

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Electro-osmotic flow through nanopores in thin and ultrathin membranes

Dmitriy V. Melnikov, Zachery K. Hulings, and Maria E. Gracheva Phys. Rev. E **95**, 063105 — Published 12 June 2017 DOI: 10.1103/PhysRevE.95.063105

Electroosmotic flow through nanopores in thin and ultrathin membranes

2 3 4

5

Dmitriy V. Melnikov, Zachery K. Hulings, and Maria E. Gracheva

Department of Physics, Clarkson University, Potsdam, NY 13699 (Dated: May 11, 2017)

We theoretically study how the electroosmotic fluid velocity in a charged cylindrical nanopore in a thin solid state membrane depends on the pore's geometry, membrane charge, and electrolyte concentration. We find that when the pore's length is comparable to its diameter, the velocity profile develops a concave shape with a minimum along the pore axis unlike the situation in very long nanopores with a maximum velocity along the central pore axis. This effect is attributed to the induced pressure along the nanopore axis due to the fluid flow expansion and contraction near the exit/entrance to the pore and to the reduction of electric field inside the nanopore. The induced pressure is maximal when the pore's length is about equal to its diameter while decreasing for both longer and shorter nanopores. A model for the fluid velocity incorporating these effects is developed and shown to be in a good agreement with numerically computed results.

I. INTRODUCTION

In recent years, nanopores in thin solid state mem-6 ⁷ branes gained considerable attention due to their appli-⁸ cations as low-cost, high-throughput biosensors and fil- $_{9}$ ters [1–7]. Short transit times in thin membranes for translocating biomolecules and nanoparticles as well as features in the ionic current result in high sensitivity and 11 ¹² resolution of such devices. Signatures in the ionic current (the duration and the depth of the "current block-13 ade" dips) are not only utilized to detect an object pass-14 ¹⁵ ing through the nanopore but they also convey information about its physical properties such as size, shape, 16 and charge [5, 8–12]. As such, understanding of how 17 various conductance mechanisms, such as those due to 18 membrane surface and bulk charges, affect the motion of 19 the nanosized objects through the nanopore is of crucial 20 importance for correct interpretation and utilization of 21 experimental data. 22

When an object translocates through a nanopore, two 23 main forces typically affect its motion [13]. The first 24 the electric force originating from the applied elec-25 is tric field that results in the electrophoretic motion of the 26 charged nanoparticle or biomolecule. The second force 27 is due to the viscous drag exerted on an object by the 28 fluid flowing through the charged nanopore in response to 29 the applied electric field, or the, so called, electroosmotic 30 flow (EOF). The EOF appears because the surface of the 31 membrane is charged, so that the ionic solution within 32 the nanopore attains a non-zero electric charge of oppo-33 ³⁴ site sign which is largely concentrated within the electric double layer formed at the walls of the nanopore. When 35 the electric field along the axis of the pore is applied, the 36 ions in the fluid filling the nanopore begin to move, and 37 the fluid flow (EOF) appears. In the steady state regime, 38 the bulk motion of the solution in the nanopore is gen-39 erated (the fluid is viscous), so that the EOF is present 40 through the total cross sectional area of the pore. De-41 pending on the charges of the translocating object and 42 ⁴³ membrane, the electric and drag forces may or may not ⁸⁵ is developed, and behavior of the EOF in our nanopore 44 be in one direction: For example, for a negatively charged 86 structure is elucidated. Finally, Section IV contains a ⁴⁵ nanoparticle attempting to permeate through a nanopore ⁸⁷ brief summary of the work.

⁴⁶ with negative surface charge, these two forces point in 47 opposite directions. Thus, their relative magnitudes will ⁴⁸ determine the direction in which the particle translocates ⁴⁹ as well as the time it spends in the nanopore attempt-⁵⁰ ing to move through it. As this time depends exponen-⁵¹ tially on the potential energy of the particle within the ⁵² the channel [14], even small variations in values of these ⁵³ forces will greatly affect the duration of the translocation ⁵⁴ event [15] and consequently, the membrane filtering and ⁵⁵ sensing characteristics.

To this end, in this work we conduct the theoretical 56 57 analysis of the EOF through nanopores in solid state ⁵⁸ thin membranes [16–19]. For this purpose, we numeri-⁵⁹ cally compute the fluid flow velocity through a nanopore 60 by solving on equal footing Poisson-Nernst-Planck equa-⁶¹ tions to account for the charge and electric field distri-⁶² butions in and around the nanopore and Navier-Stokes ⁶³ equations to describe the EOF. Our results show that the ⁶⁴ flow in finite length nanopores with the diameter compa-⁶⁵ rable to the length cannot be adequatly described by the ⁶⁶ results for the long channel with the Debye approxima-⁶⁷ tion [20] as this approach overestimates the fluid velocity by as much as 100 %. The reason for this is the fluid 68 ⁶⁹ flow outside the nanopore which affects the EOF through 70 it. These "end effects" are manifested as a self-induced 71 pressure gradient along the pore. When this effect is in-⁷² corporated in the simple analytical model for the EOF 73 velocity which we also develop on the basis of the classi-⁷⁴ cal model for the infinitely long nanopores [20], we find ⁷⁵ that the velocities given by this model agree very well ⁷⁶ with results of numerical calculations for a broad range ⁷⁷ of nanopore dimensions, electrolyte concentrations, and 78 membrane surface charge densities.

The paper is structured as follows. In Section II, the 79 ⁸⁰ nanopore geometry and the computational method em-⁸¹ ployed are described with details on boundary conditions ⁸² and parameters used in the setup of our model. In Sec-⁸³ tion III, the results of computations are presented and ⁸⁴ discussed, the analytical model for the EOF fluid velocity

FIG. 1. (Color online) A schematic diagram of our modeled nanopore structure with the electric potential in the background. (For this plot, the membrane charge is $\rho = 0.4 \text{ e/nm}^3$ and the bulk electrolyte concentration is C = 0.1 M).

II. MODEL AND METHODS

88

In Fig. 1, a schematic diagram of our modeled 89 ⁹⁰ membrane-electrolyte structure with the electric poten-⁹¹ tial overlaid is shown. The nanopore of radius R_p and $_{92}$ length L_p is in the center of the structure: We consider $_{93}$ pores with $R_p = 5$ and 10 nm while the length of the ⁹⁴ pore is varied between 15 and 100 nm. The reservoirs ⁹⁵ above and below the nanopore have dimensions which ₉₆ are much larger than the dimensions of the nanopore, 135 where $\eta = 10^{-3}$ Pa·s is the dynamic viscosity, and p is values. The difference between these values is equal to 138 electroosmotic flow. 99 ¹⁰⁰ the electrolyte bias $V_e = 100 \text{ mV}$ which is applied to gen-¹³⁹ ¹⁰¹ erate the ionic flow through the nanopore. The 4 Å-thick ¹⁴⁰ nanopore, Eqs. (1) – (5) were solved self-consistently with ¹⁰² layer on the surface of the SiO₂ membrane is charged ¹⁴¹ COMSOL[®] Multiphysics 5.1 on the axisymmetric two-103 105 densities $\sigma = 0.16 \ e/\mathrm{nm}^2$ and 0.48 e/nm^2 , respectively. 106

To calculate the EOF fluid velocity and study its de-108 pendence on various system parameters, we first compute 109 ¹¹⁰ the electric potential $\Phi(\vec{r})$ and electrolyte charge dis-111 tribution, i.e., concentrations of chlorine and potassium ¹¹² ions, $C_{Cl^-}(\vec{r})$ and $C_{K^+}(\vec{r})$, respectively, in our system. ¹¹³ This is accomplished by solving Poisson-Nernst-Planck 114 equations:

$$\nabla^2 \Phi = -\frac{e}{\epsilon_0 \epsilon_r} \rho(\vec{r}) \tag{1}$$

115 with

$$\rho(\vec{r}) = \begin{cases}
\rho, & \text{in the 4-Å layer on the} \\
& \text{membrane surface,} \\
0, & \text{everywhere else in the} \\
& \text{membrane,} \\
C_{K^+} - C_{Cl^-}, & \text{in the electrolyte,}
\end{cases}$$
(2)

116 and

$$\nabla \cdot \left[z_i \frac{eD_i}{k_B T} C_i \nabla \Phi + D_i \nabla C_i - \vec{v} C_i \right] = 0, \qquad (3)$$
$$i = K^+, Cl^-.$$

¹¹⁷ Here e is the elementary charge, ϵ_0 is the permittiv-118 ity of free space, $\epsilon_r = 78$ is the relative permittivity ¹¹⁹ of water, $z_i = \pm 1$ are the ionic charges of potassium $_{120}$ and chlorine ions [15, 21], T = 300 K is the temper-¹²¹ ature of the system, \vec{v} is the EOF velocity, and D_i is ¹²² the diffusion coefficient, $D_{K^+} = 1.95 \times 10^{-9} \text{ m}^2/\text{s}$ and $_{123} D_{Cl^{-}} = 2.03 \times 10^{-9} \text{ m}^2/\text{s}$. The first two terms in the ¹²⁴ ionic fluxes (3) represent the electromigrative flux due to the applied electric field (drift current density) and diffu-125 126 sive flux, respectively, while the last term which depends 127 on the fluid velocity describes the convective flux of ions ¹²⁸ due to the EOF.

The EOF through the nanopore is described via the 129 ¹³⁰ Navier-Stokes equation for an incompressible fluid with-¹³¹ out the inertial term [22] as the Reynolds number for our 132 nanopore geometry is $\sim 10^{-3} - 10^{-4}$ depending on the 133 pore's length:

$$\eta \nabla^2 \vec{v} = \nabla p - e(C_{K^+} - C_{Cl^-}) \nabla \Phi, \qquad (4)$$

134 together with the continuity equation,

$$\nabla \cdot \vec{v} = 0, \tag{5}$$

 $_{97}$ $L_R = 120$ nm and $D_R = 280$ nm, to ensure that far away $_{136}$ the total pressure. The last term on the right in Eq. (4) ⁹⁸ from the nanopore the electric potential reaches constant ¹³⁷ is the electric force responsible for the appearance of the

To get the velocity $\vec{v}(\vec{r})$ of the EOF through the with the volume charge density ρ . In this work, we per- 142 dimensional domain (Fig. 1). A triangular finite element form computations for two values of ρ : $\rho = 0.4 \ e/\mathrm{nm}^3$ 143 mesh with sizes vaying from 0.35 Å on the membrane surand $1.2 \ e/nm^3$ which correspond to the surface charge $_{144}$ face to 1.4 Å in the nanopore and 2.2 nm in the reservoirs ¹⁴⁵ and in the membrane was used in calculations. Small ¹⁴⁶ mesh sizes next to the membrane surface were required ¹⁴⁷ to capture very sharp variations in the electric potential 148 for the larger membrane surface charge density. The sim-¹⁴⁹ ulations were terminated when the norm of the residual 150 vector for the solution became smaller than 10^{-6} .

> The boundary conditions imposed for solving Eqs. (1)152 153 -(5) were as follows: The normal components of the ionic ¹⁵⁴ fluxes were set to zero at the nanopore-membrane inter-155 face and side reservoir walls while at the top and bottom ¹⁵⁶ walls of reservoirs the ionic concentration was maintained ¹⁵⁷ at its bulk value. The normal component of the electric

FIG. 2. (Color online) Contour plots of the computed EOF velocity with streamlines for a nanopore with (a) $R_p = 5$ nm and (b) 10 nm.

158 field was set to zero at the side reservoir and membrane 186 suggesting that the smaller charge density (barely) cor-¹⁵⁹ walls, while $\Phi = V_e$ at the bottom and $\Phi = 0$ at the top ¹⁸⁷ responds to the Debye approximation while for the larger $_{160}$ boundaries of the reservoir. For the Navier-Stokes equa- $_{188}$ one (0.48 e/nm^2), this approximation, and consequently ¹⁶¹ tion, no slip boundary condition ($\vec{v} = 0$) was imposed ¹⁸⁹ the above equation for v_z , cannot be used. However, as ¹⁶² at the nanopore-membrane interface while a slip bound-¹⁹⁰ it is shown in the next Section, Eq. (6) works well in $_{163}$ ary condition (the normal component of the velocity and $_{191}$ our analytical model if Φ_0 is replaced with the poten- $_{164}$ its gradient are both zero) was used on the side walls of $_{192}$ tial difference $\Delta\Phi$ between the surface and the center of 165 the reservoirs. At the top and bottom boundaries of the 193 the nanopore, $\Delta \Phi = \Phi(R_p, L_p/2) - \Phi(0, L_p/2)$ (which is $_{166}$ reservoirs, the pressure was set to zero together with the $_{194}$ equal to -35 and -78 meV for our membrane charge val-167 168 aries.

For long cylindrical pores, the solution of the above 197 169 170 system of equations for the fluid velocity is well 198 reaches a maximum at the center of the pore. In the 171 known [20, 23]. Within the Debye approximation for the 199 limit of a thin double layer ($\kappa^{-1} \ll R_p$), Eq. (6) reduces ¹⁷² electric potential (which is valid for $\Phi \lesssim k_B T$) and as-²⁰⁰ to constant value of $v_z = \epsilon_0 \epsilon_r E_z \Phi_0 / \eta$ which is the clas-¹⁷³ suming separability of $\Phi(\vec{r})$ in z and x directions and no ²⁰¹ sical Helmholtz-Smoluchowski result for the EOF fluid 174 applied external pressure, the z-component of the EOF 202 velocity [26, 27]. ¹⁷⁵ velocity is given by:

$$v_z(r) = -\frac{\epsilon_0 \epsilon_r E_z \Phi_0}{\eta} \left[1 - \frac{I_0(\kappa r)}{I_0(\kappa R_p)} \right], \qquad (6) \quad _{\text{203}}$$

¹⁷⁶ where $\kappa = (\epsilon_0 \epsilon_r k_B T/2Ce^2)^{-1/2}$ is the inverse Debye ²⁰⁴ We first checked the validity of the above numerical $_{177}$ length, C is the bulk electrolyte concentration (except $_{205}$ approach against the results of Eq. (6) and found very 178 where it is noted, all calculations are performed for 206 good agreement between the two for long nanopores and $_{179} C = 0.1 \text{ M}$), E_z is the constant electric field along the $_{207}$ smaller surface charge densities as expected (see Ap-¹⁸⁰ central axis of the nanopore, $I_n(x)$ is the modified Bessel ²⁰⁸ pendix). ¹⁸¹ function of the first kind of the *n*-th order [24], and Φ_0 is ²⁰⁹ 182 the electric potential on the pore's surface which for zero 210 streamlines are shown in Fig. 2 for pore radii 5 and 10 nm 183 applied electrolyte bias is equal to [25]:

$$\Phi_0 = \frac{\sigma}{\epsilon_0 \epsilon_r \kappa} \frac{I_0(\kappa R_p)}{I_1(\kappa R_p)}.$$
(7)

¹⁸⁴ For the two membrane charge densities considered in the ²¹⁵ tric field is the largest in magnitude. The radial compo- $_{185}$ present work, $\Phi_0 = -40$ and -120 meV, respectively, $_{216}$ nent of the fluid velocity is only noticeable near the pore's

assumption that the fluid flow is normal to those bound-¹⁹⁵ ues) provided that the "end effects" are also accounted 196 for.

Note that Eq. (6) predicts that the fluid velocity

III. **RESULTS AND DISCUSSION**

The computed EOF velocity contour plots with flow ²¹¹ and length of 25 nm. We see that within the nanopore, ²¹² the direction of the fluid flow is along the pore's axis, as ²¹³ expected, since it is where the electric potential changes ²¹⁴ most rapidly in the z-direction (see Fig. 1), i. e., the elec-

FIG. 3. (Color online) Fluid velocity profile in x-direction in the center of the pore for different nanopore lengths L_p and membrane charge densities: (a) $R_p = 5$ nm and (b) $R_p = 10$ nm. The solid curves are the results of the numerical simulations while the dashed (dotted) curves are the results of Eq. (6) with $\Delta \Phi$ (Φ_0). For both dashed and dotted curves, $E_z = V_e/(L_p + \alpha R_p)$ where values of parameter α are given in text (see Section III for details).

217 inlet and outlet, and in those regions, the fluid flow ex- 245 One of the reasons for the apparent disagreement be- $_{218}$ tends over a distance of a few pore radii R_p away from $_{246}$ tween the numerically computed EOF velocity and the ²¹⁹ the pore ends. We also observe the formation of a lo-²⁴⁷ one determined by Eq. (6), is the magnitude of the elec- $_{220}$ cal minimum in the fluid velocity around the center of $_{248}$ tric field E_z in the z-direction due to the applied bias ²²¹ the pore with larger radius of 10 nm [Fig. 2(b)] while $v_{249} V_e$. A conventional argument that V_e changes linearly

Fig. 3 shows that the minimum appears and becomes 224 ²²⁵ deeper with decreasing length of the pore for a fixed R_p . The dashed and dotted curves in these plots correspond 226 to the results given by Eq. (6), and one can immedi-227 ²²⁸ ately draw several observations from the comparison be-²²⁹ tween the different types of curves: First, the velocities ²³⁰ obtained from Eq. (6) with $\Delta \Phi$ (Φ_0) exceed the numeri- $_{231}$ cally computed ones by as large as 40 % (100 %) partic-²³² ularly for $\rho = 1.2 \text{ e/nm}^3$, and second, the fluid velocity $_{233}$ v_z does not have a local minimum along the central axis. ²³⁴ As the pore becomes longer, the concave shape of the nu- $_{235}$ merically computed velocity profile gradually dissapears $_{260}$ with α being a numerical parameter dependent on the 236 and velocity reaches a maximum value along the central 261 nanopore radius, surface charge, and bulk electrolyte con- $_{237}$ axis of the pore, qualitatively similar to the v_z profile $_{262}$ centration values. ²³⁸ predicted by Eq. (6). Note that the concave shape of the ²⁶³ ²³⁹ fluid velocity was previously observed in numerical cal-²⁶⁴ senting the nanopore region in terms of the nanopore and 240 culations of the EOF through long nanopores (see, e. g., 265 two access sections. Using the nanopore and access re-241 Ref. [28]). However, in what follows we strive to provide 266 sistances with the pore diameter modified by the surface ²⁴² a qualitative explanation for its appearance as well as to ²⁶⁷ charge [31] and substituting them into the equation for $_{243}$ devise a way to rectify Eq. (6) so that values of v_z agree $_{268}$ the potential drop along the nanopore length [25], one ²⁴⁴ with the numerically computed EOF velocities.

²²² remains maximal along the central axis of the nanopore ²⁵⁰ over the pore's length leads to $E_z = V_e/L_p$ since usu-²²³ when $R_p = 5$ nm [Fig. 2(a)]. ²⁵¹ ally $L_p \gg \kappa^{-1}$. However, as can be seen from the elec-²⁵² tric potential distribution shown in Fig. 1, the potential changes over distances extending a few R_p 's away from 253 ²⁵⁴ the nanopore's ends. This is because inside the nanopore, ²⁵⁵ the positive and negative ionic charges do not fully com-²⁵⁶ pensate each other (due to the presence of the membrane 257 surface charge) and the nanopore as a whole has a non-258 zero electric charge. In this case, the electric field inside the pore can be approximated as [29, 30]259

$$E_z = \frac{V_e}{L_p + \alpha R_p} \tag{8}$$

The overall form of Eq. (8) can be justfied by repre- $_{269}$ can find that parameter α in the above equation can be

FIG. 4. (Color online) z-component of the electric field, E_z , along the central pore axis for a nanopore with (a) $R_p = 5$ nm and (b) $R_p = 10$ nm and different pore lengths. The horizontal dashed lines represent the values of the electric field as computed by $E_z = V_e/(L_p + \alpha R_p)$ with α given in the text, and the vertical dot-dashed lines show the location of the inlet (z = 0) and outlet (z = 15, z = 50, and z = 100 nm) for each nanopore.

270 expressed as

$$\alpha = \frac{\pi}{2} \frac{1 + Du}{1 + Du/4},\tag{9}$$

²⁷¹ where $Du \approx |\sigma|/CR_p$ is the Dukhin number [31]. For our ²⁷² nanopore radii $R_p = 5$ (10) nm, this gives $\alpha \approx 2.1(1.9)$ ²⁷³ for $\rho = 0.4$ e/nm³ and 2.9 (2.3) for $\rho = 1.2$ e/nm³ which ²⁷⁴ results is in excellent agreement between the numerically ²⁷⁵ computed electric fields and the values given by Eq. (8), ²⁷⁶ see Fig. 4, as well as with other calculations of the electric ²⁷⁷ field in charged nanopores [29, 30].

However, the main reason for the concave shape of the 278 velocity profile in the fluid flow through finite length 279 nanopores is the presence of the self-induced pressure 280 drop P along the pore shown in Fig. 5 for the larger mem-281 brane charge of 1.2 e/nm^3 (results for the smaller charge 282 are analogous and are not shown). The pressure changes 283 approximately linearly along the pore's axis [32, 33]; The 284 deviations from linearity are due to the concentration po-285 larization effects [34], i.e., the electric force in the Navier-286 Stokes equation (4) is not constant in the z-direction but 287 rather exhibit a slight variation due to the changing ionic 288 concentration along the pore's axis. This effect dimin-289 ishes as pore's radius increases which is manifested by a 290 more linear pressure drop in Fig. 5(b) vs. Fig. 5(a). 291

This pressure drop appears due to the fluid flow expan-²⁹³ sion/contraction near the pore's outlet/inlet or in other ²⁹⁴ words, it is the result of the finite length of the nanopore:

²⁹⁵ Outside of the nanopore's outlet, the fluid velocity de-²⁹⁶ creases with the distance away from the pore (streamlines ²⁹⁷ diverge, see Fig. 2). Since the fluid is incompressible, one ²⁹⁸ can write for its velocity outside the pore [35]:

$$v(R) \approx \frac{Q}{2\pi R^2},\tag{10}$$

²⁹⁹ where R is the distance between the pore's exit and ob-³⁰⁰ servation point, and Q is the volumetric flow rate. This ³⁰¹ results in the appearance of the fluid friction force be-³⁰² tween the layers of the fluid and as such, the pressure is ³⁰³ induced to maintain the flow. We can estimate the in-³⁰⁴ duced pressure δP by equating it to the fluid friction force ³⁰⁵ per unit area [36] which leads to $\delta P = (1/2)\beta\eta Q/R_p^3$. ³⁰⁶ Here we introduced a variational parameter β to relate ³⁰⁷ R and R_p since the fluid velocity decays appreciably over ³⁰⁸ a few R_p 's away from the pore. Note that because we ³⁰⁹ consider the fluid flow outside the nanopore, β does not ³¹⁰ depend on L_p .

Near the pore's inlet, the situation is analogous but the pressure there drops below the fixed external value to compensate for the contraction of the fluid streamlines. HASSUMING that this decrease in pressure is the same in magnitude as its increase near the pore's outlet, for the total pressure change along the pore's length, one can thus write:

$$\Delta P = \beta \frac{\eta Q}{R_p^3}.\tag{11}$$

FIG. 5. (Color online) Induced pressure P along the central pore axis for nanopores of different lengths and (a) $R_p = 5$ nm, (b) $R_p = 10 \text{ nm} (\rho = 1.2 \text{ e/nm}^3)$. The total pressure drop ΔP is defined as difference between the maximum and minimum pressure values. The vertical dot-dashed lines show the location of the inlet (z = 0) and outlet (z = 15, z = 50, and z = 100 nm)for each nanopore. The inset in (a) shows distribution of the pressure in the fluid.

FIG. 6. (Color online) Induced pressure drop ΔP vs. aspect ratio of the pore $\Pi = L_p/(2R_p)$ for $\rho = 1.2 \text{ e/nm}^3$. Dots connected by dashed lines are the results of calculations, solid curves are the result of Eq. (13) with $\beta = 1.75$. Note that the same β is used for both $R_p = 5$ and 10 nm.

The fluid flow due to the induced pressure contributes 318 ³¹⁹ to the net EOF, so that Eq. (6) has to be modified to ₃₂₀ account for its effect [32]:

$$v_z(r) = -\frac{R_p^2}{4\eta} \frac{\Delta P}{L_p} \left(1 - \frac{r^2}{R_p^2}\right) - \frac{\epsilon_0 \epsilon_r E_z \Delta \Phi}{\eta} \left[1 - \frac{I_0(\kappa r)}{I_0(\kappa R_p)}\right],\tag{12}$$

³²² induced flow is parabolic (Poiseulle flow) in the radial ³⁵³ through the nanopores in thin and ultrathin membranes. 323 direction and that the pressure changes linearly along 354

 $_{324}$ the pore (see Fig. 5).

To determine the value of β , we computed the pressure ³²⁶ drop along the pore from the data in Fig. 5 and compared ³²⁷ it with ΔP given by Eq. (11) in which Q was obtained by ³²⁸ integrating Eq. (12) over the pore's cross sectional area 329 which leads to

$$\Delta P = -\frac{8V_e}{R_p^2} \frac{\Pi}{\alpha/2 + \Pi} \frac{\epsilon_0 \epsilon_r \Delta \Phi}{1 + 16\Pi/\pi\beta} \left[1 - \frac{2I_1(\kappa R_p)}{\kappa R_p I_0(\kappa R_p)} \right],\tag{13}$$

330 where Π is the aspect ratio of the nanopore, Π = ³³¹ $L_p/(2R_p)$, and we also used $E_z = V_e/(L_p + \alpha R_p)$. The 332 values of the pressure drop vs. the aspect ratio of the ³³³ nanopore are shown in Fig. 6 where one can see that the 334 agreement between the numerically computed and ap-³³⁵ proximate values of ΔP is quite good when $\beta = 1.75$, particularly for pores with $\Pi \gtrsim 2$. The pressure reaches max- $_{337}$ imum at $\Pi \sim 1$ and decreases at smaller and larger values of the aspect ratio. The deviations at smaller aspect ra-338 tios are likely due to the fact that the EOF is not yet 339 established in short pores (for the pressure driven flow, 340 ³⁴¹ the flow becomes fully developed when $L_p \gtrsim R_p$ [32]), $_{342}$ i. e., the fluid velocity is smaller than the one given by ³⁴³ Eq. (6). In the opposite limit of the long pores $L_p \gg R_p$, $_{344} \Delta P \propto L_p^{-1}$ due to the decreasing electric field magnitude.

With the value of β thus fixed, we can now find the 345 ³⁴⁶ fluid velocity profile in the radial direction as given by 347 Eqs. (12) and (13). In Fig. 7, we replot the numeri-348 cally computed EOF velocities (solid curves) but com-³⁴⁹ pare them now with results of Eq. (12) (dashed curves): ³⁵⁰ The agreement between two sets of data is very good (un-³⁵¹ like Fig. 3) for all studied nanopores demonstrating the ³²¹ where for simplicity we assumed that the pressure- ³⁵² importance of the induced pressure effects on the EOF

Note that an equation for the pressure drop similar

FIG. 7. (Color online) Same as in Fig. 3 but with dashed lines from Eqs. (12) and (13) with $\beta = 1.75$ and dotted lines with $\beta = 3.$

 $_{355}$ to Eq. (11) but with fixed $\beta = 3$ was derived for the $_{386}$ computed velocities with the ones given by Eq. (12). 356 pressure-driven flow through the circular orifice in the 387 One can see that the agreement is very good for all $_{357}$ infinitely thin screen [37, 38]. It was later utilized for $_{388}$ concentrations except for the lowest one, C = 10 mM, 358 the description of the end effects in the pressure driven 389 when the approximate calculations significantly under-³⁵⁹ flow through the finite length channels [39], where a good ³⁹⁰ estimate the numerical results. The main reason for $_{360}$ agreement between the exact numerical and approximate $_{391}$ this is a strong z-dependence of the electric field in and 361 362 363 364 365 366 367 368 369 electrolyte concentration and then decreases. This can be 401 the description of the EOF. 370 easily understood by analyzing concentration dependence 371 $_{372}$ of $v_z(r)$ in Eq. (12). The electric potential on the mem-³⁷³ brane surface Φ_0 [Eq. (7)] monotonically decreases with $_{374} C$ [13]. However, for small electrolyte concentrations $_{375}$ and $R_p = 5$ nm, the velocity at the center of the pore $_{403}$ ³⁷⁶ has not yet reached Helmholtz-Smoluchowski saturation 404 through nanopores of variable radii in thin and ultrathin 377 limit, that is, the electric double layers from opposite 405 solid state membranes for different nanopore dimensions, $_{378}$ sides of the pore overlap, and overall, v_z increases with $_{406}$ electrolyte concentrations and membrane charges. Nu-379 380 only dependence on concentration in Eq. (12) is through 408 via self-consistent solution of the Poisson-Nernst-Planck 381 382 in the studied range of concentrations. 383

385

results was found. However, as can be seen from the 392 around the nanopore as compared to the ones shown in dotted curves in Fig. 7, the parameter $\beta = 3$ is much too 393 Fig. 4 and used in Eqs. (12) and (13). At low electrolyte large to provide a good agreement with the numerically 394 concentrations, the electric field varies greatly along the computed EOF fluid velocities for our nanopores [25, 40]. 395 nanopore length (there is a lot of the electric field "leak-Finally, in Fig. 8, we show how the electrolyte concen- 396 age" from the top and bottom membrane surfaces into tration, C, affects the fluid velocity. One can see from 397 the nanopore) and it is hard to ascribe just one value for these plots that the dependence of v on C has a non- 398 it for the whole nanopore length. In other words, at low monotonic character for pores with $R_p = 5$ nm: Fluid ³⁹⁹ electrolyte calculations and/or nanopore aspect ratios, velocity at the pore's center first increases with increasing 400 the full scale numerical calculations are better suited for

CONCLUSION IV.

In this paper, we theoretically studied the EOF C. When Helmholtz-Smoluchowski limit is reached, the 407 merical analysis of the EOF fluid velocity is performed Φ_0 , and thus, v_z decreases. For $R_p = 10$ nm, the velocity 409 and Navier-Stokes equation in two-dimensions accountdecreases with C [Fig. 8(b)] because in this case $\kappa R_p \gg 1_{410}$ ing for large fluid reservoirs above and below nanopore. ⁴¹¹ These large domains, while greatly increasing the com-In the same plots, we also compare the numerically 412 putational cost, are necessary to properly account for the

FIG. 8. (Color online) The fluid velocity profile in x-direction at the center of the nanopore of length $L_p = 25$ nm for different bulk electrolyte concentrations C: (a) $R_p = 5$ nm and (b) 10 nm. The dashed lines are the results of Eq. (12).

444

413 end effects around the inlet and outlet of the nanopore. 440 ⁴¹⁴ We found that the computed fluid velocity profiles are ⁴¹⁵ not only different by as much as 100 % from the results ⁴¹⁶ predicted by classical equations derived for infinitely long ⁴¹⁷ capillaries, but that they also develop a concave shape ⁴¹⁸ for sufficiently wide and/or short nanopores. This be-⁴¹⁹ havior stems from the presence of the self-induced pres-⁴²⁰ sure gradient along the nanopore due to the flow expan-⁴²¹ sion/contraction near ends of the pore as well as the re-422 duction of the electric field inside the nanopore due to ⁴²³ the increase of the effective nanopore length caused by ⁴²⁴ the access resistance and the membrane surface charge. ⁴²⁵ Based on the classical model for the EOF in long pores, ⁴²⁶ we also developed a simple analytical model incorporat-427 ing these effects, and found that its results are in a good 428 agreement with those of the numerical calculations.

Although in this work we concentrate on thin and ul-429 ⁴³⁰ tratin membranes, our results concerning the magnitude 431 of the induced pressure and how it affects the EOF ve-⁴³² locity are also applicable for other pore dimensions as 433 Eq. (13) does not depend explicitly on the nanopore 434 length. In this respect, they can be used to predict ⁴³⁵ and quantitatively estimate the induced pressures near ⁴³⁶ the nanopore inlet/outlet and their effect, for example, 437 on translocation of "deformable" particles through the 438 nanoporous membranes [33] and other nanofluidic de-439 vices.

ACKNOWLEDGMENTS

441 We are grateful to I. A. Jou for helpful discussions. ⁴⁴² This work was supported by the NSF CAREER award 443 DMR-1352218.

Appendix: Validation of the Approach

To check the validity of our numerical approach, we 445 computed the EOF velocity in very long nanopores where 447 numerical results are expected to approach the values ⁴⁴⁸ given by Eq. (6) for smaller surface charge densities when ⁴⁴⁹ the Debye approximation is valid. As results in Fig. 9 450 show, this is indeed the case: For 200-nm-long pores, ⁴⁵¹ the relative difference between numerically computed and $_{452}$ approximate values of the velocity is about 15(7) % for $_{453} \rho = 0.4(0.2) e/\text{nm}^3$ while for a 500-nm long nanopore, 454 the difference is $\sim 10(2)$ %.

FIG. 9. (Color online) The fluid velocity profile in x-direction at the center of the nanopores with $R_p = 5$ nm and varying length L_p (solid curves). The dashed lines are the results of Eq. (6) with $E_z = V_e/L_p$.

- 455 [1] C. C. Striemer, T. R. Gaborski, J. L. McGrath, and 499
 456 P. M. Fauchet, Nature 445, 749 (2007). 500
- 457 [2] S. Howorka and Z. Siwy, Chem. Soc. Rev. 38, 2360
 458 (2009).
- [3] I. Vlassiouk, P. Y. Apel, S. N. Dmitriev, K. Healya, and
 Z. S. Siwy, Proc. Natl. Acad. Sci. U.S.A. **106**, 21039 (2009).
- 462 [4] A. Oukhaled, L. Bacri, M. Pastoriza-Gallego, J.-M. Bet 463 ton, and J. Pelta, ACS Chem. Biol. 7, 1935 (2012).
- 464 [5] B. N. Miles, A. P. Ivanov, K. A. Wilson, F. Dogan, 508
 465 D. Japrung, and J. B. Edel, Chem. Soc. Rev. 42, 15 509
 466 (2013). 510
- ⁴⁶⁷ [6] L. Movileanu, Protein Pept. Lett. **21**, 235 (2014).
- 466 [7] M. Muthukumar, C. Plesa, and C. Dekker, Phys. Today
 469 68, 40 (2015).
- 470 [8] B. M. Venkatesan and R. Bashir, Nat. Nanotechnol. 6, 514
 471 615 (2011). 515
- 472 [9] L. Luo, S. R. German, W.-J. Lan, D. A. Holden, T. L. 516
 473 Mega, and H. S. White, Annu. Rev. Anal. Chem. 7, 513 517
 474 (2014). 518
- 475 [10] A. McMullen, H. W. de Haan, J. X. Tang, and D. Stein, 519 476 Nat. Commun. 5, 4171 (2014). 520
- 477 [11] Y. Qiu, P. Hinkle, C. Yang, H. E. Bakker, M. Schiel, 521
 478 H. Wang, D. Melnikov, M. Gracheva, M. E. Toimil- 522
 479 Molares, A. Imhof, and Z. S. Siwy, ACS Nano 9, 4390 523
 480 (2015). 524
- 461 [12] M. Tsutsui, Y. He, K. Yokota, A. Arima, S. Hongo, 525
 462 M. Taniguchi, T. Washio, and T. Kawai, ACS Nano 526
 483 10, 803 (2016). 527
- 484 [13] M. Firnkes, D. Pedone, J. Knezevic, M. Döblinger, and
 485 U. Rant, Nano Lett. 10, 2162 (2010).
- 486 [14] A. M. Berezhkovskii and S. M. Bezrukov, Biophys. J. 88,
 487 L17 (2005).
- 488 [15] I. A. Jou, D. V. Melnikov, A. Nadtochiy, and M. E.
 489 Gracheva, Nanotechnology 25, 145201 (2014).
- ⁴⁹⁰ [16] T. R. Gaborski, J. L. Snyder, C. C. Striemer, D. Z. Fang,
 ⁴⁹¹ M. Hoffman, P. M. Fauchet, and J. L. McGrath, ACS
 ⁴⁹² Nano 4, 6973 (2010).
- ⁴⁹³ [17] M. Wanunu, T. Dadosh, V. Ray, J. Jin, L. McReynolds,
 ⁴⁹⁴ and M. Drndić, Nat. Nanotechnol. 5, 807 (2010).
- ⁴⁹⁵ [18] M. Tsutsui, S. Hongo, Y. He, M. Taniguchi, N. Gemma,
 ⁴⁹⁶ and T. Kawai, ACS Nano 6, 3499 (2012).
- ⁴⁹⁷ [19] U. M. B. Marconi and S. Melchionna, Langmuir 28, ⁵⁴¹ ⁴⁹⁸ 13727 (2012).

- ⁴⁹⁹ [20] C. L. Rice and R. Whitehead, J. Phys. Chem. **69**, 4017
 (1965).
- ⁵⁰¹ [21] S. Qian and Y. Ai, *Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Anal-* ⁵⁰³ ysis (CRC Press, Boca Raton, FL, 2012).
 - [22] J. G. Santiago, Anal. Chem. 73, 2353 (2001).

504

- ⁵⁰⁵ [23] A. Piruska, M. Gong, J. V. Sweedler, and P. W. Bohn,
 ⁵⁰⁶ Chem. Soc. Rev. **39**, 1060 (2010).
- 507 [24] M. Abramowitz, Handbook of Mathematical Functions,
 508 With Formulas, Graphs, and Mathematical Tables,
 509 (Dover Publications, Inc., 1974).
- 510 [25] J. D. Sherwood, M. Mao, and S. Ghosal, Langmuir 30, 511 9261 (2014).
- ⁵¹² [26] H. Helmholtz, Ann. Phys. 243, 337 (1879).
- ⁵¹³ [27] M. von Smoluchowski, "Handbuch der elektrizität und
 ⁵¹⁴ des magnetismus, vol. 2," (Barth, Leipzig, Germany,
 ⁵¹⁵ 1914) pp. 366–428.
- ⁵¹⁶ [28] L. M. Innes, C.-H. Chen, M. Schiel, M. Pevarnik, F. Haurais, M. E. Toimil-Molares, I. Vlassiouk, L. Theogarajan, and Z. S. Siwy, Anal. Chem. 86, 10445 (2014).
- ⁵¹⁹ [29] J. Nakane, M. Akeson, and A. Marziali, Electrophoresis
 ⁵²⁰ 23, 2592 (2002).
- ⁵²¹ [30] J. Getpreecharsawas, J. L. McGrath, and D. A.
 ⁵²² Borkholder, Nanotechnology **26**, 045704 (2015).
- ⁵²³ [31] C. Lee, L. Joly, A. Siria, A.-L. Biance, R. Fulcrand, and
 L. Bocquet, Nano Lett. **12**, 4037 (2012).
 - [32] Y. Zhang, X.-J. Gu, R. W. Barber, and D. R. Emerson,
 J. Colloid Interface Sci. 275, 670 (2004).
- ⁵²⁷ [33] M. Pevarnik, M. Schiel, K. Yoshimatsu, I. V. Vlassiouk,
 J. S. Kwon, K. J. Shea, and Z. S. Siwy, ACS Nano 7,
 ⁵²⁹ 3720 (2013).
- 530 [34] Q. Pu, J. Yun, H. Temkin, and S. Liu, Nano Lett. 4, 531 1099 (2004).
- ⁵³² [35] C. T. A. Wong and M. Muthukumar, J. Chem. Phys.
 ⁵³³ 126, 164903 (2007).
- L. D. Landau and E. M. Lifshitz, *Fluid Mechanics*, 2nd
 ed. (Butterworth-Heinemann, 1987).
- 536 [37] R. Roscoe, Lond. Edinb. Dubl. Phil. Mag. 40, 338 (1949).
- ⁵³⁷ [38] H. Hasimoto, J. Phys. Soc. Jpn. **13**, 633 (1958).
- ⁵³⁸ [39] Z. Dagan, S. Weinbaum, and R. Pfeffer, J. Fluid Mech.
 ⁵³⁹ 115, 505 (1982).
- 540 [40] R.-J. Yang, T.-I. Tseng, and C.-C. Chang, J. Micromech.
 541 Microeng. 15, 254 (2005).