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In order to grow and replicate, living cells must express a diverse array of proteins, but the
process by which proteins are made includes a great deal of inherent randomness. Understanding this
randomness—whether it arises from the discrete stochastic nature of chemical reactivity (“intrinsic”
noise), or from cell-to-cell variability in the concentrations of molecules involved in gene expression or
the timings of important cell-cycle events like DNA replication or cell division (“extrinsic” noise)—
remains a challenge. In this article we analyze a model of gene expression that accounts for several
extrinsic sources of noise, including those associated with chromosomal replication, cell division, and
variability in the numbers of RNA polymerase, ribonuclease E, and ribosomes. We then attempt
to fit our model to a large proteomics and transcriptomics data set, and find that only through
the introduction of a few key correlations among the extrinsic noise sources can we accurately
recapitulate the experimental data. These include significant correlations between the rate of mRNA
degradation (mediated by ribonuclease E) and the rates of both transcription (RNA polymerase) and
translation (ribosomes), and strikingly, an anticorrelation between the transcription and translation
rates themselves.

I. INTRODUCTION

Over the last 15 years, experiments have repeatedly
shown that seemingly identical cells (e.g. cells belong-
ing to a clonal population grown in a well-stirred envi-
ronment) can differ significantly in their gene expression
states [1–3]. How stochastic gene expression (SGE) im-
pacts the fitness of a cell remains a fertile area of re-
search, and as a result stochastic modeling has grown
into a cornerstone of biological physics. SGE can im-
part some advantages; it has been shown, for example,
that in E. coli SGE gives rise to a diverse array of be-
havioral phenotypes [4–9], and can enable populations to
quickly adapt to environmental niches [10, 11]. Neverthe-
less, SGE has also been shown to decrease overall growth
rates and natural selection efficacy [12]. Various models
of the different ways in which gene expression noise arises
and how cells have evolved to control it (either amplifying
or attenuating it) have been explored [13–17].

With the notable exception of a 2002 article by Swain,
Elowitz and Siggia [18], little attention has been paid
until recently to the effect that DNA replication has on
gene expression variability [19]. During replication, as
the DNA polymerases progress along the chromosome,
every gene is systematically copied. Because of this, de-
pending on their stage in the cell cycle, cells can have
a different number of copies of a given gene, and this
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cell-to-cell variation in copy number can impact gene ex-
pression stochasticity in important ways. Jones et al.
[20] showed that the noise associated with gene replica-
tion represents a major component of the total mRNA
variability. Building on this work, Peterson et al. [21]
showed that the messenger degradation rate, which de-
fines the timescale at which the mean messenger count
“relaxes” from its low state before to its high state af-
ter gene replication, plays an critical role in accurately
describing messenger noise. Earlier analytical models of
gene expression either neglect DNA replication entirely,
or fail to account for the mRNA relaxation by either tac-
itly ignoring it or significantly overestimating the messen-
ger degradation rate (which in turn effectively ignores the
relaxation).

In this article we investigate several extrinsic sources
of protein expression noise (defined as Var[p]/E[p]2). We
begin by deriving expressions for the protein mean and
variance assuming a simple constitutive model of gene ex-
pression that explicitly accounts for gene replication, and
show that these expressions agree with simulations that
exactly sample the chemical master equation (CME) for
the modeled system. We then extend our considerations
to account for other extrinsic sources of noise, including
variability in transcription, translation, and messenger
degradation rates, as well as variability in the timing of
gene replication and the cell cycle duration. We find that
the contribution of gene replication-associated noise to
the total protein noise is significant, by itself accounting
for roughly as much noise as any other extrinsic source.
More importantly, we find that measurements of mRNA
and protein expression in E. coli (specifically the famed
Taniguchi et al. data set [2]) preclude versions of our
model in which the extrinsic noise sources are assumed
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to act independently. In such cases, the predicted pro-
tein noise is far greater than that measured, especially
among highly expressed genes. Only through the inclu-
sion of correlations among the extrinsic noise sources is
our model able to accurately describe the experimental
data. We sample the space of possible correlations and
find that the sets that best recover the experimentally
measured protein statistics tend to include significant
correlations between the mRNA degradation rate (kd)
and both the transcription (kt) and translation (kr) rates,
as well as anticorrelations between the transcription and
translation rates themselves—a finding corroborated by
an recent investigation of the correlations observed be-
tween protein and mRNA expression in E. coli [22]. We
use our model to estimate transcription, translation, and
messenger degradation rates for 585 E. coli genes, and
show that the use of an earlier model of gene expression
that does not account for gene replication and the other
extrinsic noise sources leads to median relative errors of
∼ 23%, ∼ 21% and ∼ 36% in the predicted transcription,
translation, and mRNA degradation rates. Finally we
show that the our model tends to predict larger mRNA
copy numbers than appear in the Taniguchi data set,
which we attribute to a widely-used but likely underesti-
mated literature value for the total mRNA content of E.
coli.

II. MODEL

We begin by considering the simplest model of consti-
tutive gene expression (see Figure 1). We assume mRNA
(denoted m) is transcribed at rate kt from a gene (de-
noted D), and that the mRNA can either degrade at rate
kd or be translated at rate kr to form a protein (denoted
p):

D(t)
kt−→ D(t) +m

m
kr−→ m+ p

m
kd−→ ∅

(1)

Importantly, in the above equation we have expressly
noted the time-dependence of the gene copy number. For
our purposes, D(t) can either take the value 1 for t less
than the gene replication time tr, or 2 after the gene has
been copied. This system can be described by a chemi-
cal master equation (CME, see Equation A2), which de-
scribes the time evolution of the probability that a cell is
in a given chemical state. In this description, the cell can
transition between states in discrete jumps; it may, for
example, go from having m messengers to m − 1 as the
result of an mRNA degradation event, or p proteins to
p+1 through a translation event. From the CME we can
derive ODEs for the instantaneous mRNA and protein
means, and variances, and the instantaneous mRNA and
protein covariance (see Appendix A for details):
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FIG. 1. The central dogma of molecular biology for a repli-
cating chromosome. Replication forks form at the origin of
replication and proceed along both sides of the chromosome
until they meet at the terminus. Each gene, depending on its
location, gets copied at its own gene replication time tr; prior
to tr an single copy exists, and afterward two copies exist.
The gene can be transcribed into mRNA, which in turn can
be translated to form proteins.

dm̄(t)

dt
= ktD(t)− kdm̄(t)

dσ2
m(t)

dt
= ktD(t) + kdm̄(t)− 2kdσ

2
m(t)

dp̄(t)

dt
= krm̄(t)

dσ2
p(t)

dt
= krm̄(t) + 2krCov[m, p](t)

dCov[m, p](t)

dt
= krσ

2
m(t)− kdCov[m, p](t)

(2)

Worth noting is that this model does not explicitly as-
sume a protein degradation rate. Because proteins gener-
ally degrade on time-scales longer than the cell cycle, we
expect that the main avenue by which protein concentra-
tions are attenuated is through dilution as the cells grow
and divide. We therefore posit that at the cell division
time, tD, the existing proteins and mRNA are distributed
to daughter cells with equal probabilities according to
the binomial distribution. This assumption yields the
constraints (see Equations A38 and A39):
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m̄(0) =
1

2
m̄(tD)

σ2
m(0) =

1

4

[
m̄(tD) + σ2

m(tD)

]
p̄(0) =

1

2
p̄(tD)

σ2
p(0) =

1

4

[
p̄(tD) + σ2

p(tD)

]
Cov[m, p](0) =

1

4
Cov[m, p](tD)

(3)

For constitutively expressed genes, the solutions for
the messenger mean and variance are known [21], allow-
ing for the simultaneous solution of Equations 2 and 3
(see Equations A12 and A41). Normalizing by cell size
and time-averaging over the cell cycle (accounting for the
fact that log-phase cells are known to have exponentially
distributed ages [23, 24], and grow exponentially during
the cell cycle [25]) then yields closed form solutions for
the messenger and protein means and variances, E[m],
V ar[m], E[p], and V ar[p], that depend on kt, kr, kd,
tr, and tD. The expressions are cumbersome and will
not be reproduced here (although E[m] and E[p] appear
in Equation A48), but they can easily be computed us-
ing Mathematica [26, 27]. We note that all five model
parameters should be considered stochastic variables—
cells can, after all, have different numbers of RNA poly-
merases, ribosomes, or ribonucleases, as examples, which
can affect their respective transcription, translation, or
mRNA degradation rates. Accounting for these types of
extrinsic variability is accomplished in Section III.

In order to get a feel for how DNA replication impacts
gene expression variability, we can consider an idealized
“median gene”—that is, a gene with median values for
its messenger and protein copy numbers (approximately
0.064 and 18.2 per cell, respectively [2]), a median mRNA
half life (approximately 2.4 minutes [2]), and a gene loci
situated half-way between the origin and terminus of
replication. We note that the cells used in the Taniguchi
study had doubling times in the vicinity of 120 minutes
(although some strain-to-strain variability, ranging be-
tween approximately 110 and 150 minutes, have been re-
ported [4, 28]). E. coli with similar doubling times have
recently been measured to have a B-period (the portion
of the cell cycle prior to replication initiation) of around
42.2 minutes, and a C-period (the portion of the cell cy-
cle during which the chromosome is being replicated)
around 42.4 minutes [29], although other studies have
reported slightly shorter and longer B- and C-periods,
respectively [30, 31]. These values lead to a median gene
replication time of tr = 42.2 + 0.5 × 42.4 = 63.4 min-
utes). We can then solve for estimates of the transcrip-
tion and translation rates for our median gene (kt = 0.014
and kr = 1.6) and compute the protein copy number
variance we should expect it to have. The result is a
value of Var[p] = 115.3, corresponding to a noise level

of Var[p]/E[p]2 = 0.35. Fixing all other parameters and
scanning over gene loci (denoted χ, the fraction of the
gene’s position along the chromosome measured from ori-
gin to terminus, which we assume affects the gene replica-
tion time as tr = 42.2+χ×42.4) shows that the noise level
of our median gene can vary between 0.31 and 0.39—a
relative difference of as much as 20%. Explicit stochas-
tic simulations (using the stochastic simulation algorithm
(SSA) of Gillespie [32, 33]) show outstanding agreement
with these results (see Figure 2).

Despite the agreement between our simulations and
analysis, the noise level we have computed, 0.35, should
make us somewhat wary—we have not included any ex-
trinsic sources of gene expression noise other than DNA
replication and already our model appears to account
for more than the entirety of the noise-floor observed in
the Taniguchi study (approximately 0.09 for proteins ex-
pressed at levels above 10 [2]). If we do account for the
other extrinsic noise sources, will our model be able to
accurately describe the protein data?

III. ACCOUNTING FOR EXTRINSIC NOISE
SOURCES

We can extend our model to include extrinsic sources
of noise, such as variability in RNA polymerase (RNAP),
ribosome, or ribonuclease E (Rne) copy numbers (which
can affect the transcription, translation, and messenger
degradation rates, respectively), or variability in the cell
cycle duration, tD, or the timing of gene replication, tr.
In each case, the effect of randomness in a given param-
eter can be estimated by Taylor expanding about the
mean parameter value (see Equation B1).

We can (at least roughly) estimate the variance in
each parameter in our model. By noting that the rates
of transcription, translation, and mRNA degradation
are proportional to the concentrations of RNAP, ribo-
somes, and Rne, and that these macromolecules tend to
be highly expressed (and therefore likely to have noise
levels of around 0.1) we can estimate V ar[kt], V ar[kr],
and V ar[kd] as 0.1 × k2

t , 0.1 × k2
r , and 0.1 × k2

d, re-
spectively (where we now understand kt, kr, and kd
to represent the mean transcription, translation, and
mRNA degradation rates). Variability in the cell cy-
cle duration is estimated to be around 10% [29], and
so we might expect Var[tD] ≈ 122 min2 (assuming a
120 minute cell doubling time). Finally, using pub-
lished values of the variability in the B- and C-periods of
the cell cycle (52% [29], and 16% [30], respectively), we
can estimate the variance in a gene’s replication time as
Var[tr] ≈ (0.52× 42.2)2 + χ2(0.16× 42.4)2 min2.

It is fairly common in models of this type to assume
that the extrinsic noise sources act independently (i.e.
the matrix ρ that describes the correlations among the
extrinsic noise sources in Equation B1 is the identity ma-
trix, 1). Under this assumption, Figure 3A shows the
total protein noise broken down into contributions from



4

0.04

0.06

0.08

15

20

25

50

100

150

0 0.2 0.4 0.6 0.8 1

0 40 80-0.5

0

0.5

1

120

0 40 800

20

40

A                                                       B

Chromosomal locus (χ)

0.35

0.45

Var[p]
Var[p] /

 E[p]2
E[p]

E[m]

time (min)
120

m
R

NA
 c

ou
nt

pr
ot

ei
n 

co
un

t

FIG. 2. (A) Analytical and simulated mRNA and protein statistics for a “median” E. coli gene as a function of gene loci.
Circles represent statistics calculated from 5,000 simulated cell cycles. At the start of each cycle, the mRNA and protein copy
numbers were drawn from a binomial distribution based on the final counts in the previous cycle. The simulated counts were
normalized to account for cell growth, and the fact that cell ages are exponentially distributed. The lines represent analytical
results evaluated according to Equations A47. (B) Simulated mRNA and protein traces with χ = 0.5. The thin black lines
indicate 5 individual cell cycles, while the heavy black lines indicate the mean of 5,000 cell cycles. The red areas indicates ± 1
standard deviation.

each of its contributing sources for the same “median”
gene modeled previously. For the sake of comparison,
we have distinguished the extrinsic noise associated with
gene replication (denoted “DNA rep”) from the intrinsic
noise associated with the biochemical network (denoted
Γ) by subtracting from our expressions the noise pre-
dicted by a model that does not include gene duplication
[2, 5, 34]. We find that gene replication contributes a
comparable amount of gene expression noise (∼ 0.1) as
variability in any of kt, kr, or kd, while variability in the
timing of DNA replication and cell division, conversely,
contribute very little noise (∼ 0.02). Importantly, the
total noise we find, 0.69, is significantly larger than the
noise measured by Taniguchi et al. [2] for the majority of
proteins with mean expression levels around 18. We can
forge ahead and try to fit every point in the Taniguchi
data set (see Figure 4A, and Appendix C for details on
the fitting procedure) but this only confirms our fears—
when (independent) extrinsic noise sources are accounted
for, our model overestimates protein expression variabil-
ity, and simply can not describe most of the data.

There have been a number of different mechanisms
proposed by which gene-expression noise may be attenu-
ated, including negative feedback, near-saturated signal-
ing cascades, and forms of post-transcriptional regula-
tion [13, 16, 17]. While undoubtedly some fraction of the
genes in the Taniguchi data set are controlled through
these mechanisms, the problem we face is that signifi-
cant noise attenuation is required for our model to fit
most of the data, and so we wish to find an explana-
tion that applies to most—if not all—E. coli proteins.
One possibility is that extrinsic noise sources should not
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FIG. 4. Fitting our model to the Taniguchi et al. dataset assuming either (A) all extrinsic noise sources act independently
(i.e. ρ = 1), or (B) extrinsic noise sources exhibit correlations among themselves (see Section IV). Black points represent
experimental data from [2], while circles represent best fits from our model (colored by the squared fitting error, ∆(ρ), see
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sampled correlation matrices (see Section IV for details). Also noted is the mean squared fitting error, 〈∆(1)〉, when extrinsic
noise sources are assumed to act independently, as well as the median mean squared fitting error for the best-performing
matrices.

in general be assumed to be independent. Taniguchi et
al. found that the fluctuations of highly-expressed pro-
teins (both RNAP and Rne are expressed in thousands
per cell) can have correlation coefficients of as much as
0.66 [2]. Similarly, the timing of DNA replication has
long been believed to be correlated with the cell cycle
duration [35], and a recent study found a correlation co-
efficient of as high as 0.79 between the B-period and the
doubling time of E. coli [30]. We can investigate the ef-
fect that extrinsic noise correlations have on our model’s
ability to match the Taniguchi data by simply including
the cross terms in our Taylor expansions that depend on
the covariance of the model parameters.

IV. FINDING EXTRINSIC NOISE
CORRELATIONS THAT FIT EXPERIMENTAL

PROTEIN AND MRNA STATISTICS

Because our model overestimates protein noise when
extrinsic sources are treated independently, finding cor-
relations coefficients that lead to noise attenuation is an
important part of fitting our model to the Taniguchi data.
In general, the noise will be attenuated by the negative
cross terms in our Taylor expansion of Var[p] (Equation
B1). These arise when either: 1) the correlation coef-
ficient between two extrinsic noise sources is negative
and the partial derivatives of Var[p] with respect to these
sources have the same sign; or 2) the correlation between
the sources is positive and the partial derivatives with
respect to them have opposite signs. An example of the
former might be if the transcription and translation rates
were anticorrelated (since the derivatives with respect to
kt and kr are both positive), while an example of the

latter might be if the transcription and mRNA degrada-
tion rates were positively correlated (because the deriva-
tive with respect to kd is negative). Importantly, finding
noise-attenuating correlations can not be done arbitrar-
ily. Any matrix ρ that describes the possible correla-
tions among kt, kr, kd, tr, and tD must be both positive
definite (which bars cases in which, for example, noise
sources A and B are strongly correlated, and A and C
are strongly correlated, but B and C are strongly anti-
correlated) and have ones on diagonal. Such a matrix
can be constructed as ρ = LLT , where L is a lower tri-
angular matrix with diagonal values greater than 0 and
whose squared row elements sum to 1 (i.e.

∑
j L

2
i,j = 1

for each row i).

Although it may be tempting to try to search for cor-
relation matrix that minimizes the mean squared fit-
ting error (denoted 〈∆(ρ)〉), nonlinear fits of this type—
especially those involving large parameter spaces—are
notoriously difficult [36]. Moreover, even if an optimal
ρ could be found, without knowledge of the shape of
〈∆(ρ)〉, it’s difficult to say with confidence that other—
possibly very different—correlation matrices could not
yield fitting errors of comparable size. Here we take
a more circumspect approach, opting for questions like
“what correlation coefficients are likely to occur in ma-
trices consistent with the gene expression data?” To that
end, we constructed a set of 50,000 random correlation
matrices with approximately uniformly-distributed off-
diagonal elements (see Appendix D for details). These
matrices’ associated mean squared fitting errors ranged
between 5.76 and 1125.90. Focusing on the top 0.5 per-
centile (the set of 250 matrices with the lowest associated
errors, ranging up to 8.78, and denoted {ρ∗}), a number
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of clear trends emerged (see Figure 5A).
The median values of the correlation coefficients in our

best-performing matrices, with their associated median
absolute deviations (MAD), are represented in Equation
4. These matrices tend to include significant positive
correlations between the mRNA degradation rates and
both the transcription and translation rates, as well as
significant anticorrelations between the transcription and
translation rates themselves. While some matrices defy
one or another of these general trends (approximately
23% of {ρ∗} include negative correlations between kd
and kt, 16% include negative correlations between kd
and kr, and 28% include positive correlations between kt
and kr), none defy two or more of them simultaneously.

These three correlation coefficients tend to compen-
sate for each other; matrices with higher transcription-
translation correlations, for example, also have corre-
spondingly higher mRNA degradation-transcription and
mRNA degradation-translation correlations (see Figure
5B). Other statistical enhancements are somewhat less
pronounced. The transcription rate tends to be posi-
tively correlated with the timing of gene replication, and
both the transcription and translation rates tend to be
negatively correlated with the timing of cell division. Fi-
nally, we note that the distributions of ρ(kr, tr), ρ(kd, tr),
ρ(kd, tD), and ρ(tr, tD) show only weak biases, and are
relatively widely dispersed.

median {ρ∗i,j} =

kt kr kd tr tD


1 −0.44± 0.37 0.56± 0.27 0.37± 0.43 −0.34± 0.48 kt
. 1 0.67± 0.24 0.18± 0.53 −0.27± 0.47 kr
. . 1 −0.20± 0.53 0.14± 0.53 kd
. . . 1 −0.14± 0.43 tr
. . . . 1 tD

(4)

Based on these results, we can say the true extrinsic
noise correlation matrix—whatever it may be—likely in-
cludes correlations between the mRNA degradation rate
and the transcription and translation rates. This is in
keeping with what is known about highly-expressed cel-
lular components. Rne, RNAP, and ribosomes all occur
in large concentrations within the cell, and as such some
correlation among their numbers should naturally arise
[2]. Indeed, one can easily imagine how cells with rela-
tively high transcription rates (due to high copy numbers
of RNAP) or high translation rates (high copy numbers
of ribosomes) would express high numbers of Rne, and
in turn have relatively high mRNA degradation rates.
These two correlations are extremely important for the
overall fitting of the model to the data, and represent the
largest two sources of noise attenuation among our {ρ∗}
matrices (see Figure 3B).

The tendency of our best-performing matrices to in-
clude anticorrelations between the transcription and
translation rates is less intuitive, but considerably more
interesting. Naively one would expect that a cell with
greater numbers of RNAP would transcribe more ribo-
somes, and similarly, a cell with greater numbers of ribo-
somes would translate more RNAP, together giving rise
to a positive correlation between the cell’s transcription
and translation rates; but the correlation matrices that
elicit the best fits to the data actually predict the oppo-
site. A skeptic might attribute these results to the neces-
sity of our matrices to include noise-attenuating terms
(ρ(kt, kr) represents the third-largest overall source of
noise attenuation, see Figure 3B), but there are com-
pelling reasons to believe that this anticorrelation might
be real. It has been shown that translation of the rpoB

mRNA (encoding the β-subunit of RNAP) is inhibited by
the 50S ribosomal protein L1 [37–39]. This means that
cells with high ribosomal protein copy numbers should
exhibit low RNAP translation rates, and in turn sup-
pressed transcription rates. Given the current context,
it is possible that this regulatory mechanism may have
evolved in order to suppress overall protein noise. More-
over, an elegant recent article by Hilfinger, Norman, and
Paulsson [22] analyzed the space of all possible gene-
expression models and found that only models in which
the transcription and translation rates were anticorre-
lated could give rise to the negligible mRNA-protein cor-
relation coefficients seen experimentally [2, 22].

The enhancements in anticorrelations between the tim-
ing of cell division and both the transcription and trans-
lation rates observed among our {ρ∗}matrices are consis-
tent with the current leading models of bacterial cell size
control and division. Although it remains an active area
of research, a number of theories have been posited to
understand how cell division timing is regulated. These
include “accumulation” models involving the buildup of a
critical number of initiator molecules (such as FtsZ [40])
before division is triggered, “adder” models in which cells
attempt to add a fixed volume before dividing, mixtures
thereof (including the particularly compelling “multiple
origins accumulation” model [24]), as well as the earlier
“sizer” models (in which cells divide at a critical size)
and “timer” models (wherein cells attempt to maintain
fixed cell-cycle intervals). In our context, cells with high
transcription or translation rates (or both) should be ex-
pected to grow faster and accumulate greater numbers of
initiator molecules at earlier times. As a result—at least
according to the accumulation, adder, and sizer models—
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lowest associated 〈∆(ρ)〉 values). (B) Scatter plots of ρ(kt, kr), ρ(kt, kd), and ρ(kr, kd) with respect to each other for the
best-performing matrices

these cells should divide sooner and exhibit the types of
kt–tD and kr–tD anticorrelations seen in our data.

In contrast, the bias in {ρ∗} toward positive correla-
tions between the transcription rate and the timing of
gene replication is considerably stronger than was ex-
pected based on the biochemical literature. Its known,
for example, that accumulation of DnaA to the origin
of replication plays an integral role in replication initi-
ation. One might surmise, then, that cells with rela-
tively high transcription rates would produce DnaA at
correspondingly faster rates, leading to earlier replica-
tion times (and small or negative correlations). Simi-
larly, its been shown that high transcriptional activity
also gives rise to net negative chromosomal supercoil-
ing, especially near the origin of replication where several
highly-expressed rRNA genes reside. This supercoiling
should facilitate DNA melting, again leading to earlier
replication times [41]. In light of these considerations,
we anticipated lower ρ(kt, tr) values than were in fact
observed among our best-performing matrices.

Finally, we note that although positive correlations be-

tween the timing of DNA replication and cell division
have been measured [30], no enhancement among posi-
tive values was observed in {ρ∗}. We attribute this to the
fact that variability in neither tr nor td contribute signif-
icantly to the overall protein noise, and as a result, cor-
relations among them contribute correspondingly small
amounts (see Figure 3). This means that the matrices
that are most consistent with the experimental data—
those that enable the greatest noise attenuation—show
little bias in their tr–tD correlation coefficients.

V. FAILURE TO ACCOUNT FOR EXTRINSIC
NOISE LEADS TO UNDERESTIMATION OF

THE TRANSCRIPTION AND MRNA
DEGRADATION RATES

We can compare the transcription, translation, and
mRNA degradation rates fit using the theory developed
here (using our set of best-performing correlation matri-
ces) with those fit using the gamma distribution [2, 5, 34].
As before, we simultaneously fit kt, kr, and kd to the
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measured mRNA means, protein means and variances,
and mRNA degradation rates from the Taniguchi data
set using the expressions:

E[m]Γ =
kt
kd

E[p]Γ =
kttD
ln(2)

kr
kd

V ar[p]Γ =
kttD
ln(2)

(
kr
kd

)2

(5)

where we have substituted ln(2)/tD for the dilution rate
that would normally appear. We find that for the major-
ity of genes in the data set, the transcription and mRNA
degradation rates extracted using our model are signifi-
cantly higher than those extracted using the gamma dis-
tribution (with median fold-changes, calculated over all
genes and {ρ∗}matrices, of approximately 1.23 for kt and
1.36 for kd, see Figure 6A & C). For many genes the effect
can be dramatic, resulting in order of magnitude or more
differences in the predicted kt and kd rates. In contrast,
the translation rates predicted by our model tended to
be lower (approximately 0.79-fold) than those predicted
by the gamma distribution (see Figure 6B). These ob-
servations highlight the necessity of a careful accounting
of extrinsic noise sources when fitting rates using gene
expression variability data.

VI. THE TANIGUCHI DATASET APPEARS TO
UNDERESTIMATE MRNA COPY NUMBERS

We compared the mean mRNA copy numbers ex-
tracted by fitting our model (again using our best-
performing correlation matrices) with those reported in
the Taniguchi data set. For most (over 75%) of the genes
considered, our fit median E[m]ext. nse. was larger than
the measured value (by a median fold-change, over all
genes and {ρ∗} matrices, of approximately 1.68, see Fig-
ure 7). As has been fairly common with quantifying copy
numbers using RNA-seq, Taniguchi et al. scaled their rel-
ative measurements such that the total mRNA per cell
was 1, 350, a value that derives from [42] and is based
in part on total mRNA mass. More recent studies em-
ploy “spiked” samples with additional calibration mRNA
added in known quantities prior to RNA-seq which serve
to more directly measure the concentrations of the cel-
lular transcripts. These studies have yielded estimates
of the total mRNA content of an E. coli cell in glucose
minimal medium to be approximately 2, 400 transcripts
[43, 44]. Had the Taniguchi mRNA data been normal-
ized to this value, it would have increased each mRNA
count by 1.78-fold, and brought their measurements and
our fits into very close agreement.
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FIG. 6. Comparison of fit kinetic parameters using our model
versus the earlier Gamma distribution model [34]. (A) Com-
parison of fit transcription rates. (B) Comparison of fit trans-
lation rates. (C) Comparison of fit mRNA degradation rates.
Points are colored by mean protein expression level. The red
diagonal lines indicate perfect agreement. In all cases, the
plotted Ext. Noise Fit values represent each gene’s median
transcription, translation, and mRNA degradation values ob-
tained by performing the fits described in Equation C1 using
each of our best-performing correlation matrices, with the re-
spective median absolute deviation shown as vertical black
lines. The plotted Gamma Fit values represent the analogous
fits performed using Equation 5 rather than our ρ-dependent
extrinsic noise model.
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FIG. 7. Comparison of experimental [2] and fit mean mRNA
copy numbers. Points are colored by mean protein expression
level, and represent the median mean mRNA copy numbers
computed over our best-performing matrices, with their asso-
ciated median absolute deviations shown with black vertical
lines. The solid red line indicates the line of perfect agree-
ment, while the dashed red line indicates the line of perfect
agreement if the Taniguchi mRNA counts had been scaled to
2,400 total mRNA per cell.

VII. CONCLUSIONS

Building on prior work by us and other authors
[18, 20, 21], we have derived expressions for mRNA and
protein statistics assuming a simple constitutive model
of gene expression that accounts for chromosome repli-
cation. We are not the first to consider this effect [19],
but to our knowledge we are the first to carefully un-
derstand it in the context of other sources of extrin-
sic noise, and more importantly, critically compare our
model with experimental results. While we did find that
the noise contribution associated with gene replication
was of comparable size to those associated with vari-
ability in RNAP, Rne, and ribosome copy numbers, it
turned out that this was only part of the story. As is
so often the case, much more interesting results emerged
when our model failed to match experimental data. Un-
der the assumption of independent extrinsic variability
(a fairly routine approximation in models of this kind)
we vastly overestimated the protein noise. This in turn
led to an investigation of how the extrinsic noise sources
might be correlated, and ultimately to several impor-
tant results. These included 1) mRNA degradation rates
likely correlate with both the transcription and transla-
tion rates, perhaps through the natural correlations that
emerge among highly-expressed cellular components like
Rne, RNAP, and ribosomes; 2) transcription and transla-
tion rates in E. coli likely anticorrelate, possibly through
the suppression of rpoB translation by the large riboso-
mal protein L1, although other explanations have been
posited [22]; 3) accounting for extrinsic noise when ex-
tracting kinetic parameters from gene expression data
consistently (and often significantly) impacts the results;
and 4) the total mRNA content of E. coli appears to be

greater than previously assumed literature values esti-
mate.

Ultimately, the determination of the true extrinsic
noise correlation coefficients must be an empirical ex-
ercise. As such, we note that some relatively straight-
forward experiments can be conducted to directly test
our predictions. For example, researchers have already
counted RNAP and ribosome copy numbers individually
[45, 46]; by measuring both simultaneously in a two-color
experiment, the anticorrelation we predict between the
transcription and translation rates could be observed.
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Appendix A: Derivation of the protein copy number
Mean and Variance

Here we derive expressions for the protein copy num-
ber mean and variance. Due to the potentially broad
applicability of our results, including to researchers out-
side the traditional physics community, we have made a
concerted effort not to “skip steps.” As a result, this
derivation likely includes details that may seem obvious
to the more seasoned reader.

We consider the system:

D(t)
kt−→ D(t) +m

m
kr−→ m+ p

m
kd−→ ∅

(A1)

where D(t) is the time-dependent gene copy number, ei-
ther one before the gene replication time, tr, or two after
it. Assuming that after replication both copies can be
transcribed independently and with equal rates, we can
write the master equation for this system as:

d

dt
P (m, p|t) = kt(t)P (m− 1, p|t)− kt(t)P (m, p, |t)

+ kd(m+ 1)P (m+ 1, p, |t)− kdmP (m, p, |t)
+ krmP (m, p− 1|t)− krmP (m, p|t)

(A2)
where:

kt(t) =

{
kt t < tr
2kt t > tr

(A3)
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From this we can derive differential equation for the
mean and variance of the mRNA count (see [21]), and
the protein count. We consider the mean protein count,
p̄(t) first:

d

dt
p̄(t) =

d

dt

∞∑
m=0

∞∑
p=0

pP (m, p|t)

=

∞∑
m=0

∞∑
p=0

p
d

dt
P (m, p|t)

(A4)

We can insert the RHS of our master equation (Equation
A2) for d

dtP (m, p|t) and evaluate term-by-term. The first
term is:

∞∑
m=0

∞∑
p=0

pkt(t)P (m− 1, p|t)

=

∞∑
n=−1

∞∑
p=0

pkt(t)P (n, p|t)

=

∞∑
p=0

pkt(t)P (−1, p|t) +

∞∑
n=0

∞∑
p=0

pkt(t)P (n, p|t)

=

∞∑
p=0

pkt(t)× 0 +

∞∑
n=0

∞∑
p=0

pkt(t)P (n, p|t)

=

∞∑
p=0

pkt(t)P (p|t)

= p̄(t)kt(t)
(A5)

where we have used the fact that cells can not have nega-
tive mRNA (or protein) copy numbers, and so the prob-
ability of being in a state with m = −1 is 0. The second
term gives:

∞∑
m=0

∞∑
p=0

pkt(t)P (m, p|t)

=

∞∑
p=0

pkt(t)P (p|t)

= p̄(t)kt(t)

(A6)

The third term gives:

∞∑
m=0

∞∑
p=0

pkd(m+ 1)P (m+ 1, p, |t)

=

∞∑
n=1

∞∑
p=0

pkdnP (n, p, |t)

=

∞∑
n=0

∞∑
p=0

pkdnP (n, p, |t)

−
∞∑
p=0

pkd × 0× P (0, p, |t)

= kdp̄(t)n̄(t)

= kdp̄(t)m̄(t)

(A7)

The fourth term gives:

∞∑
m=0

∞∑
p=0

pkdmP (m, p, |t)

= kdp̄(t)m̄(t)

(A8)

The fifth term gives:

∞∑
m=0

∞∑
p=0

pkrmP (m, p− 1|t)

=

∞∑
m=0

∞∑
y=−1

(y + 1)krmP (m, y|t)

=

∞∑
m=0

∞∑
y=0

(y + 1)krmP (m, y|t)

+

∞∑
m=0

0× krmP (m,−1|t)

= kr〈m(p+ 1)〉(t)
= kr〈mp〉(t) + krm̄(t)

(A9)

where m̄(t) represents the time-dependent mean mRNA
count. Finally, the sixth term gives:

∞∑
m=0

∞∑
p=0

pkrmP (m, p|t)

= kr〈mp〉(t)

(A10)

Now, simply pulling this all together with appropriate
signs leaves us with the expression:

d

dt
p̄(t) = krm̄(t) (A11)

Now, inserting Equation 2 from [21] into Equation A11
and requiring p̄(0) = 1

2 p̄(tD) yields the solution:
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p̄(t) =
krkt
kd

[
e−kdtD − e−kdtr

kd
+ 2tD − tr] + η(t) (A12)

where

η(t) =

{
krkt
kd

t for 0 < t < tr
krkt
kd

[ e
−kdt−e−kdtr

kd
+ 2t− tr] for tr < t < tD

(A13)
We can now begin to consider the differential equation

for the variance of the protein count:

d

dt
σ2
p(t) =

( ∞∑
p=0

p2
∞∑
m=0

d

dt
P (m, p|t)

)
− 2p̄(t)

d

dt
p̄(t)

(A14)
As before, we can insert the RHS of Equation A2 into
Equation A14 and evaluate it term by term. The first
term gives:

∞∑
p=0

p2
∞∑
m=0

kt(t)P (m− 1, p|t)

=

∞∑
p=0

p2
∞∑

n=−1

kt(t)P (n, p|t)

=

∞∑
p=0

p2

(
kt(t)P (−1, p|t) +

∞∑
n=0

kt(t)P (n, p|t)
)

=

∞∑
p=0

p2
∞∑
n=0

kt(t)P (n, p|t)

= kt(t)〈p2〉(t)
(A15)

The second term gives:

∞∑
p=0

p2
∞∑
m=0

kt(t)P (m, p|t) = kt(t)〈p2〉(t) (A16)

The third term gives:

∞∑
p=0

p2
∞∑
m=0

kd(m+ 1)P (m+ 1, p, |t)

=

∞∑
p=0

p2
∞∑
n=1

kdnP (n, p, |t)

=

∞∑
p=0

p2

( ∞∑
n=0

kdnP (n, p, |t)− kd × 0× P (0, p|t)
)

= kd〈mp2〉(t)
(A17)

The fourth term gives:

∞∑
p=0

p2
∞∑
m=0

kdmP (m, p, |t) = kd〈mp2〉(t) (A18)

The fifth term gives:

∞∑
p=0

p2
∞∑
m=0

krmP (m, p− 1|t)

=

∞∑
y=−1

(y + 1)2
∞∑
m=0

krmP (m, y, |t)

=

∞∑
y=0

(y + 1)2
∞∑
m=0

krmP (m, y, |t)

+ 02 ×
∞∑
m=0

krmP (m,−1|t)

= kr〈m(p2 + 2p+ 1)〉(t)
= kr〈mp2〉(t) + 2kr〈mp〉(t) + krm̄(t)

(A19)

And finally the sixth term gives:

∞∑
p=0

p2
∞∑
m=0

krmP (m, p, |t) = kr〈mp2〉(t) (A20)

The final term on the RHS of Equation A14 can be
evaluated by inserting Equation A11:

2p̄(t)
d

dt
p̄(t) = 2p̄(t)krm̄(t) (A21)

Now, putting these all together (with appropriate signs)
yields:

d

dt
σ2
p(t) = krm̄(t) + 2kr[〈mp〉 − m̄(t)p̄(t)]

= krm̄(t) + 2krCov[m, p](t)
(A22)

Evidently we need an equation for the mRNA and pro-
tein covariance. This can be easily written down:

d

dt
Cov[m, p](t) =

∞∑
p=0

p

∞∑
m=0

m
d

dt
P (m, p|t)

− m̄(t)
d

dt
p̄(t)− p̄(t) d

dt
m̄(t)

(A23)
Again, we insert the RHS of Equation A2, and evaluate
term by term. The first term gives:

∞∑
p=0

p

∞∑
m=0

mktP (m− 1, p|t) = kt〈(m+ 1)p〉

= kt〈mp〉(t) + ktp̄(t)
(A24)

The second term gives:

∞∑
p=0

p

∞∑
m=0

mktP (m, p|t) = kt〈mp〉(t) (A25)
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The third term gives:

∞∑
p=0

p

∞∑
m=0

mkd(m+ 1)P (m+ 1, p, |t)

=

∞∑
p=0

p

∞∑
n=1

(n− 1)kdnP (n, p, |t)

=

∞∑
p=0

p

(
− 1× kd × 0× P (0, p|t)

+

∞∑
n=1

(n− 1)kdnP (n, p, |t)
)

=

∞∑
p=0

p

∞∑
n=0

(n− 1)kdnP (n, p, |t)

= kd〈m(m− 1)p〉(t)
= kd〈m2p〉(t)− kd〈mp〉(t)

(A26)

The fourth term gives:

∞∑
p=0

p

∞∑
m=0

mkdmP (m, p, |t) = kd〈m2p〉 (A27)

The fifth term gives

∞∑
p=0

p

∞∑
m=0

mkrmP (m, p− 1|t)

=

∞∑
q=−1

(q + 1)

∞∑
m=0

mkrmP (m, q|t)

= kr〈m2(p+ 1)〉(t)
= kr〈m2p〉(t) + kr〈m2〉(t)

(A28)

And finally the sixth term gives

∞∑
p=0

p

∞∑
m=0

mkrmP (m, p|t) = kr〈m2p〉 (A29)

The final two terms on the RHS of Equation A23 give:

m̄(t)
d

dt
p̄(t) = krm̄

2(t) (A30)

and:

p̄(t)
d

dt
m̄(t) = p̄(t)[kt − kdm̄(t)] (A31)

so, finally, pulling this all together yields:

d

dt
Cov[m, p](t)

= −kd〈mp〉(t) + kr〈m2〉(t)− krm̄2(t) + kdm̄(t)p̄(t)

= kr[〈m2〉(t)− m̄2(t)]− kd[〈mp〉(t)− m̄(t)p̄(t)]

= krσ
2
m(t)− kdCov[m, p](t)

= krm̄(t)− kdCov[m, p](t)
(A32)

where the last line follows from Equation 2 in [21].
We can solve Equation A22 for Cov[m, p](t) and insert

it and Equation A11 into Equation A32 to yield:

d

dt
Cov[m, p](t) =

d

dt
p̄(t)− kd

2kr

d

dt

[
σ2
p(t)− p̄(t)

]
=

d

dt

[
(1 +

kd
2kr

)p̄(t)− kd
2kr

σ2
p(t)

] (A33)

which immediately gives:

Cov[m, p](t) = c0 +

[
(1 +

kd
2kr

)p̄(t)− kd
2kr

σ2
p(t)

]
(A34)

where c0 is an arbitrary integration constant that will
be determined shortly. Inserting this into Equation A22
gives:

d

dt
σ2
p(t) = krm̄(t)

+ 2kr

(
c0 +

[
(1 +

kd
2kr

)p̄(t)− kd
2kr

σ2
p(t)

])
= krm̄(t) + 2krc0 + (2kr + kd)p̄(t)− kdσ2

p(t)
(A35)

For which the general solution is:

σ2
p(t) = c1e

−kdt + e−kdt
∫ t

0

dt′ekdt
′
[
krm̄(t′) + 2c0kr

+(2kr + kd)p̄(t
′)

]
(A36)

The expressions for p̄(t) and m̄(t) can be inserted (see
Equation A12 and Equation 2 of [21], respectively), and
the integral can be evaluated in closed form. We require
a few more constraints, however, in order to set c0 and c1.
We assume that at cell division the contents (messengers
and proteins) of the mother cell is distributed among the
two daughters randomly but with equal probability. We
can then write:

Pdaughter(p) =

∞∑
q=0

Pbinom(p|q)Pmother(q) (A37)
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Where Pbinom(p|q) represents the probability that p
proteins are distributed to a daughter cell given that
the mother cell contains q proteins at division time.
This is obviously just the binomial distribution with the
probability of a successful Bernoulli trial equal to 0.5.
Pmother(q) in the above equation represents the probabil-
ity that the mother contains q proteins.

From this we can compute the relationship between
the protein variance immediately before and immediately
after cell division:

σ2
p(0) =

[ ∞∑
p=0

p2
∞∑
q=0

Pbinom(p|q)Pmother(q)

]
− p̄2(0)

=

[ ∞∑
q=0

Pmother(q)

∞∑
p=0

p2Pbinom(p|q)
]
− p̄2(0)

=

[ ∞∑
q=0

Pmother(q)

(
Varbinom[p|q] + Ebinom[p|q]2

)]
− p̄2(0)

=

[ ∞∑
q=0

Pmother(q)

(
1

2
(1− 1

2
)q + (

q

2
)2

)]
− p̄2(0)

=
1

4
〈q〉+

1

4
〈q2〉 − p̄2(0)

=
1

4
[〈q〉+ 〈q2〉 − 〈q〉2]

=
1

4
[〈q〉+ Var[q]]

=
1

4
[p̄(tD) + σ2

p(tD)]

(A38)

where Varbinom[p|q] and Ebinom[p|q] represent the vari-
ance and mean of the number of successful Bernoulli tri-
als, p, given q attempts. We can also compute:

Cov[m, p](0) =

[ ∞∑
n=0

∞∑
q=0

∞∑
m=0

m

∞∑
p=0

pPbinom(m|n)

Pbinom(p|q)Pmother(n, q)

]
− m̄(0)p̄(0)

=

[ ∞∑
n=0

∞∑
q=0

Pmother(n, q)
n

2

q

2

]
− m̄(0)p̄(0)

=
1

4
〈nq〉(tD)− m̄(tD)

2

p̄(tD)

2

=
1

4
Cov[m, p](tD)

(A39)

We can insert Equations A12, A38, and A39 into Equa-
tion A34 in order to solve for c0; this yields:

c0 = −1

3
p̄(tD) = −2

3
p̄(0)

= −2

3

krkt
kd

[
e−kdtD − e−kdtr

kd
+ 2tD − tr

]
(A40)

which, along with Equation A38, allows us to write:

σ2
p(0 < t < tr)

=
krkte

−kdt

3k3
d

[
(3kd + 2kr)(e

kdtr − ekdtD )

+ 3(tr − 2tD)k2
d + kr(6− 4kdtD + 2kdtr)

+ e−kd(tr+tD−t) ×
(

(3kd + 2kr)(e
kdtr − ekdtD )

+ ekd(tr+tD)[3k2
d(2tD − tr + t)

+ kr(6kdt+ 4kdtD − 2kdtr − 6)]

)
+
e−3kd(tr+tD)

4ekdtD − 1
×
(

(3kd + 2kr)

× [e3kdtD+2kdtr − e2kdtD+3kdtr − 4e2kd(2tD+tr)]

+ e3kdtD+4kdtr [6kr + 3k2
d(tr − tD)]

+ 4e4kdtD+3kdtr [3k2
d(2tD − tr)

+ kr(4kdtD − 2kdtr − 3)]

+ e3kd(tD+tr)[14kr + 2kd(6 + krtD − 2krtr)

− 3k2
dtD]

)]
σ2
p(tr < t < tD)

=
krkt
3k3
d

e−kd(t+3(tr+tD))

4ekdtD − 1

×
[
− (3kd + 2kr)e

kd(t+2tD+3tr)

− 8(3kd + 4kr)e
kd(t+4tD+2tr)

+ 2(3kd + 4kr)e
kd(t+3tD+2tr)

− 3k2
d(tD − t)e3kdtD+4kdtr

+ 3(kd + 2kr)(kd(tD − t)− 1)e3kd(tD+tr)

+ 8[2kr(kd(3t+ tD − 2tr)− 3)

+ 3k2
d(t+ tD − tr)]ekd(t+4tD+3tr)

− 2[2kd(kr(3t+ tD − 2tr)− 3)

+ 3k2
d(t+ tD − tr)− 10kr]e

kd(t+3(tD+tr))

+ 12[2kr + k2
d(tr − t)]e4kd(tD+tr)

− 12[kd(2krtr − 2krt− 1)

+ k2
d(tr − t)− 3kr]e

4kdtD+3kdtr

]
(A41)

Now, deriving the population mean and variance is sim-
ply a matter of integrating out the time variable accord-
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ing to the prescription of [21] (see equations S23 and S25
therein). It is well established that populations of log-
phase cells have exponentially distributed ages [23, 24]:

Page(t) =
2ln(2)

tD
2−t/tD (A42)

and so we can write:

E[p] =

∫ tD

0

p̄(t)
2ln(2)

tD
2−t/tDdt

Var[p] =

∫ tD

0

σ2
p(t)

2ln(2)

tD
2−t/tDdt

+

∫ tD

0

p̄2(t)
2ln(2)

tD
2−t/tDdt− E[p]2

(A43)

The resulting expression for the population mean is
relatively simple:

E[p] =
2−tr/tDe−kd(tD+tr)krkttD

tDk2
dln(2) + kdln

2(2)

×
[
ln(2)2tr/tDekdtr − ln(4)ekdtD

+

(
2kdtD + 4ln2(2) + ln(4)− ln2(4)

)
ekd(tr+tD)

]
(A44)

while the expression for the population variance is quite
long and cumbersome (and as such, will not be repro-
duced here) although it can be expressed in closed form.

It it fairly common in single cell proteomics mea-
surements to report size-normalized protein distributions
[2, 3]. Deriving the size-normalized protein statistics can
be accomplished with only a minor revision to our for-
mulae. Assuming cells grow exponentially during the cell
cycle, we can write the a cell’s size, s, as:

s(t) = s02t/tD (A45)

Now we can compute the average cell size, s̄, as:

s̄ =

∫ tD

0

s02t/tD
2ln(2)

tD
2−t/tDdt = 2ln(2)s0 (A46)

Then solving for s0 such that s̄ is 1 average cell gives s0 =
1/(2ln(2)). We can use this to write the size-normalized
messenger mean and protein mean simply by dividing
m̄(t) (as computed in [21]) and p̄(t) by the instantaneous
cell size, and we can also write the protein variance by
dividing σ2

p(t) by the squared instantaneous cell size:

E[m]norm =

∫ tD

0

m̄(t)
4ln2(2)

tD
2−2t/tDdt

E[p]norm =

∫ tD

0

p̄(t)
4ln2(2)

tD
2−2t/tDdt

Var[p]norm =

∫ tD

0

σ2
p(t)

8ln3(2)

tD
2−3t/tDdt

+

∫ tD

0

p̄2(t)
8ln3(2)

tD
2−3t/tDdt− E[p]2norm

(A47)

Again omitting the expression for the protein variance
(we have included a Mathematica workbook that includes
it as part of the Supplemental Material [47]), we find:

E[m]norm

=
kt
kd

[
ln(2)

(
41−tr/tD − 1

)
+ ln(4)

(
1− 4−tr/tD

)
− ln(2)2

kdtD + ln(4)

(
41−tr/tD − ekd(tr−tD)

)]
E[p]norm

=
krkt2

−1−2tr/tDe−kd(tr+tD)

k2
d(kdtD + ln(4))

×
[
4tr/tDekdtr (−2ln(2)2 − ln(2)ln(4) + kdtDln(8)

+ ln(4)ln(16)) + ekdtD
(

8ln(2)2 − kdtD(4tr/tD ln(4)

+ ln(16))− ln(4)(4tr/tD ln(4) + ln(16))

)
+ ekd(tr+tD)kd(kdtD + ln(4))

(
− 4tr/tD trln(4)

+ tD(2 + 4tr/tD + 4tr/tD ln(16))

)]
(A48)

Finally, we note that a time-dependent expression for
the protein messenger covariance was derived en route to
the protein mean and variance (see Equations A34 and
A40). We can use this to compute the size-normalized
time-averaged mRNA-protein covariance and Pearson
correlation coefficient:

Cov[m, p]norm =

∫ tD

0

Cov[m, p](t)
8ln3(2)

tD
2−3t/tDdt

+

∫ tD

0

m̄(t)p̄(t)
8ln3(2)

tD
2−3t/tDdt

− E[m]normE[p]norm

ρm,p,norm =
Cov[m, p]norm√

Var[m]normVar[p]norm

(A49)
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Appendix B: Correcting for extrinsic noise

We can consider the effects of extrinsic noise in the
parameters in our model. Following the prescription of
[21] we can Taylor expand about the mean values of each
parameter:

Eext. nse.[m]

≈ E[m|x̄1, ...x̄n]

+
1

2

∑
i

(
∂2E[m|x1, ...xn]

∂x2
i

)
x̄1,...x̄n

Var[xi]

+
∑
i<j

(
∂2E[m|x1, ...xn]

∂xi∂xj

)
x̄1,...x̄n

Cov[xi, xj ]

Eext. nse.[p]

≈ E[p|x̄1, ...x̄n]

+
1

2

∑
i

(
∂2E[p|x1, ...xn]

∂x2
i

)
x̄1,...x̄n

Var[xi]

+
∑
i<j

(
∂2E[p|x1, ...xn]

∂xi∂xj

)
x̄1,...x̄n

Cov[xi, xj ]

Varext. nse.[p]

≈ Var[p|x̄1, ...x̄n] + E[p|x̄1, ...x̄n]2

+
1

2

∑
i

(
∂2Var[p|x1, ...xn]

∂x2
i

)
x̄1,...x̄n

Var[xi]

+
∑
i<j

(
∂2Var[p|x1, ...xn]

∂xi∂xj

)
x̄1,...x̄n

Cov[xi, xj ]

+
1

2

∑
i

(
∂2E[p|x1, ...xn]2

∂x2
i

)
x̄1,...x̄n

Var[xi]

+
∑
i<j

(
∂2E[p|x1, ...xn]2

∂xi∂xj

)
x̄1,...x̄n

Cov[xi, xj ]

− Eext. nse.[p]
2

(B1)
where E[p|x1, ...xn], for example, represents the expres-
sion for the mean protein count (e.g. Equation A47),
evaluated with parameters x1, ...xn. An analogous ex-
pression can also be written down for Cov[m, p] in order
to compute the effect of extrinsic noise on the mRNA-
protein covariance and Pearson correlation.

Appendix C: Fitting Our Model to the Taniguchi
Data Set

We attempted to find the transcription, translation,
and mRNA degradation rates that minimize the squared
error (denoted ∆i) when fitting our model to the exper-
imental data in [2]. The data includes measured protein
variances and means (represented below as σ2

i and p̄i for
each protein i), their respective error estimates (εσ2

i
and

εp̄i), mRNA means (m̄i), and mRNA lifetimes (the in-

verse of the mRNA degradation rates, denoted below as
kexp
d,i ) for 585 E. coli genes.

We pose the set of optimization problems:

∆i(ρ) =

min
{kt,i,kr,i,kd,i}>0

[(
Varext. nse.[pi](kt,i, kr,i, kd,i; ρ)− σ2

i

εσ2
i

)2

+

(
Eext. nse.[pi](kt,i, kr,i, kd,i; ρ)− p̄i

εp̄i

)2

+

(
Eext. nse.[mi](kt,i, kd,i; ρ)− m̄i

εm̄i

)2

+

(
kd,i − kexp

d,i

εkd,i

)2]
(C1)

where Varext. nse.[pi](kt,i, kr,i, kd,i; ρ),
Eext. nse.[pi](kt,i, kr,i, kd,i; ρ), and
Eext. nse.[mi](kt,i, kd,i; ρ) represent our theoretical
expressions for the protein variance, protein mean, and
mRNA mean, respectively (Equations B1). Here, ρ
represents a matrix describing correlations among the
various extrinsic noise sources; when they are assumed
to be independent, ρ = 1. Because [2] does not report
errors for the messenger mean and degradation rates, εm̄i

and εkd,i were set equal to m̄i, and kexp
d,i (the third and

fourth terms in ∆i therefore represent squared relative
deviations). Its important to note that each ∆i is a fit
of our model to four measured values by allowing only
three to vary (kt,i, kr,i, kd,i); enabling more parameters
to vary, or fitting to three or two measured values leaves
the system underconstrained, and is not a meaningful
test of the model’s ability to recapitulate the data. Also
of note, the dependence Varext. nse.[pi], Eext. nse.[pi], and
Eext. nse.[mi] on tr and tD have been suppressed above.
We assume during the fitting that cells have average
doubling times of tD = 120 minutes and each gene, i,
has its own average replication time that depends on it
location along the chromosome as tr,i = 42.2 + χi × 42.4
minutes. Each χi was computed as the fraction of the
given gene’s locus along the E. coli chromosome as
measured from origin to terminus [27, 48].

We performed the 585 optimizations using the SUB-
PLEX [49] method as implemented in the freely available
nlopt software package [50].

Appendix D: Sampling Correlation matrices with
Approximately Uniformly-Distributed Off-Diagonal

Elements

We constructed 50,000 random correlation matrices
with approximately uniformly-distributed off-diagonal
terms by first constructing a large set of random ma-
trices and then pruning the ones from over-represented
regions of the correlation matrix space.
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The random matrices were constructed by sampling
the elements of a lower triangular matrix, L, such that
the squared elements of each row sum to 1 and the diag-
onal terms are non-negative. The elements of each row,
i, live on an i-dimensional half-sphere of radius 1; we can
evenly sample the surface of each of these half-spheres
by sampling the elements in L from a standard normal
distribution, or from the positive half of the standard
normal distribution if the element is on-diagonal, and

then normalizing each row element by
√∑

j L
2
i,j . The

product, ρ = LLT , is then positive definite with ones on
diagonal (as all correlation matrices must be). In prac-
tice, this will lead to a set of correlation matrices with
very-different distributions of off-diagonal terms. Ran-
domly permuting the indices of the rows and columns of
these matrices yields off-diagonal distributions of similar
shape, but they remain non-uniform.

In order to ensure approximate uniformity in the off-
diagonal terms, we generated 100,000 random matrices,

and assigned to each a score, S, representing the de-
gree to which its off-diagonal terms are over- or under-
represented. This was accomplished by first histogram-
ming (with a bin width of 0.001) the 100,000 occurrences
of each off-diagonal term and using the results as “fre-
quency” functions, fi,j(ρ), that represent the number of
random matrices with i, j elements within the same bin
as the given matrix, ρ. Using these, a score was computed
for each matrix as:

S(ρ) =
∑
i,j<i

fi,j(ρ)−2 (D1)

This score tends to be larger for ρ matrices in which most
terms are under-represented in our set of 100,000 random
matrices, and smaller for ρs in which most terms are over-
represented. Taking the 50,000 matrices with the largest
scores yielded approximately uniformly-distributed off-
diagonal terms (see Figure 5A, blue histograms).
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