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Broadband Cloaking of Flexural Waves

Ahmad Zareei∗ and M.-Reza Alam†

Department of Mechanical Engineering,

University of California, Berkeley

The governing equation for elastic waves in flexural plates is not form invariant, and hence de-
signing a cloak for such waves faces a major challenge. Here, we present the design of a perfect
broadband cloak for flexural waves through the use of a nonlinear transformation in the region of the
cloak, and by matching term-by-term the original and transformed equations and also assuming a
pre-stressed material with body forces. For a readily achievable flexural cloak in a physical setting,
we further present an approximate adoption of our perfect cloak under more restrictive physical
constraints. Through direct simulation of the governing equations, we show that this cloak, as well,
maintains a consistently high cloaking efficiency over a broad range of frequencies. The methodology
developed here may be used for steering waves and designing cloaks in other physical systems with
non form-invariant governing equations.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

The method of Transformation Optics, which are based
on transformation solutions [1] and originally developed
in optics community for passive cloaking [2, 3], offers a
novel method for controlling electromagnetic waves using
the subtle idea of coordinate transformation. Based on
this method, invisibility cloaks for electromagnetic waves
were designed, fabricated and successfully tested [4, 5].
The most important necessary condition for applica-

bility of the method of transformation optics is that the
governing equations must be form invariant under coor-
dinate transformation. Since physical systems admitting
wave solutions share many common properties, it is well
expected that the transformation optics method works in
any wave system with form-invariant governing equation.
This has been confirmed and cloaks have been designed
and tested in a variety of other systems such as for acous-
tic waves [6–8], water waves [9–11] and matter waves [12].
Flexural waves, such as those propagating on a thin

elastic plates, have a governing equation that is known
to be not form-invariant [e.g. 13]. Therefore, the classi-
cal method of designing a cloak through transformation
media method does not directly work in the context of
flexural waves. While the method of transformation me-
dia cannot be directly applied, it has long been known
that a thin light density region coating a denser inclusion
reduces the shadow generated by a scatterer in low fre-
quencies [14, 15], and therefore this thin lighter density
coat can be used as a camouflage to reduce the scattered
field at the far field in low frequencies. In order to expand
this method to higher frequencies, a number of actively
controlled sources should be added to the exterior of the
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object to decrease the scattered field at infinity [16, 17].
Note that these methods cannot be regarded as invisibil-
ity cloaks, however they can reduce the leading monopole
source term of a scatterer in the asymptotics at infinity
[18] and therefore reduce the scattered field.

In order to use transformation optics method for the
flexural waves, one crude approximation is to adopt a
form-invariant equation whose form is close to the gov-
erning equation of flexural waves and then use classical
linear cloak design [19, 20], which we refer to as linear

because within the cloak, the radial direction is mapped
with a function that is linearly dependent on the radius.
While the resulting wave pattern about a to-be-cloaked
cylinder may look like wave patterns of cloaking, a quan-
titative investigation of cloaking efficiency [21][22] reveals
that such a cloak has a poor and in many cases even neg-

ative cloaking efficiency (i.e. an object with the cloak
about it scatters even more energy than the object with-
out one, see also Fig. 5, 6). Alternatively, if it is assumed
that both density and elasticity of the material can be
independently tuned, then a condition is obtained under
which the highest order terms of the governing equation
satisfy the cloaking requirement [18]. This is theoreti-
cally an improvement, as the highest order terms can be
shown to play a more important role than the rest of
the terms in the governing equation. Nevertheless, fab-
ricating a material with a variable density and elasticity
is a serious challenge [20]. Along the same line, more
degrees of freedom such as several independent elastic
parameters may be assumed to improve the theoretical
performance [23], but this makes the realization of cloak
in the physical space even farther from achievable.

Here we present the design of a perfect broadband
cloak for flexural waves. For the cloak to be realizable
in the physical domain, we put the constraint that the
density ρ is constant and only the modulus of elasticity E
can be changed across the cloak. We employ a nonlinear
transformation for the cloaking region and, by choosing
proper material properties with pre-stressing and body
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forces, match term-by-term the coefficients in the origi-
nal and transformed equations. We show rigorously that
the transformed equation matches perfectly with the pre-
stressed orthotropic and inhomogeneous plate’s equation
with body forces. We then numerically test an exper-
imentally feasible approximate adoptation of the cloak,
and quantitatively analyze its effectiveness.

II. GOVERNING EQUATIONS

For an isotropic plate with thickness h and density
ρ0, governing equation for out of the plane displacement
η(R,Θ, t) in the z direction normal to the plate’s surface
reads [e.g. 24]

D0∆
2η + ρ0hηtt = 0, (1)

where D0 = E0h
3/12(1− ν2) is the flexural rigidity, E0

is the Young Modules, ν is the Poisson ratio, and ∆ is
the horizontal Laplacian operator in (R,Θ) directions.
To cloak a circular region Ac (radius a) with a cloak of

outer radius b co-centered with Ac, we need to map the
region of 0 ≤ R ≤ b to the cloaking region a ≤ r ≤ b. We
use the nonlinear transformation F defined as

F :

{

r =
√

(1− a2/b2)R2 + a2, 0 ≤ R ≤ b,
θ = Θ,

(2)

that has a special property of its Jacobian being a con-
stant [11]. Using this transformation and further assum-
ing a time-periodic motion of frequency ω, equation (1)
is mapped to [using Lemma 2.1 in 25]

D0∇̃2∇̃2η − ρ0hω
2η = 0, (3)

where

∇̃2 =

(

1− a2

b2

)[

1

r

∂

∂r

(

r2 − a2

r

∂

∂r

)

+
1

r2 − a2
∂2

∂θ2

]

.

(4)

Note that if a = 0, then ∇̃2 ≡ ∆.
In a traditional cloak design for form-invariant gov-

erning equations [e.g. 2], material properties as functions
of spatial variables are determined such that the trans-
formed equation (3) with the new material properties
becomes equivalent of the original equation (1). If we do
the same here, the rigidity D becomes spatially variable
in different directions, which means the required mate-
rial for cloaking is inhomogeneous and orthotropic. The
issue is, equation (1) with D = D(r, θ), is not the govern-
ing equation for an inhomogeneous and orthotropic plate.
In fact, the governing equation for a general D(r, θ) is
very much different in the look (see equation (A.11) in
Appendix), and most importantly this equation is not

form-invariant.
With this knowledge, we therefore look for material

properties that result in the matching of the coefficients

of the two equations (i.e. (3) and (A.11)). We find that
if we choose the following material parameters

Dr = α2A2(r)D0, (5a)

Dθ = α2 (1/A(r))
2
D0, (5b)

Drθ = α2D0, (5c)

νθ =
1

α2A2(r)
[B(r)− 4 logA(r)] , (5d)

where A(r) = 1 − (a/r)
2
, α = 1 − (a/b)

2
and B(r) =

3(r/a) log [(r − a)/(r + a)]− 2a2/(r2 − a2) then between
equation (3) and (A.11) all terms that include 4th order
derivatives (i.e. highest order appearing in these equa-
tion), all 3rd order, 2nd order and 1st order terms match
perfectly except two extra terms in the transformed equa-
tion which are factors of ∂2η/∂r2 and ∂η/∂r. Interest-
ingly, these extra terms go to zero if the penetration
depth is small [see Eq. (A.19) in Appendix]. Alterna-
tively, these two extra terms can be handled with a ma-
terial that is pre-stressed only in the radial direction (i.e.
Nθθ = Nrθ = 0) with a radial body force (i.e. Sθ = 0)
according to

Nrr

D0
=

1

2a2

[

(a

r

)8

N (r) +
3

2

(a

r

)

log

(

r − a

r + a

)]

, (6a)

Sr

D0
= − 3

a3

(a

r

)11

S(r) (6b)

with S(r) =
[

5− 12(r/a)2 + 8(r/a)4
]

/
[

1− (a/r)2
]2

and

N (r) =
[

6− 10(a/r)2 − 2(r/a)4 + 3(r/a)6
]

/
[

1− (a/r)2
]

.
The above cloak for flexural waves is a rigorously de-

rived perfect (i.e. efficiency is theoretically unity) and
broadband cloak. We now move to the next level by de-
signing an approximate adoption of this perfect cloak re-
stricted by more physical constraints that make achiev-
ing such a cloak even easier in an experimental setting.
Specifically, the goal is to find an approximate adoption
of our cloak that only requires concentric layers of ho-

mogeneous material [c.f. 19, 20]. Using these concentric
isotropic layers, we can only achieve a variable radial and
azimuthal flexural rigidities.
Assuming only a variable radial and azimuthal rigidi-

ties in our cloak (i.e. equations (5a) and (5b)), only the
highest derivatives (i.e. 4th order and 3rd order terms)
match between equations (3) and (A.11). In order to test
the effectiveness of our cloak which is based on the nonlin-
ear transformation (2), in comparison with the one based
on linear transformations [19, 20], we useN = 15 layers of
homogeneous but orthotropic materials, that is, Dr, Dθ

are constant throughout each layer to approximate (5a)
and (5b). To achieve the required orthotropic response,
each layer is divided into two sub-layers of isotropic and
homogeneous materials with different rigidities to match
(5a) and (5b) in that layer. These two sub-layers can
be shown through homogenization that approximate the
required orthotropic properties [e.g. 19, 20, 26, 27]. In
implementing the cloak, since according to (5) the rigidi-
ties go unbounded at the inner boundary, a small offset
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FIG. 1. Profile of the rigidity as a function of r required to
achieve a cloak for flexural waves. Each layer is made up of a
homogeneous and isotropic material, but the averaged prop-
erties provides an inhomogeneous and orthotropic apparent
rigidity according to (5). In the design presented here, the
number of layers is 15, each layer is divided to two sub-layers,
and b/a = 4.

is introduced such that the rigidity of the first layer (next
to r = a) is calculated at this offset distance from the in-
ner boundary. This offset can be shown to be equivalent
of transforming a region of ε ≤ R ≤ b to the cloaking re-
gion a ≤ r ≤ b [see Eq. (A.31) and (A.32) in Appendix].
In the numerical simulations that follow, we choose this
offset to be 15% of thickness of a layer. The final profile
of the rigidity of the isotropic and homogeneous layers
for the case of b/a = 4 is shown in Fig. 1. We would
like to note that the rigidity profile offered in Fig. 1 with
a constant density profile is experimentally feasible: for
example i. see table 1 in [19] where a list of polymers
with 5 orders of magnitude changes in relative rigidities
with a constant densities is offered or ii. see [20] where
a combination of only two polymers, polyvinyl chloride
(PVC) and polydimethylsiloxane (PDMS), provides us
with a range of 3 orders of magnitude change in relative
rigidities with a constant density .

III. NUMERICAL MODEL

In order to numerically solve the thin plate’s equation
with flexural rigidity as shown in Fig. 1, we use the spec-
tral methods with Fourier expansion in the azimuthal di-
rection and Bessel functions in the radial direction. As-
suming time harmonicity of ω, the solution in each layer
is therefore expressed as Re [η(r, θ) exp(iωt)]. We expand
the spatial part η(r, θ) as

η(r, θ) =

∞
∑

n=−∞

ηn(r) exp (inθ) , (7)

where ηn(r) = AnJn(kir) + BnIn(kir) + CnYn(kir) +
EnKn(kir) with k4i = ρ0hω

2/Di and Di being the flexu-
ral rigidity of the layer. Here, Jn(.), Yn(.) and In(.),Kn(.)
are respectively Bessel and modified Bessel functions of
the first and second kind. Also An, Bn, Cn and En are

coefficients that are later found by satisfying the bound-
ary conditions. These boundary conditions are conti-
nuity of displacement η, its radial derivative ηr, mo-
mentum M and shear force V at the boundaries [see
Eq. (A.27) and (A.28) in Appendix]. Note that spa-
tial part of the incident planar wave can be written as
ηinc = a0 exp (ik0x) = a0

∑∞

n=−∞ inJn(k0r) exp(inθ),

where a0 is the amplitude of the wave, k40 = ρ0hω
2/D0

and D0 is the constant flexural rigidity outside the cloak.
In order to quantitatively analyze the efficiency of the

cloak, we calculate the scattering cross section which cor-
responds to the energy scattered to the infinity. The scat-
tered displacement field is ηsc = η − ηinc, where ηinc is
the incident plane wave [see Fig. 3]. The scattered far
field amplitude f(θ) is defined through [see e.g. 22]

ηsc =
a0√
2r

ei(k0r−π/4)f(θ) +O(1/
√
r) (8)

and the total scattering cross section is σsc =
1/2π

∮

|f(θ)|2dθ.

IV. RESULTS

We present here a side-by-side comparison of the sur-
face elevation η, scattered displacement field ηsc and scat-
tered far field amplitude f(θ) for three cases: i. in the
absence of cloak, ii. with the claimed linear cloak of
[19, 20], and iii. with our nonlinear cloak. We implement
the linear cloak according to Eq. (4) of [19] for a cloak
size of b/a = 4. We approximate the cloak N = 15 con-
centric layers that are homogeneous but anisotropic and
then we use two isotropic and homogeneous sub-layers
to approximate each of the 15 layer [see e.g. 19, 20, 27].
The resulted layers of isotropic and homogeneous mate-
rials approximates the anisotropic inhomogeneous cloak.
We do the same for the nonlinear cloak but in this case
according to equation 5. The result for a linear cloak
design [19, 20] and the nonlinear cloak for the range of
the frequencies of f = 200Hz−500Hz alongside with the
case when there is no cloak is shown in Fig. 2 and 3 for
comparison.
Looking at the displacement field in Fig. 2, both of

the cloaks seems to be effective at lower frequencies. In
fact, the linear cloak looks to be more effective than the
nonlinear cloak in f=200Hz. More specifically, the non-
linear cloak has less scattering downstream of the cylin-
der compared to the linear cloak and the linear cloak
have less scattering upstream of the cylinder compared
to the nonlinear case [see Fig. 3]. By increasing the
frequency, we observe that downstream scattering of the
nonlinear cloak is much better in preserving the wave
shape; while at the upstream of the cylinder the linear
cloak has less scattering. We would like to mention that
although linear cloak looks to be more efficient in lower
frequencies, the proposed nonlinear cloak has much less
scattering in a broader range of frequencies. The snap-
shot of scattered displacement field ηsc corresponding to
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FIG. 2. Nondimensionalized displacement field η/a0 for a
nonlinear cloak (left column), without any cloak (middle col-
umn), and linear cloak (right column). Each row corresponds
to a different frequency: 200Hz (first row), 300Hz (second
row), 400Hz (third row) and 500Hz (the last row). Coordi-
nates are nondimensionalized with radius of the inner cylin-
der a and the cloak size for both linear and nonlinear cloak
is b/a = 4. The cloaks are approximated with N = 15 layers
of homogeneous anisotropic materials with each layer com-
posed of two sub-layers made up of different homogeneous
and isotropic materials. For a direct comparison with Stenger
et al. [20], Frequencies are obtained using the values of
h = 1mm, a = 1.5cm, ρ = 2000kg/m3 and D0 = 0.1037Nm2 .
A nonlinear cloak shows a consistent cloaking efficiency for
different frequencies, while the performance of linear cloak
drops significantly as the frequency increases. The scattered
field is also shown in Fig. 3. For a quantitative comparison
of performance, see Fig. 5 and 6.

Fig. 2 is shown in Fig. 3. This figure explicitly shows
that the linear cloak compared to other cases scatters far
more energy in the downstream of cylinder for all ranges
of frequency. However, the nonlinear cloak scatters less
energy in the downstream, and the upstream scattering
increases partly as the frequency increases. We would
like to point out that the downstream scattering is re-

−1.5 −1.0 −0.5 0 0.5 1.0 1.5

FIG. 3. Nondimensionalized scattered field ηsc/a0 = (η −
ηinc)/a0 where ηinc is the incident wave, for a nonlinear cloak
(left column), without any cloak (middle column), and linear
cloak (right column). Each row corresponds to a different fre-
quencies: 200Hz (first row), 300Hz (second row), 400Hz (third
row) and 500Hz (the last row). Coordinates are nondimen-
sionalized with radius of the inner cylinder a and the cloak
size for both linear and nonlinear cloak is b/a = 4.

lated to the change in wave rays’ path followed by waves
in the cloak: the path is longer than that of rays travel-
ing straightforwardly in an isotropic thin plate [c.f. 28].
This path length difference results in phase difference be-
tween the plane waves propagating in an isotropic plate
and the wave field of a cloaked system in the downstream
of the cloak. Note that the change in rays’ path length
in a nonlinear cloak is smaller than a linear cloak which
causes less scattering in the downstream of the cloak.
In order to demonstrate more quantitatively how su-

perposition of the scattered field and the incident wave
results in graphs of Fig. 2, we show in Fig. 4 the
nondimensionalized scattered amplitude ηsc/a0 along the
center-line of the simulation domain, i.e. θ = 0, π, at the
frequency of f = 300Hz for three cases : i. with no cloak
(——), ii. with a linear cloak (- - -), and iii. with
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FIG. 4. Nondimensionalized scattered amplitude ηsc/a0 along
the x-axis at the frequency f = 300Hz for (i) without a cloak
(——), (ii) with a linear cloak (- - -), and (iii) with our
nonlinear cloak (– - –). We also show the nondimensional-
ized incident wave amplitude ηinc (· · ·).

our nonlinear cloak (– - –). We also show, for the sake
of comparison, the incident wave field (· · ·). In form-
ing the final picture of waves over the water surface, the
relative phases of incident and scattered waves play sig-
nificant roles. For example, downstream of the cylinder
(r/a > 1) and in the absence of a clock, scattered waves
and incident wave have an almost π-radian phase differ-
ence, and hence nearly cancel each other resulting in a
clearly distinguishable shadow zone in Fig. 2, middle col-
umn. A perfect cloak must have zero scattered waves out-
side the cloak, and for a cloak to be considered effective,
it must have a scattering field with an amplitude that is
at least smaller than that without any cloak. Clearly, our
nonlinear cloak satisfies the latter condition, whereas the
scattering field of a linear cloak does not (amplitude of
scattering field on the downstream is clearly larger than
the amplitude of scattering field in the absence of the
cloak).
In order to quantitatively test the effectiveness of the

cloaks, we present in Fig. 5 the absolute value of the
scattered amplitude |f(θ)| at different angles for both of
the cloaks at different frequencies f = 200Hz−500Hz. As
is seen, in all of the frequencies, although in upstream of
the cylinder the linear cloak is reducing the amount of
energy scattered to infinity compared to the nonlinear
case, far more energy is scattered in the downstream of
the cylinder in the linear cloak, even larger than the case
when there is no cloak. Therefore, in all cases the linear
cloak scatters more energy to the downstream compared
to when the cloak does not exist. Our nonlinear cloak
consistently achieves a lower scattering in all angles with
no exception.
In order to quantitatively see the net effect of the cloak

in terms of the total energy scattered to the infinity, we
also calculate and plot the total scattering cross section
σsc (Fig. 6). In the frequencies bellow 200Hz, although
the linear cloak scatters more energy at certain angles
(at the downstream side of the cylinder) compared to the
case with no cloak [see Fig. 5], the total energy scattered
to the infinity is smaller than the case with no cloak. At
frequencies above 200Hz the linear cloak both scatters far
more energy at the back of the cylinder and also in total.

(a) (b)

(c) (d)

FIG. 5. Polar plot of absolute value of scattered amplitude
|f(θ)| for the linear cloak (- - -), without cloak (——),
and with nonlinear cloak (– - –) for different frequencies of
(a) 200Hz, (b) 300Hz, (c) 400Hz and (d) 500Hz.

f

k
σ
s
c

FIG. 6. Nondimensionalized total scattering cross section
with wavelength i.e. kσsc for the a range of frequencies for 3
different cases of without cloak, with a linear cloak and with
a nonlinear cloak.

Note that, the total scattering cross section for the non-
linear cloak stays always smaller than the case without
any cloak. This underlines the broadband effectiveness
of our proposed nonlinear cloak.

V. CONCLUSION

In summary, we presented here the design of a perfect
broadband cloak for flexural waves. Since the govern-
ing equations for flexural waves are not form-invariant,
the traditional cloak design methodology through lin-
ear transformation optics scheme does not apply here.
We therefore employed a nonlinear transformation and
matched, term-by-term, the transformed equation with
the true governing equation for an inhomogeneous and
orthotropic plate equation. We showed rigorously that
the resulting cloak is perfect. We also presented an adop-
tion of our perfect cloak obtained under more restrictive
physical constraints that make the design more amenable
for experimental investigations. These constraints are
that cloak can only include a finite number of concentric
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layers of homogeneous materials and that only modulus
of elasticity can be variable from layer to layer. We pre-
sented this approximate cloak, and showed via direct sim-
ulation that this experimentally realizable cloak of such
type has a consistent performance in all spatial direc-
tions, and also has a broad bandwidth of high efficiency.

The nonlinear cloak proposed in here is combination of
layers of homogeneous and isotropic materials, which are
amenable to physical fabrication and testing and real-life
application [e.g. potentially in cloaking against earth-
quakes 29, 30]. The nonlinear transformation proposed
here, may be applied for other types of the waves to soften
the required material properties. For instance, in electro-
magnetism, with this nonlinear cloak, we can remove one
degree of the freedom and keep permeability (permittiv-
ity) as a constant in cloaking for transverse magnetic (or
electric) waves.

APPENDIX

1. Governing Equations

Assuming an orthotropic and inhomogeneous plate,
under pure bending and in the absence of in-plane forces,
we have [31]

∂2MR

∂R2
+

2

R

∂MR

∂R
+

2

R

∂2MΘR

∂R∂Θ
+

2

R2

∂MΘR

∂Θ
+

1

R2

∂2MΘ

∂Θ2
− 1

R

∂MΘ

∂R
+ ρ0hω

2η = 0, (A.9)

where MR,MΘ and MRΘ are the bending moments, ρ0
is the density of the plate, h is the thickness and ω is the
frequency of the wave. Bending moments MR,MΘ and
MRΘ are found as

MR = −DR

[

∂2η

∂R2
+ νΘ

(

1

R

∂η

∂R
+

1

R2

∂2η

∂Θ2

)]

,

(A.10a)

MΘ = −DΘ

(

1

R

∂η

∂R
+

1

R2

∂2η

∂Θ2
+ νR

∂2η

∂R2

)

, (A.10b)

MRΘ = −2DK
∂

∂R

(

1

R

∂η

∂Θ

)

, (A.10c)

where η(R,Θ) is the out-of-plane displacement, DR, DΘ

are the flexural rigidities in the R,Θ directions respec-
tively,DK is the shearing rigidity and νR, νΘ are the Pois-
son ratios in the radial and tangential directions. Note
that the radial and tangential rigidities DR, DΘ satisfy
the symmetry relation DRνΘ = DΘνR. Using these rela-
tions and defining DRΘ = 2DK +DRνΘ, equation (A.9)

simplifies to [18]

DR
∂4η

∂R4
+

DΘ

R4

∂4η

∂Θ4
+

2DRΘ

R2

∂4η

∂R2∂Θ2
+

(

2DR

R
+ 2

∂DR

∂R

)

∂3η

∂R3
+

(

2

R2

∂DRΘ

∂R
− 2DRΘ

R3

)

∂3η

∂R∂Θ2
+

[

1

R2

∂

∂R

(

R2∂DR

∂R

)

+
1

R

∂(DRνΘ)

∂R
− DΘ

R2

]

∂2η

∂R2
+

(

∂2η

∂Θ2

)

(

2DRΘ

R4
− 2

R3

∂DRΘ

∂R
+

2DΘ

R4
− 1

R3

∂DΘ

∂R
+

1

R2

∂2(DRνΘ)

∂R2

)

+

(

DΘ

R3
− 1

R2

∂DΘ

∂R
+

1

R

∂2(DRνΘ)

∂R2

)

∂η

∂R
− ρ0hω

2η = 0.

(A.11)

Assuming a constant rigidity DR = DΘ = DRΘ = D0,
equation (A.11) simplifies to the famous biharmonic
plate’s equation as

D0∆
2η − ρ0hω

2η = 0. (A.12)

Now as we aim to cloak a circular region Ac with radius
a, with a cloak of outer radius b co-centered with Ac,
we use the following transformation F to map the area
0 ≤ R ≤ b to the cloaking region a ≤ r ≤ b [11]

F :

{

r =
√

(1− a2/b2)R2 + a2, 0 ≤ R ≤ b,
θ = Θ.

(A.13)

The Jacobi of the transformation F in the polar coordi-
nate is

F =
√

1− a2/b2
( √

r2 − a2/r 0

0 r/
√
r2 − a2

)

(er ,eθ)

,

(A.14)

where {er = ER, eθ = EΘ}. Note that det F =
√

1− a2/b2 6= 1.
Transforming the governing equation (A.12), we obtain

[see Lemma 2.1 in Ref. 25]

∇̃2∇̃2η − ρ0hω
2η = 0, (A.15)

where

∇̃2 =

(

1− a2

b2

)[

1

r

∂

∂r

(

r2 − a2

r

∂

∂r

)

+
1

r2 − a2
∂2

∂θ2

]

(A.16)

Defining the following parameters

D′
r = α2A2(r)D0, (A.17a)

D′
θ = α2(1/A(r))2 D0, (A.17b)

D′
rθ = α2D0, (A.17c)

ν′θ =
1

α2A2(r)
[B(r)− 4 logA(r)] . (A.17d)
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where α = 1 − a2/b2 and A(r) = 1 − a2/r2 and B(r) =
3(r/a) log

(

r−a
r+a

)

−2a2/(r2 − a2). We can further expand

and simplify equation (A.15) as

D′
r

∂4η

∂r4
+

D′
θ

r4
∂4η

∂θ4
+

2Drθ

r2
∂4η

∂r2∂θ2
+

(

2D′
r

r
+ 2

∂D′
r

∂r

)

∂3η

∂r3
+

(

2

r2
∂D′

rθ

∂r
− 2D′

rθ

r3

)

∂3η

∂r∂θ2
+

[

1

r2
∂

∂r

(

r2
∂D′

r

∂r

)

+
1

r

∂(Drν
′
θ)

∂r
− D′

θ

r2
+ C(r)

]

∂2η

∂r2
+

∂2η

∂θ2
(

2D′
rθ

r4
− 2

r3
∂D′

rθ

∂r
+

2D′
θ

r4
− 1

r3
∂D′

θ

∂r
+

1

r2
∂2(D′

rν
′
θ)

∂r2

)

+

(

D′
θ

r3
− 1

r2
∂D′

θ

∂r
+

1

r

∂2(D′
rν

′
θ)

∂r2
+D(r)

)

∂η

∂r
− ρ0hω

2η = 0.

(A.18)

where

C(r) = 1

2a2

(a

r

)8

L(r)D0, (A.19a)

D(r) =
3

a3

(a

r

)11 5− 12(r/a)2 + 8(r/a)4

(1− a2/r2)2
D0, (A.19b)

where

L(r) = 6− 10(r/a)2 − 2(r/a)4 + 3(r/a)6

1− (a/r)2

+
3

2

( r

a

)7

log

(

r − a

r + a

)

. (A.20)

The transformed equation i.e. equation (A.18),
matches with the inhomogeneous and orhotropic plate’s
equation i.e. equation (A.11), with the rigidities and the
Poisson ratio as defined in (A.17). The only difference
is in the second order term ∂2η/∂r2 and the first order
term ∂η/∂r with the coefficients defined in (A.19). Note
that these remaining terms goes to zero as long as r ≫ a,
i.e. the penetration depth of the wave into the cloak is
small.
These extra terms in equation (A.18) can also be in-

terpreted as an additional pre-stress force N and body
force S as

Nrr = C(r), Nθθ = Nrθ = 0, (A.21)

Sr = −D(r), Sθ = 0. (A.22)

Note that the pre-stress force N and the body force S

should satisfy the following constraint as

∇.N+ S = 0. (A.23)

2. Numerical Solution

Our cloak is composed of concentric layers of homoge-
neous materials with a clamped boundary condition at
the inner most layer. We have plane incident waves and

we aim to find the cloak’s response to these incoming
waves.
For each layer, we expand the solution in that layer

using spectral methods as

η(i)(r, θ) = Re

{

eiωt
∞
∑

n=−∞

Zn(kir)e
inθ

}

, (A.24)

Zn(kir) = A(i)
n Jn(kir) +B(i)

n In(kir)

+ C(i)
n Yn(kir) + E(i)

n Kn(kir) (A.25)

where k4i = ρhω2/Di with Di being the flexural rigidity
of the layer. Here, Jn(.), Yn(.) and In(.),Kn(.) are respec-
tively Bessel and modified Bessel functions of the first

and second kind and A
(i)
n , B

(i)
n , C

(i)
n , E

(i)
n are constants

that are later found satisfying the boundary conditions.
Outside of the cloak, since the solution should remain

finite and satisfy the radiation condition, the solution can
be written as

ηout(r, θ) = Re

{

eiωt
∞
∑

n=−∞

Zn(k0r)e
inθ

}

,

Zn(k0r) = FnH
(1)
n (k0r) +GnKn(k0r) + a0i

nJn(k0r),
(A.26)

where H
(1)
n (.) is the Hankel function of the first kind,

k40 = ρhω2/D0 and D0 being the flexural rigidity outside
of the cloak. Note that a0i

nJn(k0r) represents the plane
incident wave. Boundary conditions at the boundary of
each layer is the continuity of η, its radial derivative ηr
and also the continuity of momentum and shear force as

Mr = −D

[

∂2η

∂r2
+ ν

(

1

r

∂η

∂r
+

1

r2
∂2η

∂θ2

)]

, (A.27)

V = Qr +
1

r

∂Mrθ

∂θ
, (A.28)

where

Qr = −D
∂

∂r
∇2η, (A.29)

Mrθ = −D(1− ν)
∂

∂r

(

1

r

∂η

∂θ

)

. (A.30)

Using the above boundary conditions at each layer and
also the clamped boundary condition η = ηr = 0 at the
boundary of the inner most layer, we can solve for the
unknowns.

3. Discussion on transformation

In this section we show that the offset ǫ introduced ear-
lier, is equivalent to transforming the region ε ≤ R ≤ b
to the cloaking region a ≤ r ≤ b, where ε is a small
nonzero number. A transformations with a constant Ja-
cobian, mapping the area ε ≤ R ≤ b to the cloaking area
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a ≤ r ≤ b can be written as

F :

{

r =
√
c1R2 + c2, ε ≤ R ≤ b,

θ = Θ,
(A.31)

where

c1 =
b2 − a2

b2 − ε2
, c2 = a2 − ε2

b2 − a2

b2 − ε2
. (A.32)

Note that when ε = 0, equation (A.31) reduces to equa-
tion (A.13). The offset we used in Fig. 1 is equivalent to
picking the value of ε as ε/a = 0.175.
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