Δ<−Δ=
tr

1

2

tr
T

2
1 N

a
a yy

dt
d

N
D ,        (7) 256 

where ayΔ  and y< Δ >  are, respectively, the transverse displacement of the ath tracer and the 257 

average transverse displacement of the tracer ensemble. 258 

 259 

In recent years, the RWPT technique combined with the LBM was extensively used to study 260 

hydrodynamic dispersion in porous media [42,71,74–84]. The comparison with experimental 261 

data confirmed that this approach allows to determine longitudinal and transverse dispersion 262 

coefficients with high accuracy [84]. The above numerical methods presented in this section 263 

were realized as parallel codes in C/C++ languages and implemented on an IBM BlueGene/Q 264 

supercomputer (Jülich Supercomputing Center, Forschungszentrum Jülich, Jülich, Germany). 265 

The calculation of a steady-state velocity field required ca. 2 hours at 256 processors, and the 266 

simulation of hydrodynamic dispersion for 30 values of the reduced flow velocity took about 4 267 

hours at 256 processors. 268 

 269 

Figure 1 shows the transverse dispersion coefficient as a function of the reduced flow velocity 270 

p m/ud Dν =  obtained for the hexagonal and random arrays of discs using the LBM–RWPT 271 

approach. The results in Fig. 1 demonstrate that, in contrast to the theoretical prediction for 272 

pure advective transport (when m 0D = ) [53], TD  is not zero even at very high values of ν , at 273 

which advection is the (by far) dominating transport mechanism. This means that the diffusive 274 

contribution to mass transport, no matter how small compared to the advective contribution, 275 

cannot be neglected in a realistic analysis of hydrodynamic dispersion in porous media. In 276 

addition, the behavior of TD  for ν → ∞  is different for ordered and random array; while TD  277 

in the hexagonal array levels off, it continues to grow with ν  in the random array. Thus, the 278 

structural order/disorder is another key parameter that determines the behavior of the transverse 279 

dispersion coefficient at high reduced velocities. We discuss these results in detail in the last 280 

section. In the next sections, we present a simplified model of transverse dispersion in two-281 

dimensional porous media and show that it allows to reproduce the functional behavior of TD  282 

in the ordered and disordered structures obtained with the LBM–RWPT approach (Fig. 1). This 283 

signifies that geometrical disorder in the presence of diffusion results in an increase of TD  284 

with ν  even in a divergence-free and pore-scale uniform flow field in a two-dimensional 285 

porous medium. 286 



 
 

11 
 

 287 

 288 

III. MODIFIED SIMPSON MODEL 289 

 290 

Though a spatially periodic porous medium is an idealization of real porous materials, this 291 

geometrical model is of theoretical interest, because the problem of determining the dispersion 292 

coefficients in such simplified media may be reduced to the investigation of transport processes 293 

in a single unit cell [8]. The simplest and most studied periodic geometrical model of a porous 294 

medium is a hexagonal array of infinitely long cylindrical pillars, which can be reduced to a 295 

two-dimensional hexagonal array of discs [Fig. 2(a)]. This configuration closely resembles the 296 

Galton board, a device constructed to demonstrate experimentally that the normal distribution 297 

approximates the binominal distribution. Assuming that a falling ball, when it hits a pin, can 298 

bounce to the left or to the right with probability 0.5, the probability ( , )f i n  to find a ball in the 299 

ith compartment of the nth layer of the Galton board [Fig. 2(b)] is governed by the binominal 300 

distribution 301 

( )
ni

iin
nnif n ≤≤

−
= − 0   ,2

! ! 
!),( .        (8) 302 

The Galton-board model can be applied to describe transverse dispersion in a hexagonal array 303 

of pillars or discs [Fig 2(a)] under the assumption of a uniform velocity in the interstitial void 304 

space. With this approach, transverse dispersion is treated as a random-walk process composed 305 

of successive and equiprobable displacements of a tracer by a distance / 2yΔ  along the either 306 

positive or negative directions of the Y-axis. Transverse displacements are associated with the 307 

splitting streamlines of the flow velocity upstream of every disc. Each transverse displacement 308 

is accompanied by a displacement xΔ  along the axial direction, i.e., the average flow direction 309 

through the array. These displacements occur with frequency 1/ 2 /t u xΔ = Δ , where u is the 310 

axial velocity. The geometrical parameters xΔ  and yΔ  describe the unit cell in a hexagonal 311 

disc array [red rectangle in Fig. 2(a)]. The variance of the transverse displacement of the tracer 312 

from its original position after n displacements is given by [85] 313 

4

2
2
T,

ynn
Δ=σ .           (9) 314 

The transverse dispersion coefficient can be determined by the method of moments [17,86,87] 315 

as 316 
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n

n

t
D

2
,T

T
2
1 σ

= ,           (10) 317 

where nt n t= Δ  is the time required to perform n displacements. Substituting Eq. (9) into Eq. 318 

(10), we get 319 

u
x

yD
Δ

Δ=
2

T
4
1 .           (11) 320 

For a hexagonal array of discs or pillars, the values of xΔ  and yΔ  can be determined from the 321 

diameter of the discs pd  and the solid volume fraction φ  as 322 

2/1

p
2
3
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Δ

φ
πdx ,          (12) 323 

2/1

p
32 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Δ

φ
πdy .          (13) 324 

The Galton-board model treats transverse dispersion as a mechanistic process [56]. Though it 325 

allows to determine TD  using information only about the geometrical structure of the ordered 326 

porous medium, diffusion is not considered as a transport mechanism. Equation (11) predicts 327 

that TD  is proportional to the average velocity u and does not depend on the solute diffusion 328 

coefficient. This contradicts theoretical findings [54,88,89], experimental data [90,91], and also 329 

the results of numerical simulations [14,83,84,92–95]. The Galton-board model assumes that 330 

solute molecules in a region of merging flow streamlines experience a complete mixing 331 

independent of the time they need to pass this region, i.e., independent of the flow velocity and 332 

the diffusion coefficient. 333 

 334 

Simpson proposed a modified Galton-board model [57]. It accounts for the dependence of the 335 

rate of exchange between solute molecules, brought to a mixing zone through different flow 336 

streamlines, on the time that the molecules require to pass the zone. In the Simpson model, the 337 

porous medium is represented as an idealized structure of spatially ordered, rectangular cells 338 

associated with either solid phase or void space [Fig. 3(a)]. It is assumed that the flow field in 339 

the void cells consists of only the uniform longitudinal component determined by the average 340 

velocity u through the porous medium. Therefore, the Simpson model does not need to resolve 341 

the problem of the actual flow field. Regardless of an eventual discontinuity of the void space 342 

in the model resulting from spatially disconnected void cells, time-continuous mass transport is 343 

maintained through the assumption of instantaneous lateral displacements of a tracer toward the 344 
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neighboring downstream void cells as it leaves a given cell [dashed blue lines in Fig. 3]. Each 345 

void cell is divided into two halves along the longitudinal X-direction [Fig. 3(b)]. It is assumed 346 

that a tracer can enter a downstream void cell only through the fraction of its lateral boundary 347 

belonging to the half-cell that is closest to the exited cell. In the absence of diffusion, the tracer 348 

leaves a void cell by passing the downstream lateral boundary that belongs to the same half 349 

through which it has entered. To account for diffusion as a mixing mechanism in the void cells, 350 

Simpson introduced two quantities, q and p ( 1)q p+ = , which correspond to the probabilities 351 

that a tracer leaves a void cell from the same half through which it has entered and from the 352 

adjoining half-cell, respectively. The values of q and p depend on the time tΔ  that the tracer 353 

needs to travel the longitudinal distance Δx (i.e., /t x uΔ = Δ ) and on the diffusion coefficient 354 

mD  [cf. Fig. 3(b)]. 355 

 356 

Simpson proposed to determine the probabilities q and p by resolving a one-dimensional 357 

diffusion problem in a rectangular domain divided into two equal halves. Initially, one of the 358 

halves contains a uniformly distributed species at concentration 0c  and the second one is 359 

empty. Then, the species diffuses through the boundary between the two halves of the domain. 360 

Diffusion only normal to the boundary is accounted for. The external boundary of the domain is 361 

assumed to be impermeable. The solution of the aforementioned one-dimensional diffusion 362 

problem can be obtained as follows [96]: 363 

( )
( ) ( )

∑
∞

−∞=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ +−
+

−+
=

j mm tD

yjy

tD

yjy
ctyc

2

41
2
Δ

erf
2

41
2
Δ

erf
2

,

vv

0 , 0 ≤ y ≤ Δyv, t ≥ 0 (14) 364 

where ( , )c y t  is the species concentration at position y after time t , 0c  is the initial, uniform 365 

species concentration in the region v0 / 2y y≤ ≤ Δ , and ( )v p 1 / 2y d φ φΔ = − . The value of p is 366 

determined as the fraction of species diffused across the boundary after time tΔ . This fraction 367 

is calculated by integrating ( , )c y t t= Δ  with respect to y over the range v v/ 2y y yΔ ≤ ≤ Δ : 368 

( )∫
Δ

Δ

Δ=
Δ

=
v

v 2/v0

,2 y

y

dyttyc
yc

p .         (15) 369 

With this approach, p does not depend on the initial species concentration, i.e., the calculated 370 

value of p is applied to characterize diffusive transport in all void cells independent of their 371 
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position in the system. Then, the variance of the transverse displacement of the tracer from its 372 

original position after passing n void cells is given by [85] 373 

( ) npyy
n

4

2
sv2

T,
Δ+Δ=σ ,         (16) 374 

and the corresponding value of TD  is calculated as 375 

( ) up
x

yyD
Δ

Δ+Δ=
2

sv
T

8
1

,         (17) 376 

where 1
s v / ( 1)y y φ−Δ = Δ − . Comparison of Eqs. (11) and (17) shows that the Simpson model is 377 

reduced to the Galton-board model when v sy y yΔ = Δ = Δ  and 0.5p = . (It should be noted that 378 

xΔ  in the Simpson model is half the longitudinal dimension of the unit cell in the Galton-board 379 

model, cf. Figs. 2 and 3.) The value of 0.5p =  corresponds to a complete mixing of tracers 380 

during their motion in a void cell, which can be observed if 0u →  (or more rigorously, if 381 

0ν → ). 382 

 383 

However, the probability p in the Simpson model is not constant. It is a function of velocity u, 384 

diffusion coefficient mD , and the parameters xΔ  and vyΔ  characterizing the geometry of the 385 

system. Substituting Eq. (14) into Eq. (15) and integrating with respect to v v/ 2y y yΔ ≤ ≤ Δ  and 386 

/t t x u= Δ = Δ , one can derive the following expression for p [96]: 387 
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   (18) 388 

By asymptotic analysis for u → ∞ , the value of p can be approximated as 389 

π2
v

m4
yu

xDp
Δ

Δ= ,          (19) 390 

and after substituting Eq. (19) into Eq. (17), the following functional dependence of TD  on u 391 

can be developed: 392 
2/1

T uD ∝ .           (20) 393 

Though Eq. (20), in contrast to Eq. (11), predicts a non-linear dependence of TD  on the flow 394 

velocity in a porous medium, the above functional relation with u still contradicts experimental 395 
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data [60] and the results of numerical simulations [83,92,95], indicating that TD  in ordered 396 

porous media approaches an asymptotic value with increasing flow velocity. 397 

 398 

Our analysis of the Simpson model has demonstrated that this disagreement originates from the 399 

assumption of a uniform species concentration in the void cells that is used as initial condition 400 

for resolving the diffusion problem (to determine the value of p). The incorrectness of this 401 

assumption is illustrated by the data presented in Fig. 4. The solid lines in this figure show the 402 

lateral distribution of the normalized species concentration (c/c0) in a void cell after different 403 

times p m/t xd DνΔ = Δ  associated with different reduced velocities ν  ( tΔ is the time available 404 

for lateral diffusion of a tracer in a void cell, equal to the length of the cell divided by the flow 405 

velocity). The normalized lateral concentration distributions in Fig. 4 were obtained according 406 

to Eq. (14) for initially uniform concentration distribution ( 0/ 1c c = ) in the left half of the void 407 

cell [ v0 / 0.5y y≤ Δ ≤ , Fig. 3(b)]. The results in Fig. 4 demonstrate that for 100ν ≥  the lateral 408 

concentration distributions are non-uniform. According to the Simpson model, the non-uniform 409 

concentration distribution established in the current void cell after time tΔ  is replaced by the 410 

corresponding uniform one (dashed lines in Fig. 4), which is used as initial boundary condition 411 

for the next two downstream void cells [Fig. 3(b)]. The uniform concentrations are obtained by 412 

averaging the concentration distributions in the left and right halves of the current cell. This 413 

replacement allows to avoid recalculation of p in every void cell and, as a consequence, reduces 414 

significantly the numerical expenses for the determination of TD . At the same time, the above 415 

probabilistic approach leads to an inaccurate solution for the diffusion problem in the void cells 416 

due to the incorrect initial boundary conditions. In the Simpson model the actual concentration 417 

distribution established in a void cell after time p m/t xd DνΔ = Δ  is replaced by the average 418 

concentrations in the left and right halves of the cell. At 10ν ≤ , when tΔ  is sufficiently large, 419 

the actual concentration after tΔ  is almost uniform and can be quite accurately represented by 420 

its average value. With increasing ν , tΔ  becomes smaller and tracers diffuse a shorter average 421 

distance. This results in a non-uniform lateral concentration distribution established within the 422 

void cell after time tΔ . As a consequence, the average concentration c  in the right half of the 423 

cell becomes higher than the actual concentration at the right side of the cell, ( )R vc c y y= = Δ . 424 

The relative difference ( )R R/c c c−
 increases with ν  (because Rc  decreases with ν ). In turn, 425 
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at the next iteration, this leads to an increased fraction of tracers that diffuse to the right half of 426 

the right downstream void cell, resulting in an overestimation of the mean squared 427 

displacement in the Simpson model at high ν . 428 

 429 

We modified the Simpson model by introducing a calculation of the concentration distribution 430 

in every void cell of the system. For this purpose, the modeled system was represented as large 431 

hexagonal array of discs composed of 30,000 layers. Figure 5 shows a section of the array with 432 

its first three layers. Similar to the original Simpson model, void cells with dimensions xΔ  and 433 

vyΔ  (semi-transparent red rectangular regions in Fig. 5) were used to represent the void space 434 

of the array. At 0t = , tracers are placed in the space between two discs of the first layer with 435 

uniform concentration 0c  (green horizontal line in Fig. 5). Then, the concentration distribution 436 

in every void cell of the system is successively calculated, while accounting for the generally 437 

non-uniform initial concentration distribution obtained from solutions for the one-dimensional 438 

diffusion problem in two adjoining (upstream) void cells. 439 

 440 

A solution for this one-dimensional diffusion problem with initially non-uniform concentration 441 

distribution can be obtained by a superposition-reflection method [96]. For this purpose, we 442 

divided the void cells along the y-direction into L equal regions with dimension v /y LΔ  (here, 443 

100L = ). The initial (entering) concentration 0lc  in the lth ( 0 l L< ≤ ) region was assumed to 444 

be uniform and equal to the concentration in the center of the region, v( 0.5) /ly l y L= − Δ . 445 

Then, a solution for this diffusion problem can be represented as a superposition of solutions 446 

for individual sub-problems resolved for l instant diffusion sources with initial concentration 447 

0lc , the same width v /y LΔ , and positioned between v( 1) /l y L− Δ  and v /l y LΔ . Assuming an 448 

impermeability of the external boundary of a void cell, the concentration cl at the center of the 449 

lth region v( 0.5) /ly l y L= − Δ  after time v m/t x y DνΔ = Δ Δ  can be calculated according to the 450 

following expression 451 
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 (21) 452 

where v( 1) /ka k y L= − Δ  and v /kb k y L= Δ  ( 0 k L< ≤ ). Thus, Eq. (21) allows to determine the 453 

tracer concentration distribution in the system after time t t+ Δ  depending on the concentration 454 

distributions in the void cells at time t. 455 

 456 

A principle distinction of this approach from the original Simpson model is the elimination of 457 

the averaging procedure used to produce uniform tracer concentrations in the two halves of a 458 

void cell as initial condition for resolving the local diffusion problem. This modification allows 459 

to account for diffusive fluxes originating in lateral concentration gradients in each void cell. In 460 

contrast to the original Simpson model, the tracer concentration distribution is determined not 461 

only by ν and the geometrical parameters characterizing the structure of the array ( xΔ , vyΔ , 462 

and pyΔ ), but also by the position of a void cell in the array. As a consequence, TD  cannot be 463 

calculated with Eq. (17), because the value of p in the proposed modification of the Simpson 464 

model is not the same any more in different void cells of the system. To evaluate the transverse 465 

dispersion coefficient obtained with the proposed model, we used the method of moments 466 

[17,26,86,87]. According to this method, T( )D t  can be calculated from the variance of the 467 

transverse displacement of tracers from their original position (cf. Fig. 5) as 468 

( )
dt

dtD
2

2
T

T
σ= .           (22) 469 

Replacing the derivative by its finite-difference approximation, Eq. (22) can be rewritten as 470 

( )
tt

tD nnn

Δ

Δ
=

Δ

−
= −

22

2
T,

2
1T,

2
T,

T
σσσ

,        (23) 471 



 
 

18 
 

where 2
T,nσ  is the variance of the transverse displacement of tracers after passing n layers of the 472 

hexagonal array and t n t= Δ . For a large number of tracers 2
T,nσ  is equivalent to the variance 473 

of the transverse concentration distribution of tracers at the nth layer of the array. 474 

 475 

The modeling of transverse dispersion, employing the approach described above, is carried out 476 

according to the following iterative scheme. At the beginning of each time-iteration with the 477 

duration p m/t xd DνΔ = Δ , the initial (entering) concentration distribution for every rectangular 478 

void cell is spatially associated with the distribution at its upper (upstream) lateral boundary 479 

(cf. Fig. 3). Then, Eq. (21) is used to determine the concentration distribution established in a 480 

void cell after time tΔ  through lateral diffusion. This concentration distribution corresponds to 481 

that observed at the bottom (downstream) lateral boundary of the void cell, assuming a uniform 482 

x-component and zero y-component of flow velocity in the cell. Transverse advective transport 483 

in the system is realized by introducing instant lateral displacements of the tracers after time tΔ  484 

from the bottom (downstream) lateral boundary of a given void cell to the upper boundaries of 485 

two adjoining downstream void cells. Since the splitting of flow streamlines enveloping a disc 486 

in a hexagonal array is symmetric, the outgoing concentration distribution calculated for a 487 

given void cell is also split into two equal halves, left and right (cf. Fig. 3). At the end of an 488 

iteration, each of the halves is transferred to the left or right nearest downstream void cells and 489 

set as the initial concentration distribution at the next iteration for the right or left halves of the 490 

left or right downstream cells, respectively. 491 

 492 

In contrast to the Simpson model, the proposed approach requires resolving a diffusion problem 493 

for each void cell. However, it allows to model more realistically diffusive transport resulting 494 

from lateral concentration gradients in a porous medium. This transport significantly affects the 495 

exchange between species carried by different flow streamlines and, therefore, the transverse 496 

dispersion coefficient. In the next two sections, we present results obtained through analyzing 497 

the effect of order/disorder (and the finite value of mD ) on TD  in the hexagonal and random 498 

arrays of discs using the proposed approach. 499 

 500 

 501 

IV. HEXAGONAL ARRAY OF DISCS 502 

 503 
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The system we analyze in this section is a hexagonal array of discs with solid volume fraction 504 

0.6φ = , which is between the limits corresponding to random-loose (~0.55) and random-close 505 

packing (~0.64) for monosized, frictionless hard spheres [97]. Similar to the representation of a 506 

porous medium used in the Simpson model, the real geometrical structure of the array is 507 

replaced by spatially ordered void cells with longitudinal and transverse dimensions xΔ  and 508 

vyΔ , respectively (cf. Fig. 5). The lateral distance between the centers of two neighboring void 509 

cells in the same layer is pyΔ . The values of xΔ  and pyΔ  are determined by the disc diameter 510 

and the solid volume fraction in the array: 511 
2/1

p

2
3

2 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Δ

φ
πd

x           (24) 512 

and 513 
2/1

pp
32 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Δ

φ
πdy .          (25) 514 

The lateral dimension vyΔ  of the void cells was determined by adjusting the hydraulic 515 

diameter of the rectangular void cell to that of the actual pore in the hexagonal array: 516 

( )
φ

φ
2

1p
v

−
=Δ

d
y .          (26) 517 

At 0t = , the tracers are placed in the gap space between two discs of the first layer ( 0n = ) 518 

with a uniform concentration. The fluid flow in a void cell has only one constant longitudinal 519 

component u. Transverse displacement of tracers from upstream void cells to downstream cells 520 

occurs with frequency 1/ /t u xΔ = Δ . The length of these displacements is p / 2yΔ . The time-521 

dependent transverse dispersion coefficient T( )D t  was calculated according to Eq. (23) using 522 

the variances of the transverse concentration distributions determined at layers n and ( 1n− ) of 523 

the array, where t n t= Δ . 524 

 525 

Figure 6 shows how the values of 2
T, /n tσΔ Δ  change with increasing number of passed layers, 526 

n, in the hexagonal array at several reduced flow velocities p m/ud Dν = . Different values of ν   527 

were realized by adjustment of the fluid flow velocity u, assuming 5
p 10d −=  m and 9

m 10D −=   528 

m2 s–1. The results in Fig. 6 show that the behavior of 2
T, /n tσΔ Δ  at high ν  is characterized by 529 

oscillations, which decay with the number of layers passed by the tracers. (To achieve a better 530 
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visualization, the data at ν  = 1000 and 10000 for 10n <  and 130n < , respectively, have been 531 

removed.) This specific oscillatory behavior originates in the initially localized distribution of 532 

tracer concentration and the spatially periodic structure of the array. At high ν , the time tracers 533 

need to pass a pore with fluid flow is insufficient to equilibrate their concentration by lateral 534 

diffusion (cf. Fig. 4). Consequently, the transverse position of tracers after passing the first few 535 

layers of the array is mainly governed by splitting and merging of flow streamlines, resulting in 536 

abrupt changes in 2
Tσ  calculated at two successive layers. With increasing number of passed 537 

layers, the variance of the transverse concentration distribution becomes progressively affected 538 

by lateral diffusion in void cells. This results in a gradual decrease of the difference between 539 

values of 2
Tσ  calculated at two successive layers and in a corresponding decay of oscillations 540 

with n, as observed in Fig. 6. The rate of the oscillation decay depends on the reduced velocity 541 

characterizing the ratio between contributions of advection and diffusion to mass transport: The 542 

smaller the value of ν  the larger is the effect of diffusion on the variance of the transverse 543 

concentration distribution. 544 

 545 

The data in Fig. 6 reveal that with increasing number of passed layers, the ratio between 2
T,nσΔ  546 

and tΔ  approaches a time-independent, asymptotic value which depends on ν . Independence 547 

of 2
T, /n tσΔ Δ  from time means that transverse dispersion in the disc array can be considered as 548 

a diffusion-like process. This conclusion is supported by the data in Fig. 7, where the transverse 549 

concentration distributions at 410n =  are shown, calculated with the presented approach at four 550 

selected values of ν . All distributions in Fig. 7 are fitted excellently with a Gaussian, resulting 551 

in adjusted coefficients of determination equal to unity [98]. 552 

 553 

Figure 8 shows the dependencies of the transverse dispersion coefficient normalized by mD  on 554 

the reduced velocity, obtained with the presented approach (solid circles), the LBM–RWPT 555 

simulations (solid line), and the Simpson model (open triangles) along with experimental data 556 

(open squares) from [60]. The values of TD  received with the presented approach were 557 

calculated according to Eq. (23), using the variances of the transverse tracer concentration 558 

distributions determined in the array for 500n > , where steady-state (long-time) behavior of 559 
2
T, /n tσΔ Δ  is found (cf. Fig. 6). Though the presented simplified approach does not account for 560 

a non-uniform velocity profile in the void space between discs and diffusion in longitudinal 561 
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direction, it allows not only to reproduce the behavior of T m/D D  with increasing ν , but also 562 

provides TD -values close to those obtained with a comprehensive simulation approach (LBM–563 

RWPT) and by experimental measurements. By contrast, the original Simpson model is not 564 

capable of describing adequately the behavior of TD at high ν . 565 

 566 

The data in Fig. 8 demonstrate that TD  in the studied system for 10ν ≥  exceeds mD . This 567 

confirms that, apart from diffusion, tracer transport in the lateral direction is also realized by an 568 

additional mechanism related to advection. During its motion along a flow streamline, a tracer 569 

can diffuse to a neighboring streamline. If initial and neighboring streamlines split around the 570 

nearest downstream disc (cf. Fig. 5), this results in a change of the transverse tracer position by 571 

py≈ Δ  after time / 2t x uΔ = Δ  (the time needed by a tracer to pass one half of a layer in the disc 572 

array) relative to the transverse position of a tracer that follows the initial streamline. Average 573 

diffusive displacement during the same time interval is given by 1/2 1/2
m p(2 ) (2 / )D t d x νΔ = Δ  574 

and becomes smaller than pyΔ  at high ν . It results in an increased variance of the transverse 575 

displacement of tracers (and increased TD ) compared to purely-diffusive transport. The above 576 

mechanism of enhanced transverse transport can be realized only if m 0D ≠ , because with pure 577 

advective transport ( m 0D = ) the tracers always follow their initial flow streamlines. Already a 578 

very small diffusive contribution of the tracers (compared to advection) is sufficient to drive the 579 

additional advective–diffusive transport mechanism. Thus, realization of the condition ν → ∞  580 

following these two diverse approaches ( m 0D =  vs. m 0D ≠ , but u → ∞ ) results in a different 581 

behavior of TD  in ordered two-dimensional porous systems. While T 0D =  at any value of ν  582 

for the purely advective transport, the presence of diffusion leads to an increase of TD  with ν  583 

which, however, lessens monotonically. 584 

 585 

The difference in the functional dependence of TD  on ν , observed at moderate  ( )210ν <  and 586 

very high ( )310ν >  values of the reduced velocity (cf. Fig. 8), can be explained by the different 587 

spatiotemporal conditions behind the concentration equilibration in the void cells resulting 588 

from transverse diffusion. If tΔ  (the time needed by a tracer to pass a void cell due to flow) is 589 

large enough to result in a mean diffusive displacement exceeding the width of the void cell, 590 
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then any initial (i.e., at the entrance of a void cell) and laterally non-uniform concentration 591 

distribution relaxes after tΔ  into a uniform one, which in turn becomes the initial concentration 592 

distribution for the next downstream void cells. This concentration equilibration is a 593 

consequence of the two external (right and left), impermeable boundaries of the void cells. It 594 

explains why the Simpson model, which assumes a uniform initial concentration for one half of 595 

any void cell, can describe the T –D ν  dependence sufficiently accurate at moderate values of ν  596 

(cf. Fig. 8). Using Eqs. 24 and 26 (determining the dimensions of the void cells in the 597 

hexagonal array), one can define the critical value critν  for which the average transverse 598 

diffusive displacement of the tracers ( ) ( )1/21/2
m p2 2 /y D t d x νΔ = Δ = Δ  during the time interval 599 

tΔ  is equal to the half-width of the void cell 600 

 
( )

1/2 2

crit 2
3 16

2 1
π φν

φ φ

⎛ ⎞
= ⎜ ⎟⎜ ⎟ −⎝ ⎠

.      (27) 601 

For critν ν< , the presence of the two impermeable boundaries in the void cells noticeably 602 

affects the concentration distribution after tΔ  and drives equilibration within any cell. 603 

Therefore, critν  can be considered as the upper limit of the reduced velocity at which the 604 

Simpson model still allows to determine TD  with sufficient accuracy. For the hexagonal array 605 

of discs with 0.6φ = , Eq. (27) provides crit 163ν ≈ . The data presented in Fig. 8 show that for 606 

200ν < , the Simpson model describes the T –D ν  dependence in this system satisfactorily. 607 

With a further increase in ν  and a corresponding reduction of tΔ , the average diffusive 608 

displacement of tracers yΔ  becomes smaller than the half-width of the void cells. For 609 

instance, v0.14y yΔ ≈ Δ  and v0.04 yΔ  for 310ν =  and 410 , respectively. This means that the 610 

effect of the impermeable walls on the concentration redistribution (equilibration) within the 611 

void cells during tΔ  decreases with ν . At very high values of ν , only tracers located initially 612 

(at the entrance of the void cells) very closely to the boundary between the right and left halves 613 

of a void cell can cross this boundary during tΔ  and subsequently change their transverse 614 

position by pyΔ . As a consequence, the mechanism for transverse dispersion becomes 615 

dominated by successive changes in the tracers' transverse positions, resulting from the 616 

exchange between the two halves of the void cells. The probability of this exchange is 617 

proportional to tΔ  and inversely proportional to the average flow velocity and ν . On the other 618 
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hand, the number of the void cells that a tracer visits per time is proportional ν . This causes 619 

TD  to approach a constant value at high values of ν . 620 

 621 

In the next section, we present results obtained with the proposed modification of the Simpson 622 

model to analyze the effect of diffusion on the transverse dispersion coefficient in disordered 623 

two-dimensional porous media. 624 

 625 

 626 

V. DISORDERED ARRAYS OF DISCS 627 

 628 

For this investigation, disordered two-dimensional porous media were generated by disturbing 629 

(in a random manner) the geometrical order of the hexagonal array of discs. The distortion was 630 

introduced by creating pairs of contacting discs in the layers of the array. In a single layer, only 631 

two randomly chosen discs were allowed to touch. To receive a set of porous structures with a 632 

graded degree of heterogeneity (DoH), we prepared three classes of disc arrays (all with a solid 633 

volume fraction of 0.6φ = ), for which single pairs of contacting discs were repeatedly formed 634 

in every second, fourth, or tenth layer. Below, we refer to these groups of disordered structures 635 

as arrays_2, arrays_4, and arrays_10, respectively. For each group, ten disordered arrays with 636 

different positions of the contacting discs were generated. An example of a structure of an array 637 

for group arrays_2 is shown in Fig. 9. The DoH increases with the number of layers containing 638 

contacting discs, i.e., DoH(arrays_2) > DoH(arrays_4) > DoH(arrays_10) > DoH(hexagonal 639 

array). Then, the evolution of tracers, initially distributed with uniform concentration c0 in the 640 

gap space between two central discs in the first layer of the arrays, was calculated according to 641 

Eq. (21). The lateral dimension of the void cells corresponding to the contacting discs was set 642 

to zero ( v 0yΔ = ). 643 

 644 

Figure 10 shows the lateral concentration distributions of tracers after passing 410n =  layers in 645 

two selected arrays from groups arrays_2 and arrays_10, obtained at four reduced velocities. 646 

Concentration distributions simulated for a random structure from group arrays_10, shown in 647 

Fig. 10(a), are smooth except for 410ν = . By contrast, distributions calculated for a structure 648 

from group arrays_2 [Fig. 10(b)] are characterized by abrupt changes in tracer concentration 649 

already at 10ν = . These changes occur at a lateral distance comparable with the disc diameter, 650 

implying that their appearance originates in the presence of the disc contacts. Contacting discs 651 
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in a layer of the array do not allow tracers to be located in the space between these discs after 652 

they have been transported from the upstream layer. It results in zero tracer concentration at the 653 

transverse position corresponding to the contact point between two discs. During the transport 654 

to the next downstream layer of the array, the absence of tracers at some transverse position is 655 

partially compensated by advection (represented in the model by lateral displacements of the 656 

tracers between two neighboring layers of the structure) and lateral diffusion in the void cells. 657 

However, the relative contribution of diffusion to equilibration of local concentration decreases 658 

with higher ν . At low values ( 10ν ≤ ), the time tracers spend to pass a void cell in longitudinal 659 

direction is sufficient to achieve a close-to-uniform transverse concentration even in a single 660 

void cell (cf. Fig. 4). With increasing ν , this time shortens and local equilibration requires to 661 

pass a larger number of void cells. For structures from group arrays_10, only every tenth layer 662 

contains a pair of contacting discs. Consequently, tracers passing the other nine layers of the 663 

array at 310ν ≤  have sufficient time for lateral equilibration before experiencing a distortion at 664 

the tenth layer. It results in the smooth transverse tracer distributions simulated at 310ν ≤ , as 665 

shown in Fig. 10(a). By contrast, the structures belonging to group arrays_2 contain contacting 666 

pairs of discs in every second layer (Fig. 9). Even at 100ν = , the time that the tracers spend to 667 

pass one layer is insufficient for lateral equilibration (cf. Fig. 4). This produces the non-smooth 668 

concentration distributions simulated for 100ν ≥  [Fig. 10(b)]. 669 

 670 

The presence of the contacting discs is also responsible for the appearance of fluctuations in the 671 

dependencies of 2
T, /n tσΔ Δ  on the number of layers that the tracers have passed with the flow. 672 

In Fig. 11, we illustrate these dependencies at ν  = 10, 100, and 1000 for a selected disordered 673 

structure from group arrays_2. Random fluctuations in 2
T, /n tσΔ Δ  (observed in Fig. 11) make 674 

an evaluation of TD  with Eq. (23) challenging. The determination of the transverse dispersion 675 

coefficient according to Eq. (23) is based on the so-called tangent definition of TD  [26]. As an 676 

alternative, TD  can be calculated using its secant definition [26] 677 

( ) ( )
t
ttD

2

2
T

T
σ= ,           (28) 678 

where t n t= Δ  and n is the number of layers the tracers have passed after time t. According to 679 

Eq. (28), the transverse dispersion coefficient can be determined from the slope of 2
Tσ  plotted 680 

vs. time. Figure 12 illustrates this dependence for disordered structures from groups arrays_10 681 
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and arrays_2 at different ν-values. The functions 2
T ( )tσ  obtained for each of the ten disordered 682 

structures from groups arrays_2, arrays_4, and arrays_10 were fitted with straight lines and 683 

the corresponding transverse dispersion coefficients were determined using Eq. (28). It should 684 

be pointed out that the relative difference between TD -values obtained for the hexagonal array 685 

of discs according to Eqs. (23) and (28) did not exceed 2% within the whole range of reduced 686 

velocities we analyzed in this study ( 410 4 10ν≤ ≤ × ). 687 

 688 

Figure 13 shows the transverse dispersion coefficient normalized by mD  as a function of the 689 

reduced velocity for the three groups of disordered structures (black symbols), determined after 690 

Eq. (28), and for the hexagonal array (red circles). Black symbols represent T m/D D -values 691 

averaged over all ten different realizations for each array group and the error bars indicate the 692 

corresponding ranges for the simulated values. Transverse dispersion coefficients determined 693 

for the hexagonal array and the disordered structures demonstrate similar values at a given ν  in 694 

the range 310 10ν≤ ≤ , but they exhibit a fundamentally different behavior for higher ν . In the 695 

hexagonal array, T m/D D  approaches its asymptotic value of ~13.4, but it increases with ν  for 696 

the disordered structures: at 410ν ≥ , the dependence of T m/D D  on ν  becomes close to linear 697 

for all disordered arrays of discs. This finding agrees with the simulations by Van Milligen and 698 

Bons for an irregular two-dimensional network of channels [36]. Similar to the approach in this 699 

study, the model employed by Van Milligen and Bons does not account for Taylor dispersion, 700 

i.e., a uniform flow velocity within an individual channel (or a void cell in the present study) is 701 

assumed. By contrast, the results in Fig. 1 were obtained by the LBM–RWPT approach, which 702 

models advective–diffusive transport with full resolution of the flow field, thereby accounting 703 

for the fundamental non-uniformity of the flow velocity at the pore scale. The results obtained 704 

with that comprehensive approach for the dependence of T m/D D  on ν  in a structure with a 705 

completely random disc arrangement also reveal the absence of a tapering-off in the dispersion 706 

data and the attainment of a plateau with increasing ν  (cf. Fig. 1). This allows to conclude that 707 

the increase in T m/D D  with ν , as observed in Fig. 1 and Fig. 13 for the disordered structures, 708 

does not originate in a non-uniformity of the local flow velocity, but is a result of the random 709 

(disordered) geometry of the employed systems. 710 

 711 

As mentioned above, the DoH for a disc array increases with the number of layers containing 712 

contacting discs (disordered layers). Figure 13 demonstrates a clear relationship between the 713 
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DoH and slope characterizing the dependence of T m/D D  on ν  for 410ν ≥ . This dependence 714 

becomes steeper with increasing number of disordered layers in a structure. The hexagonal disc 715 

array is perfectly ordered and the dependence of T m/D D  on ν  in Fig. 13 is characterized by 716 

zero slope (a constant value of T m/D D ) at high ν . Structures from group arrays_2 contain 717 

pairs of contacting discs in every second layer. It results in the highest DoH among all analyzed 718 

structures. The slope of the corresponding dependence of T m/D D  on ν  is steepest compared 719 

to the other disc arrays. The observations based on Fig. 13 imply that the geometrical disorder 720 

not only changes the behavior of the transverse dispersion coefficient at high reduced velocities 721 

(linear dependence of TD  on ν  for disordered structures vs. a constant TD -value for ordered 722 

structures), but also determines how strong TD  increases with ν . 723 

 724 

Though geometrical disorder is pre-requisite to the absence of TD  approaching an asymptotic 725 

value at high reduced velocities, this is not a sufficient condition. For purely advective transport 726 

( m 0D = ), tracers are carried only by the flow along individual streamlines. As a consequence, 727 

tracers initially located at the same position keep identical positions also during their transport 728 

through a porous medium, independent of a regular or random flow pattern. That scenario can 729 

be conceptually realized by allowing the tracers to follow individual streamlines (schematically 730 

shown in Figs. 5 and 9), assuming that the exchange between two streamlines is impossible. It 731 

results in zero transverse dispersion in both ordered (Fig. 5) and disordered (Fig. 9) structures. 732 

This agrees with theoretical results for purely advective transport in two-dimensional porous 733 

media [53]. The presence of diffusion changes drastically the behavior of TD  at high reduced 734 

velocities. Even an infinitesimal but finite contribution of diffusion (realized at ν → ∞ ) to the 735 

exchange of tracers carried with different streamlines results in a non-zero transverse dispersion 736 

coefficient in both ordered and disordered two-dimensional structures. If m 0D ≠ , there always 737 

is a non-zero fraction of tracers that can diffuse from one streamline to another during a finite 738 

time interval. Then, the subsequent diverging of the flow streamlines leads to lateral spreading 739 

of tracers and a non-zero transverse dispersion coefficient. This scenario is similarly realized in 740 

ordered and disordered structures except for one distinction: Regions of splitting and merging 741 

of flow streamlines in ordered structures are spatially regular, whereas in disordered structures, 742 

they are located at random positions. As a consequence, the lateral position of a tracer carried 743 

only by flow in an ordered structure is characterized by time-periodic oscillations with constant 744 
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amplitude determined only by the characteristic length of the structure (the disc diameter in this 745 

study). In a disordered structure, it appears as oscillations with random amplitudes determined 746 

also by the length scale characterizing the disorder (the distribution of positions of contacting 747 

discs in this study). In combination with diffusion leading to the exchange between neighboring 748 

streamlines, this results in completely different behaviors of TD  in ordered and random porous 749 

media, as observed at high values of ν  (Fig. 13). 750 

 751 

Finally, we want to discuss the difference in the dependence of TD  on ν  in two- and three-752 

dimensional porous media. Figure 14 shows the normalized transverse dispersion coefficient as 753 

a function of ν , obtained with the LBM–RWPT approach, for a hexagonal and a random array 754 

of equal discs (black circles and black squares, respectively), and for a FCC (face-centered 755 

cubic) and a random packing of monosized spheres (red circles and red squares, respectively). 756 

Though all structures have identical solid volume fraction ( 0.6φ = ), the presented TD –ν  757 

dependencies differ both quantitatively and qualitatively. Similar to the random array of discs, 758 

the random packing of spheres is characterized by a linear growth of TD  at high values of the 759 

reduced velocity. However, the slope of this growth is larger than for the two-dimensional 760 

random structure. It results in much higher values of TD  in the sphere packing than in the 761 

random array of discs for 310ν > . At the same time, in the range of ν  between 10 and 100, 762 

the transverse dispersion coefficient in the ordered and random two-dimensional structures is 763 

larger than in the random packing of spheres. In contrast to the random structures, the values of 764 

TD  in the three-dimensional ordered (FCC) structure at high ν  are significantly smaller than 765 

in the two-dimensional ordered system. Moreover, TD  in the FCC packing of spheres does not 766 

tend to flatten even at 45 10ν = × . The data in Fig. 14 demonstrate that results and conclusions 767 

on transverse dispersion in two-dimensional porous media cannot be straightforwardly applied 768 

to three-dimensional media. 769 

 770 

 771 

VI. CONCLUSIONS 772 

 773 

The goal of this study was an investigation into the effect of order/disorder in two-dimensional 774 

porous media on the transverse dispersion coefficient ( TD ) and its behavior in dependence of 775 

the reduced velocity (ν ), characterizing the ratio between advective and diffusive contributions 776 
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to mass transfer. Advective–diffusive transport has been simulated in hexagonal and disordered 777 

arrays of equal discs. While the hexagonal array represents an ordered porous medium, the 778 

disordered arrays mimick random porous media. Disorder has been realized with a distortion of 779 

the hexagonal array by the introduction of contacting discs at random positions in its layers. To 780 

simulate advective–diffusive transport, an approach based on geometrical representations of the 781 

analyzed structures by void and solid cells has been used. Additional physical assumptions of 782 

the employed approach involved a uniform flow field in the void cells, diffusion only normal to 783 

the flow (i.e., in the transverse direction), and instant lateral transport between the upstream and 784 

downstream neighboring void cells. The aforementioned simplifications have been introduced 785 

to the model with the only aim to reveal the extent to which order/disorder of a porous medium 786 

impacts the dependence of TD  on ν . For this purpose, we have also provided results obtained 787 

with a LBM–RWPT approach (Fig. 1), which does not involve these geometrical and physical 788 

simplifications. This comprehensive simulation approach is based on a pore-scale simulation of 789 

the complete flow field computed for the actual geometry of a porous medium and accounts for 790 

diffusion along all directions. 791 

 792 

Results obtained with both the LBM–RWPT approach and the proposed simplified model of 793 

advective–diffusive transport (Figs. 1 and 13) have revealed that TD  levels off with increasing 794 

ν  in the ordered porous medium, while it grows linearly in the disordered structures at high ν . 795 

Considering the simplifications introduced (intentionally) to the proposed model, this supports 796 

the categorical conclusion that the observed distinction in these functional behaviors originates 797 

exclusively in the geometrical disorder of the two-dimensional random porous media. 798 

 799 

At the same time, realizing this scenario with a zero diffusion coefficient results in T 0D =  for 800 

both ordered and random two-dimensional porous media [53]. Consequently, it is important to 801 

distinguish very clearly between the two possible (and different) cases to achieve the condition 802 

ν → ∞ . The first one ( m 0D = ) is unphysical and realized at any velocity. In this case, tracers 803 

strictly follow the individual flow streamlines during their transport through a porous medium. 804 

This results in a zero transverse dispersion coefficient in ordered and random structures at any 805 

value of the flow velocity, u. The second case is realized as u approaches infinity, but m 0D ≠ . 806 

Then, an increase in the flow velocity has a two-fold effect: It reduces the time for diffusive 807 

exchange between neighboring streamlines and increases the number of exchange regions (that 808 

a tracer visits per time) proportionally to the value of u. Depending on the geometrical structure 809 
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and corresponding pattern of the flow field, this results at high values of ν  in either a constant 810 

value of TD  (ordered porous media) or a linear growth of TD  with ν  (random porous media). 811 

Figure 13 shows that the slope characterizing this growth depends on the DoH of a structure. 812 

The slope is zero for the hexagonal disc array and increases with the number of the introduced 813 

structural defects (contacting discs). 814 

 815 

It should be noted that the morphological descriptor based on the number of contacting discs 816 

cannot be applied to random arrays, because their heterogeneity does not originate in the 817 

(systematically and exclusively) introduced pairs of contacting discs. Therefore, the derivation 818 

of relationships between the transverse dispersion coefficient and parameters characterizing the 819 

geometrical structure of a porous medium requires the identification of alternative, universal 820 

morphological descriptors. This identification is still an outstanding scientific problem. One of 821 

the promising approaches is based on using spatial tessellations of the void space in porous 822 

media. For instance, it was shown that the second and third statistical moments of the volume 823 

distributions for the Voronoi cells in computer-generated random packings of monosized 824 

spherical particles and the longitudinal dispersion coefficients (DL) show a highly similar 825 

dependence on the solid volume fraction and packing protocol (resulting in different packing 826 

microstructures) [99]. However, the quantitative incorporation of information obtained with the 827 

statistical analysis of the Voronoi volume distributions into morphology–transport relationships 828 

is a still unresolved problem. 829 
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 979 
 980 

FIG. 1. Transverse dispersion coefficient TD  normalized by the free diffusion coefficient mD  981 

as a function of the reduced velocity p m/ud Dν = , obtained by the LBM–RWPT approach, for 982 

a hexagonal and a random array of equal discs with solid volume fraction 0.6φ = . The 983 

diameter of the discs pd  is 10–5 m and the free diffusion coefficient of the tracers mD  is 10–9 984 

m2 s–1.  985 
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 986 
 987 

FIG. 2. (a) Hexagonal array of discs ( pd is the disc diameter, xΔ  and yΔ  are the longitudinal 988 

and transverse dimensions, respectively, of the unit cell). Blue lines illustrate the splitting and 989 

merging of flow streamlines. The red rectangle indicates a unit cell. (b) Schematic illustration 990 

of the probability distribution to find a falling ball in the ith compartment of the nth layer of the 991 

Galton board. This probability is governed by the binominal distribution [Eq. (8)]. The arrows 992 

show possible displacements of the ball, which occur with frequency 1/ tΔ .  993 
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 994 
 995 

FIG. 3. (a) Idealized representation of a porous medium in the Simpson model. Gray and white 996 

rectangular domains represent solid and void cells, respectively. Blue arrows show the uniform 997 

flow streamlines in the void cells and the dashed blue lines represent the (instantaneous) lateral 998 

displacements of tracers after they leave the void cells. (b) Schematic illustration of diffusive 999 

exchange between the two halves of the void cells in the Simpson model. Black dashed-dotted 1000 

lines indicate the boundaries between the two halves of a void cell. The green filled circle 1001 

represents a tracer entering with fluid flow a given half of the void cell. After time /t u xΔ = Δ , 1002 

the tracer leaves the cell from the same half (with probability q) or through the adjoining half 1003 

(with probability p).  1004 
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 1005 
 1006 

FIG. 4. Normalized lateral concentration distributions 0/c c  (solid lines) of species in a void 1007 

cell after the time p m/t xd DνΔ = Δ , calculated according to Eq. (14), for different reduced 1008 

velocities ν . Species were initially distributed with uniform concentration ( 0/ 1c c = ) in the 1009 

region v0 / 0.5y y≤ Δ ≤ . The dashed lines represent normalized average species concentrations 1010 

( 0/c c< > ) in the left and right halves of the void cell after tΔ .  1011 
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 1012 
 1013 

FIG. 5. Simplified representation of the geometrical structure of the hexagonal array. Void cells 1014 

are shown as (semi-transparent) red rectangular regions. The green horizontal line indicates the 1015 

position of tracers at 0t = .  1016 
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 1017 
 1018 

FIG. 6. Dependence of 2
T, /n tσΔ Δ  on the number of passed layers n in a hexagonal disc array 1019 

with solid volume fraction 0.6φ =  for selected reduced velocities p m/ud Dν = . The quantity 1020 

2
T,nσΔ  is defined as ( 2 2

T, T, 1n nσ σ −− ), where 2
T,nσ  is the variance of the transverse distribution of 1021 

the tracer concentration at the nth layer of the array. At the first layer ( 0n = ), tracers were 1022 

positioned with uniform concentration in the gap space between two discs (cf. Fig. 5). The disc 1023 

diameter pd  is 10–5 m, the free tracer diffusion coefficient mD  is 10–9 m2 s–1, and /t x uΔ = Δ . 1024 

For a better visualization, the data obtained at 1000ν =  and 10000 for 10n <  and 130n < , 1025 

respectively, have been removed.  1026 
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 1027 
 1028 

FIG. 7. Normalized transverse tracer concentration distributions 0( ) /c y c  after passing 410n =  1029 

layers in the hexagonal array of discs with solid volume fraction 0.6φ =  for selected reduced 1030 

velocities p m/ud Dν = . At the first layer ( 0n = ), the tracers were positioned with a uniform 1031 

concentration 0 1.0c =  in the gap space between two discs (cf. Fig. 5). The diameter of the 1032 

discs pd  is 10–5 m and the free diffusion coefficient of the tracers mD  is 10–9 m2 s–1. 1033 
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 1034 
 1035 

FIG. 8. Dependencies of the normalized transverse dispersion coefficient T m/D D  on the 1036 

reduced velocity p m/ud Dν =  in a hexagonal disc array with solid volume fraction 0.6φ = , 1037 

determined according to the presented approach (solid circles), obtained with the LBM–RWPT 1038 

simulations (solid line), based on the Simpson model (open triangles), and from experiments 1039 

(open squares) [60].  1040 
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 1041 
 1042 

FIG. 9. Region of a structure generated for group arrays_2. Black circles correspond to the 1043 

contacting discs. Such contacting pairs exist in every second layer of the array. In an individual 1044 

layer, only two randomly chosen discs are allowed to be in contact.  1045 
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 1046 
 1047 

FIG. 10. Normalized transverse concentration distributions of tracers, 0( ) /c y c , after passing 1048 

410n =  layers in two disordered arrays of discs from groups arrays_10 (a) and arrays_2 (b) at 1049 

selected values of the reduced velocity p m/ud Dν = . The solid volume fraction φ  is 0.6 in 1050 

both arrays. At the first layer ( 0n = ), the tracers were positioned with a uniform concentration 1051 

0 1.0c =  in the gap space between two discs (cf. Fig. 5). The diameter of the discs pd  is 10–5 m 1052 

and the free diffusion coefficient of the tracers mD  is 10–9 m2 s–1.  1053 
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 1054 
 1055 

FIG. 11. Dependence of 2
T, /n tσΔ Δ  on the number of passed layers n in a selected disordered 1056 

structure from group arrays_2 with solid volume fraction 0.6φ =  at selected reduced velocities 1057 

p m/ud Dν = . The quantity 2
T,nσΔ  is defined as ( 2 2

T, T, 1n nσ σ −− ), where 2
T,nσ  is the variance of 1058 

the transverse distribution of the tracer concentration at the nth layer of the array. At the first 1059 

layer ( 0n = ), tracers were positioned with a uniform concentration in the gap space between 1060 

two discs (cf. Fig. 5). The disc diameter pd  is 10–5 m, the free tracer diffusion coefficient mD  1061 

is 10–9 m2 s–1, and /t x uΔ = Δ .  1062 
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 1063 
 1064 

FIG. 12. Variances 2
Tσ  of the transverse tracer concentration distributions as a function of time, 1065 

simulated for two disordered arrays of discs from groups arrays_10 (a) and arrays_2 (b) with 1066 

solid volume fraction 0.6φ =  at selected reduced velocities p m/ud Dν = . The diameter of the 1067 

discs pd  is 10–5 m and the free diffusion coefficient of the tracers mD  is 10–9 m2 s–1. 1068 
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 1069 
 1070 

FIG. 13. Normalized transverse dispersion coefficient T m/D D  vs. the reduced flow velocity 1071 

p m/ud Dν = , determined for the disordered structures (black symbols) and the hexagonal array 1072 

of discs (red symbols). The solid volume fraction is 0.6, the diameter of the discs pd  is 10–5 m, 1073 

and the free tracer diffusion coefficient mD  is 10–9 m2 s–1. Black symbols represent the values 1074 

of T m/D D  averaged over the ten different realizations for each array group and the error bars 1075 

denote the corresponding ranges for the simulated values.  1076 
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 1077 
 1078 

FIG. 14. Transverse dispersion coefficient TD  normalized by the free diffusion coefficient mD  1079 

as a function of the reduced velocity p m/ud Dν = , obtained by the LBM–RWPT approach, for 1080 

a hexagonal and a random array of equal discs (black circles and black squares, respectively), 1081 

and for a FCC and a random packing of equal spheres (red circles and red squares, 1082 

respectively). The solid volume fraction of all structures is 0.6φ = . 1083 


