

This is the accepted manuscript made available via CHORUS. The article has been published as:

Mode-locking behavior of Izhikevich neurons under periodic external forcing

AmirAli Farokhniaee and Edward W. Large

Phys. Rev. E **95**, 062414 — Published 22 June 2017

DOI: 10.1103/PhysRevE.95.062414

Mode-Locking Behavior of Izhikevich Neurons under Periodic External Forcing

AmirAli Farokhniaee* and Edward W. Large

Department of Physics and

Music Dynamics Laboratory, Department of Psychology, University of Connecticut, Storrs, CT 06268

(Dated: June 5, 2017)

Many neurons in the auditory system of the brain must encode periodic signals. These neurons under periodic stimulation display rich dynamical states including mode-locking and chaotic responses. Periodic stimuli such as sinusoidal waves and amplitude modulated (AM) sounds can lead to various forms of n:m mode-locked states, in which a neuron fires n action potentials per m cycles of the stimulus. Here, we study mode-locking in the Izhikevich neurons, a reduced model of the Hodgkin-Huxley neurons. The Izhikevich model is much simpler in terms of the dimension of the coupled non-linear differential equations compared to other existing models, but excellent for generating the complex spiking patterns observed in real neurons. We obtained the regions of existence of the various mode-locked states on the frequency-amplitude plane, called Arnold tongues, for the Izhikevich neurons. Arnold tongues analysis provides useful insight into the organization of mode-locking behavior of neurons under periodic forcing. We found these tongues for both class-1 and class-2 excitable neurons in both deterministic and noisy regimes.

I. INTRODUCTION

Mode-locking is a ubiquitous phenomenon in the auditory system. Recent research has uncovered evidence of mode-locking in single-unit extracellular chopper and onset cells of guinea pigs[1, 2], in the auditory midbrain of the fish Pollimyrus in response to acoustic signals [3–5] and in saccular hair bundle cells when exposed to periodic mechanical deflections [6]. In order to study the mode-locking behavior of a single neuron one must focus on the periodic external forcing (input) and the resulting neuronal spike pattern (output). In the aforementioned studies sinusoidal stimuli were used, therefore in order to address the phase relations seen in these experiments one can use sinusoidal current injections into the model neuron and then measure mode-locking behavior utilizing an Arnold tongue analysis [7, 8]. The analysis strategy presented here is tested on the data set that contains the responses of an inferior colliculus neuron in the awake rabbit in response to Sinusoidally Amplitude Modulated (SAM) stimuli across a range of amplitudes and frequencies [9]. This data set was recorded as part of a study to determine physiological responses to SAM stimuli, in which the methods are described in detail [10].

A neuron is said to be n:m mode-locked to a periodic stimulus if it fires n action potentials in m cycles of the stimulus, where n and m are positive integers. Phase-locking is defined as 1:1 mode-locking. For two mode-locked oscillators the locking condition is as follows[11, 12]:

$$|\phi_{n,m}| < const., \tag{1}$$

where $\phi_{n,m}(t) = n\phi_1(t) - m\phi_2(t)$ and $\phi_{n,m}$ is the generalized phase difference also known as the relative phase.

It is clear that in the case when n=m=1 Eq. (1) becomes $|\phi_1(t)-\phi_2(t)|< const.$. This behavior is indicative of constant phase shift, or phase-locking, which is generally considered the simplest way to describe synchronization[12].

In order to analyze the synchronization of such an oscillator undergoing external forcing, it is constructive to obtain a global map of synchronization regions. Synchronization between a neuron's action potentials or spike trains and an external input depends on both amplitude and frequency of the input. Hence, one can obtain regions on the amplitude-frequency plane that are indicative of mode-locking and synchronization of the two signals, i.e. synchronization of the injected periodic signal and the neuronal output. Within these regions, which are commonly referred to as Arnold tongues[12], Eq. (1) holds.

Arnold tongue diagrams have been produced for the Hodgkin-Huxley model[13], oscillators in the canonical model[14] and leaky integrate and fire (LIF) neurons[2]. The analysis of mode-locking for nonlinear oscillators (such as Hodgkin-Huxley) with nonlinear stimuli has been a difficult task[15] and investigators provided the Arnold tongues for such models numerically[13]. Nevertheless, analytical calculation of Arnold tongues have already been done for a simple integrate and fire model[15, 16] by using the Poincaré map. We compute the Arnold tongues for Izhikevich model numerically and present the stability analysis by studying the bifurcations.

To our knowledge, this is the first paper which utilizes and reports Arnold tongue diagrams for single Izhikevich neurons in both deterministic and stochastic situations. In the presence of noise, synchronization still occurs. However, in order to measure the stability of synchronized states one must introduce a measure. This can be done using vector strength (VS) so that synchronization can be measured both with and without the presence of noise in this model. VS takes a value of 1 if all spikes occur at one precise point and 0 for a uniform distribution of phases across the stimulus cycle. VS gives a good

^{*} aafarokh@gmail.com; Neuromodulation Laboratory, Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA

indication as to whether a phase preference exists in the data both with and without noise [2]. There have been studies to measure the stability of mode-locked patterns using different neuronal models such as Morris-Lecar [17] and LIF neurons [18]. Here we measure the stability of different mode-locked states using Izhikevich model.

In this study, we first explain the neuronal model (Izhikevich 2003) that will be utilized. We then present a brief description of Class-1 and Class-2 excitable neurons with their corresponding bifurcations. Then we compute the Arnold tongues for the deterministic case and show examples of mode-locking. The formation of harmonics and sub-harmonics in the frequency response of the neuron are then analyzed for some example points in the mode-locking regions. Next, we consider mode-locking in the presence of noise, which more accurately simulates biological conditions. This is done by computing the vector strength to measure the stability of mode-locked regions. The computational tools and analytical methods developed here can also be applied to physiological spike trains for any type or class of neuron.

II. MODEL AND METHODOLOGY

A. The Izhikevich model

One of the most significant and influential models in computational neuroscience is the Hodgkin-Huxley model of the squid giant axon[19]. This model captures the generation of action potentials by modelling the inward and outward currents into a neuron through voltage-gated ion channels. In general it consists of four coupled non-linear differential equations and many parameters that depend on the electrophysiology of the neuron under study. These parameters are usually obtained by experiment.

The spiking model of Izhikevich is a canonical model based on the Hodgkin-Huxley model, with reduced dimensionality. This simple model consists of two coupled nonlinear differential equations that give the time evolution of the components of the system in phase space [19, 20]:

$$C\dot{v} = k(v - v_r)(v - v_t) - u + I(t) \tag{2}$$

$$\dot{u} = a[b(v - v_r) - u]$$

if
$$v \ge v_{peak}$$
 then $v \longleftarrow c$, $u \longleftarrow u + d$

where v is the membrane potential, u is the membrane recovery variable which accounts for the activation of K^+ ionic currents and inactivation of Na^+ . u provides negative feedback to v. In this model, C presents the membrane capacitance (in nF), v_r is the resting membrane potential, v_t is the instantaneous threshold potential and

 v_{peak} is the spike cutoff value. a is the recovery constant, c is the voltage reset value, and d is the parameter that describes the total flow of ionic current during the spike and affects the after-spike behavior[19]. I(t) is the time-dependent injected current to the neuron that includes a constant part I_{DC} , and an alternating one, $I_{AC} = A\sin(\omega t)$:

$$I(t) = I_{DC} + I_{AC} = I_{DC} + A\sin(\omega t) \tag{3}$$

where A is the periodic stimulus amplitude and $\omega = 2\pi f$ with f as the periodic forcing frequency in Hz.

The coefficients are chosen such that both membrane potential v and t are represented in millivolts and milliseconds, respectively. Different values of the parameters a,b,c,d in the model correspond to known types of neurons. This reduced model is derived based on an approximation of Hodgkin-Huxley model nullclines. The Izhikevich model is simple yet incredibly precise, and has broad applications to almost all types of neurons. It exhibits firing patterns of all known types and is efficient in large-scale simulation of cortical networks[20].

As introduced by Izhikevich[19], the sum of all slow currents that modulate the spike generation mechanism is represented by the phenomenological variable u. Depending on the sign of b, u is either an amplifying (for $b \leq 0$) or resonating (for $b \geq 0$) variable that defines the class of excitability.

B. Different classes of neurons

A simple but useful criterion for classifying neuronal excitability was suggested by Hodgkin [21]. He discovered by stimulating a cell by applying currents of various strength that when the current was weak the cell was quiet, conversely when the current became strong the cell began to fire repeatedly. Thus, he divided neurons into two classes according to the frequency of emerging firing: class-1 neural excitability, in which action potentials can be generated with arbitrarily low frequency that increases in accordance with the applied current, and class-2 neural excitability, where action potentials are generated in a certain frequency band that is relatively insensitive to changes in the strength of the applied current. These two classes are reproduced by changing the parameters of Izhikevich model, Eqs. 2, in Fig. 1. For both classes of neurons in Fig. 1, C = 100 nF, $v_{peak} = 35 \text{ mV}$ and k = 0.7. For the class-1 neuron with the F-I curve illustrated in Fig. 1a, a = 0.03, b = $-2, c = -50, d = 80, v_t = -45 \text{ mV} \text{ and } v_r = -64 \text{ mV}.$ For the class-2 neuron with the F-I curve shown in Fig. 1b, $a = 0.1, b = 2, c = -30, d = 100, v_t = -40 \text{ mV}$ and $v_r = -60 \text{ mV}.$

As was described earlier, the sign of b determines the neuron's excitability class, i.e. one can convert from a class-1 model neuron to a class-2, by changing the sign of b. For class-1 neurons, such as the regular spiking cortical pyramidal cells, the resting state disappears through

a saddle-node on an invariant circle (SNIC) bifurcation. Conversely, for class-2 neurons, such as the fast spiking cortical interneurons, the resting state loses stability via either a saddle-node, sub-critical or supercritical Andronov-Hopf bifurcation. One of the reasons for using this classification is its importance and usefulness to understanding the emergence of frequency components of neuronal output (harmonics and sub-harmonics) which are computed in section III.



FIG. 1: F-I curves for (a) Class-1 and (b) Class 2 neurons with parameters given in the text.

100 120

Injected DC current (µA/cm²)

200

III. RESULTS AND ANALYSIS

To study mode-locking we inject the neuron with an external stimulus $I(t) = I_{DC} + A \sin(\omega t)$, as described in section II A. I_{DC} is present to ensure that the neuron spikes. Thus, the value of I_{DC} should be determined by referring to Fig. 1, i.e. it should be selected such that the neuron is in the firing state.

A. Arnold Tongues Diagram for Class-1 Neuron

Fig. 2 shows the regions of amplitude-frequency plane where different mode-locking ratios can be observed for the class-1 neuron. We computed n:m mode-locked regions for $n,m \in \{1,2,3,4,5\}$. This plot represents the

mode-locked regions as a function of the amplitude and frequency of the sinusoidal forcing, with the direct current of $I_{DC}=62~\mu\mathrm{A/cm^2}$. Note that the 1:1 tongue starts off the x axis at f=9 Hz, the inherent frequency of the class-1 neuron, shown in Fig. 1a.

As mentioned previously, the n:m ratio is indicative of a mode-locked state. For example, for stimulus amplitudes and frequencies corresponding to the orange region the neuron exhibits 3:1 mode-locking.

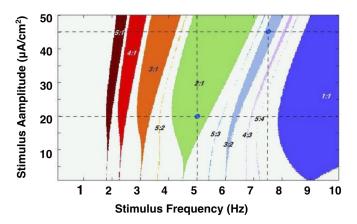


FIG. 2: Arnold tongues diagram for a class-1 Izhikevich neuron with the F-I curve shown in Fig. 1a, driven by an external sinusoidal forcing. The DC current is $62 \mu A/cm^2$.

For each element of the amplitude-frequency matrix that forms the plane, we simulated the model for 10 seconds. Then in order to have a stable firing pattern of the neuron, the last 5 seconds of the spiking pattern and corresponding stimulus were considered. If Eq. 1 is satisfied, this particular element takes the value of n:m, otherwise it takes zero. The same procedure is done to find the other elements of the matrix and form the whole plane in Figs. 2 and 5. Note that using Eq. 1 in a computer code requires defining a tolerance zone, i.e. the constant value defined on the RHS can be any number less than a tolerance zone defined by the user.

We demonstrated the time series of the spiking pattern plus the frequency spectrum of the spike trains for the two different points of this diagram which, as previously mentioned, correspond to two different amplitude and frequencies of the stimulus. For $A = 45 \ \mu\text{A/cm}^2$ and f = 7.5 Hz, we have 3:2 mode-locking that is presented in Fig. 3a. For the corresponding values of A and f, the frequency spectrum of the output has been computed by a Fourier transform and presented in Fig. 3b as well. The sharp peak observable in Fig. 3b corresponds to the driving frequency of the neuron, i.e. 7.5 Hz. There are peaks as multiples of this driving frequency, which present the input harmonics. Also, there is a smaller ratio of the driving frequency that corresponds to a subharmonic of the input. This example of a 3:2 modelocking state has a sub-harmonic frequency of 3.75 Hz which was calculated by dividing the deriving frequency

by 2.(the denominator of the mode-locked state). Fig. 3c shows phase space trajectories of the system for the above selection of A and f.

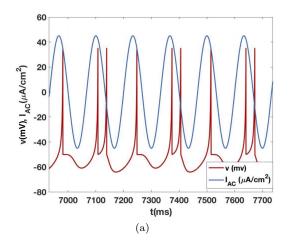


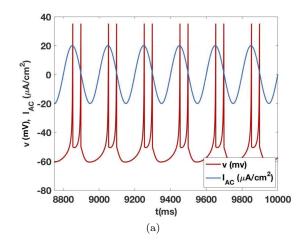


FIG. 3: 1^{st} example, 3: 2 mode-locked pattern (a) Time series diagram of a sinusoidal stimulus with amplitude of $A=45~\mu\mathrm{A/cm^2}$ and frequency of $f=7.5~\mathrm{Hz}$ (blue) and the corresponding spike pattern (red). (b) Frequency spectrum of the spike pattern. (c) Phase space diagram.

Another example is $A=20~\mu\mathrm{A/cm^2}$ and f=5 Hz. The corresponding input-output time series and frequency spectrum of the output can be seen in Fig. 4. The formation of harmonics can be observed in Fig. 4b. However, there are no sub-harmonics observed here since the denominator of the mode-locked state is 1. Fig. 4c shows phase space trajectories of the system for this particular example.

B. Arnold Tongues Diagram for Class-2 Neuron

Next, we compute Arnold tongues for the class-2 neuron, Fig. 5. Note that the 1:1 tongue initiates at f=120 Hz from x axis, the inherent frequency of the class-2 neuron (refer to Fig. 1b). In class-2 neurons action potentials are generated in a certain frequency band, which are not highly dependent on the applied current (Fig. 1b). Hence, the tongues in Fig. 5 are not tilted as much as the ones in Fig. 2. Furthermore, the tongues occur at relatively higher frequencies (refer to x-axis) than



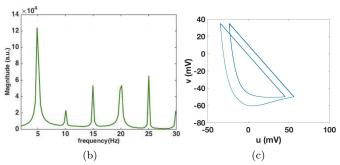


FIG. 4: 2^{nd} example, 2:1 mode-locked pattern (a) Time series diagram of a sinusoidal stimulus with amplitude of $A=20~\mu\text{A/cm}^2$ and frequency of f=5~Hz (blue) and the corresponding spike pattern (red). (b) Frequency spectrum of the spike pattern. (c) Phase space diagram.

the class-1 neuron. This is consistent with the fast spiking behavior of class-2 neurons, Fig. 1b.

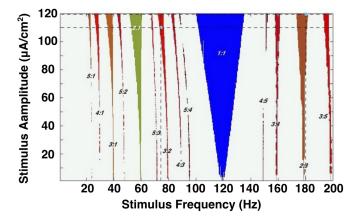


FIG. 5: Arnold tongues diagram for a class-2 Izhikevich neuron driven by an external sinusoidal forcing that corresponds to the neuron with the F-I curve and parameters shown in Fig. 1b. The DC current is $120 \ \mu\text{A/cm}^2$.

Again we consider two example points of this diagram in order to visualize the mode-locked behavior. The corresponding time series and frequency spectra along with phase space diagrams are given in Figs. 6 and 7.

Note the formation of harmonics and sub-harmonics again. The amplitude of sub-harmonics are much greater and more dominant than those seen in class-1 neurons. In Fig. 6b we have a sub-harmonic of the driving frequency 37.5 Hz, which corresponds to 75/2 (driving frequency divided by the denominator of the mode-locked state). In the case of Fig. 7b, which depicts the mode-locked region of 2:3 (smaller than 1), sub-harmonic construction is even more dominant than in the case of Fig. 6b, additionally it is also greater in amplitude than the subsequent harmonics. In Fig. 7b we have two observed sub-harmonics at 60 and 120 Hz. The first one is the driving frequency divided by 3 (180/3 = 60 Hz) and the second one is $2 \times 60 = 120$ Hz, since the numerator of the mode-locked state is 2.

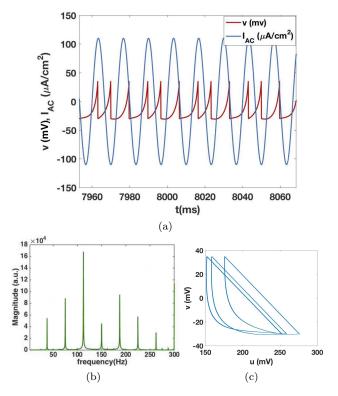


FIG. 6: 1^{st} example, 3: 2 mode-locked pattern (a) Time series diagram of a sinusoidal stimulus with amplitude of $A=110~\mu\mathrm{A/cm^2}$ and frequency of f=75 Hz(blue) and the corresponding spike pattern (red). (b) Frequency spectrum of the spike pattern. (c) Phase space diagram.

As has been previously studied[19, 22, 23], class-1 and class-2 neurons differ in the way they respond to input. In class-1 neurons, whose quiescent state disappears through a SNIC bifurcation, the neuron can fire with an arbitrarily low frequency. Conversely, in class-2 neurons the resting potential loses stability via either a saddle-

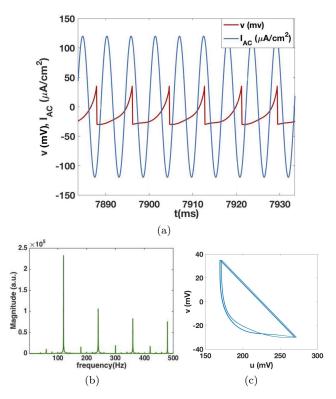


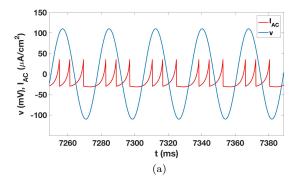
FIG. 7: 2^{nd} example, 2:3 mode-locked pattern (a) Time series diagram of a sinusoidal stimulus with amplitude of $A=120~\mu\text{A/cm}^2$ and frequency of f=180~Hz (blue) and the corresponding spike pattern (red). (b) Frequency spectrum of the spike pattern. (c) Phase space diagram.

node, subcritical or supercritical Andronov-Hopf bifurcation, i.e. the neuron acts similarly to a bandpass filter in that it extracts the frequencies which correspond to resonant frequencies. This information can be related to our observations and help explain why sub-harmonics formation in Class-2 neurons can be more dominant than in Class-1 neurons. The small amplitude oscillations make the neurons to resonate to the driving frequency. The firing frequencies given in F-I curves (Fig. 1) depend on factors beside the type of bifurcation of the resting state [19].

At Arnold tongues boundaries, our system undergoes a state transition at a slight change of amplitude or frequency of the periodic stimulus. Plotting phase space trajectories helps us understand the transient oscillations of the system between these regions.

As an example, we select $A=110~\mu\text{A/cm}^2$ and f=36~Hz in Fig. 5 that corresponds to 3:1~mode-locking. Fig. 8 shows solutions of the system in time domain and phase space at this particular state. Mode-locking corresponds to stable solutions that are also true for the next successive periods. Now we slightly displace the system from this stable solution by changing the stimulus frequency to 35 Hz. The solutions in time domain and phase space are shown in Fig. 9. This solution is not stable anymore,

which leads to disappearance of mode-locking. The phase space diagrams suggest an unstable limit cycle with spiral focus that leads to transient oscillations in class-2 neuron and explains the formation of strong sub-harmonics.



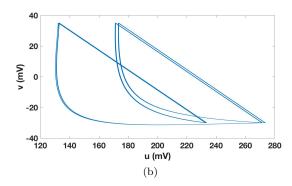


FIG. 8: (a) Time series and (b) phase space diagram of the system corresponding to $A=110~\mu\mathrm{A/cm^2}$ and $f=36~\mathrm{Hz}$ in the class-2 neuron. Referring to Fig. 5, shows this selection of stimulus parameters leads to 3:1 mode-locking. This can be seen also in the solution and formation of limit cycle here.

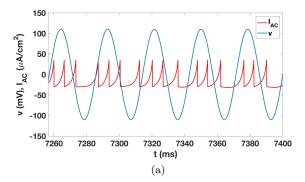
C. Computing Arnold tongues based on vector strength

The methods used to compute Arnold tongues in Figs. 2 and 5 work well for the deterministic model (system of Eqs. 2). However, they begin to break down when noise is applied to the model. We use the spiking model of Izhikevich with the additive white Gaussian noise $\eta(t)$, which has a normal distribution with zero mean $\mu = 0$, and the variance σ^2 :

$$\begin{cases} C\dot{v} = k(v-v_r)(v-v_t) - u + I(t) + \eta(t) \\ \dot{u} = a[b(v-v_r) - u] \\ if \quad v \geq v_{peak} \quad then \quad v \longleftarrow c \ , \ u \longleftarrow u + d \end{cases}$$

The level of noise in our following simulations is varied by changing the value of σ^2 , which consequently creates different noisy regimes of the system under study.

In addressing this more realistic situation we consider vector strength (VS). As mentioned previously, VS takes



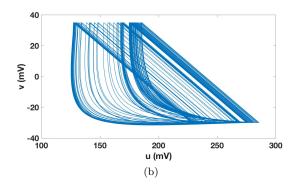


FIG. 9: (a) Time series and (b) phase space diagram of the system corresponding to $A=110~\mu\mathrm{A/cm^2}$ and $f=35~\mathrm{Hz}$ in the class-2 neuron. The solution is not stable any more, which leads to disappearance of mode-locking and periodic decay in phase space.

on a value near 1 when the neuronal spike events always occur at the same phase of the stimulus and vanishes for equally distributed spike times.

Vector strength quantifies the amount of periodicity in the neuronal response to a given periodic signal. The neural response is denoted by a sequence of spike times $\{t1,t2,...,tn\}$ where in general $n\gg 1$. t_j is defined for $1\leq j\leq n$. VS is the length of the synchrony vector[24]:

$$VS = \frac{1}{n} \left| \sum_{j=1}^{n} e^{-i\omega t_j} \right| \tag{4}$$

Here, $\omega=\frac{2\pi}{T}$ denotes an angular frequency for some period T. Eq. 4 transforms the spike times t_j , or more precisely, the dimensionless times t_j/T onto a circle with radius 1.

The advantage of using VS based Arnold tongues is that it can be used for the noisy model. However, there exists the fundamental problem that VS can only be used to analyze 1:1 mode-locking[11]. Nevertheless, we suggest an idea that lets us extend this method to all mode-locked states by considering the pattern existence, i.e. to use Eq. 4 by substituting the time of the first spike per period. Using VS in this way is akin to 1:1 mode-locking analysis, and can be done by looking at the interspike intervals.

Interspike intervals $(ISI = t_{j+1} - tj)$ can be plotted successively so that they form ISI return maps. Figs. 10 and 11 show some examples of these maps for different mode-locked states and their corresponding spike trains. If the model is deterministic (no noise), the clusters shrink to the number of points corresponding to the denominator of the mode-locking ratio, m periods of stimulus. In the presence of noise, however, there tends to be clusters of points bound in regions around the deterministic points. The boundaries around these points can be defined in a way that yields the area of clusters depending on the level of noise. This allows us to compute the mode-locked regions in the presence of noise. Smaller clusters result in bigger VS and consequently, the stability of the mode-locked state is higher.

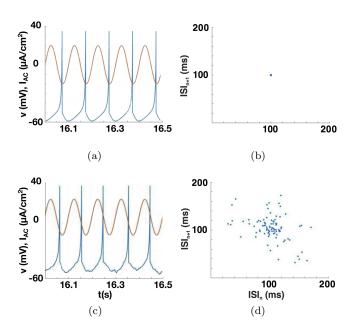


FIG. 10: (a) Spike trains of a 1:1 mode-locked state without noise and (b) the corresponding ISIs. (c) After adding the white Guassian noise with $\mu=0$ and $\sigma^2=5$, the mode-locking pattern becomes less stable and (d) the corresponding ISIs do not overlap on a well-defined point anymore.

The number of clusters tells us the denominator of the mode-locking ratio. We chose only one of the clusters, and then measured VS over the whole time of recording only for that cluster. The method to choose the preferred cluster in ISI return maps is analogous to selecting the preferred phase around a mean value on a circle defined by a radius that has a magnitude equal to VS. Fig. 12 shows the phase analogue of the ISIs in Fig. 11d. We find the mean value of the smaller angle ϕ , which corresponds to the center of one of the clusters by $\phi = \omega t$ and choose a window $\delta \phi$ that is defined by the user. This $\delta \phi$ is related to the radius of the already chosen cluster by $\delta \phi = \omega \delta t$. Note that we are allowed to do this since the relationship between the angle ϕ and time t is linear. In this case, even

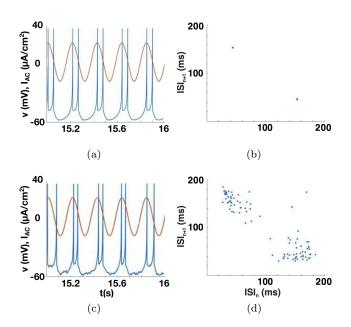


FIG. 11: (a) Spike trains of a 2:1 mode-locked state without noise and (b) the corresponding ISIs. (c) After adding the white Guassian noise with $\mu=0$ and $\sigma^2=5$, the mode-locking pattern becomes less stable and (d) the corresponding ISIs do not overlap on two well-defined points anymore.

under noisy conditions there will still be synchronization, albeit with less stability than the deterministic model.

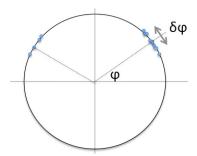


FIG. 12: The unit circle that is used to find the smallest phase, ϕ . The window $\delta\phi$ is defined by the user and indicates the radius of the cluster under study in the ISIs, Fig. 11d.

Fig. 13 illustrates the evaluated Arnold tongues based on the VS concept for the noisy class-1 neuron in two different noise regimes. In the same fashion we obtained VS based Arnold tongues for the noisy class-2 neuron in Fig. 14. In the presence of noise (Figs. 13 and 14), it is observed that the tongues edges (boundaries) become less distinct and some of the tongues (e.g. 5:4) completely disappear. In this process it appears that the tongues corresponding to n:m mode-locked states with n>m are more stable than those with n< m.

Fig. 15a represents Arnold tongues for the noisy class-2 neuron as in Fig. 14a but with the broader range of

amplitude and frequency of the periodic external forcing.

Arnold tongues on the left hand side of the diagram that are shown with the red rectangle, entangle for higher amplitudes. A zoomed-in map is presented in Fig. 15b. The entanglement of these tongues lead to chaotic behavior of the neuron.

It appears that the mode-locked region boundaries harbor a fine structure. A more detailed structure of the 1:2 tongue is shown in Fig. 15c. Also, there are substructures within the 2:1 tongue and similarly for other tongues. The stability and creation of sub-structures within the boundary depends on the amount of noise.

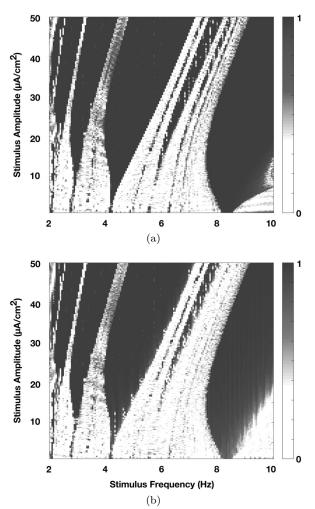
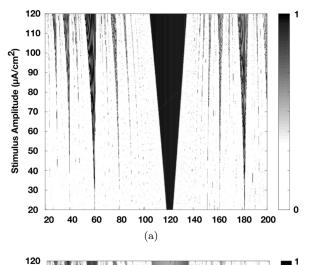


FIG. 13: VS based Arnold tongues diagram of the class-1 neuron in the presence of noise with different strengths (a) $\mu=0,\sigma^2=2$ and (b) $\mu=0,\sigma^2=5$. Time step for computing the Izhikevich model is 0.05 ms. The color code represents the amount of vector strength. Note how the different mod-locked states lose their stabilities with the addition of noise compared with Fig. 2.



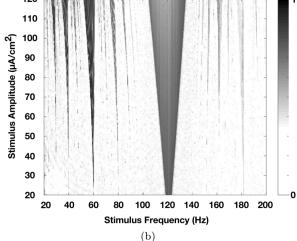
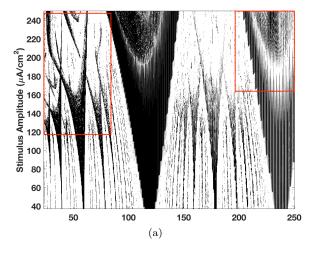
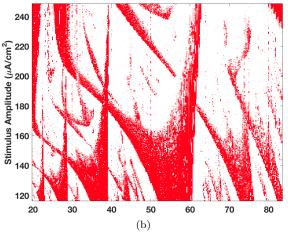


FIG. 14: VS based Arnold tongues diagram of the class-2 neuron in the presence of noise with different strengths (a) $\mu = 0, \sigma^2 = 2$ and (b) $\mu = 0, \sigma^2 = 5$. Time step for computing the Izhikevich model is 0.05 ms. The color code represents the amount of vector strength. Note how the different mod-locked states lose their stabilities with the addition of noise compared with Fig. 5.





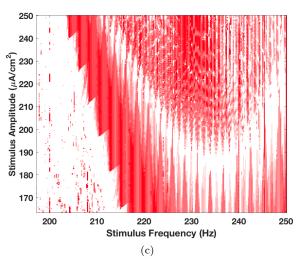


FIG. 15: (a) Arnold tongues for the noisy class-2 neuron in a broader range of amplitude and frequency of periodic stimulus. (b) Zoomed region on the left side of (a) shown with a red rectangle. The tongues are entangled at high amplitudes. (c) Zoomed part of 1:2 tongue shown with a red rectangle in (a).

IV. CONCLUSION

Computational techniques used to investigate modelocking have become an important tool in the analysis of synchronization. Recent investigations into periodic forcing have provided a wealth of information regarding the processing of temporal information and the characteristics of synchronization[13, 25]. Arnold tongues and other bifurcation structures in phase space can help us explain the neuronal behaviors seen in auditory signal processing neurons such as those in the Cochlear Nucleus (CN)[2] and Inferior Colliculus (IC)[9].

Using Izhikevich neurons, we have constructed a deterministic model which simulates the mode-locking of a single neuron to external sinusoidal forcing. However, real neurons have noisy responses. Traditional approaches cannot be directly applied here, so we slightly adjusted the vector strength method in order to account for the stochastic nature of the system. Employing this method, we constructed Arnold tongue diagrams for a stochastic system in which we examined how the presence of noise influenced the degree to which mode-locking was observed. This is of importance because neural encoding in the auditory system is inherently noisy [4, 8, 26]. Inner hair cell (IHC) receptor potentials follow oscillatory motion, but are low-pass filtered [6, 26]. There is stochastic neurotransmitter release between IHC and auditory nerve fibers (AN) and the resulting action potentials reflect the time-varying nature of IHC membrane oscillations. AN fibers project to CN of the brainstem. The stellate cells in CN include choppers and onsets which differ in timing of the firing in response to periodic stimuli. This sensory coding includes the mode-locking phenomenon and is also observable in higher levels of the auditory system such as the IC[9, 10].

In order to understand and address these complex interactions, Arnold tongue diagrams of the cells aforementioned give us a global map in parameters space that could be used in justifying the observations. We have specifically utilized Arnold tongues diagrams for the Izhikevich model presented in this study, to help in the understanding of the organization of the responses to SAM tones across a range of amplitudes and frequencies[9], for a given set of data that is recorded from the awake rabbit's IC cells[10].

ACKNOWLEDGMENTS

The authors would like to thank Daniel Goodman, Angela Noecker and Elena Castellari for the critical comments on the draft of this paper. This work was supported in part by AFOSR FA9550-12-10388.

- DC Bullock et al. Compact and easy-to-use tungsten-inglass microelectrode manufacturing workstation. Medical and Biological Engineering and Computing, 26:669

 –672, 1988.
- [2] Jonathan Laudanski et al. Mode-locked spike trains in responses of ventral cochlear nucleus chopper and onset neurons to periodic stimuli. *Journal of Neurophysiology*, 103:1226–1237, 2009.
- [3] E.W. Large, J. Kozloski, and J.D. Crawford. A dynamical model of temporal processing in the fish auditory system. *Proceedings of the Association for Research in Otolaryngology. Abst.*, 21:717, 1998.
- [4] Edward W. Large and John D. Crawford. Auditory temporal computation: Interval selectivity based on postinhibitory rebound. *Journal of Computational Neuro*science, 13:125–142, 2002.
- [5] EW Large and FV Almonte. Neurodynamics, tonality, and the auditory brainstem response. Annals of the New York Academy of Sciences, 1252:E1–E7, 2012.
- [6] Lea Fredrickson-Hemsing et al. Mode-locking dynamics of hair cells of the inner ear. *Physical Review E*, 86, 2012.
- [7] P.X. Joris, C.E. Schreiner, and A. Rees. Neural processing of amplitude-modulated sounds. *Physiol Rev*, 84:541–577, 2004.
- [8] Karl D. Lerud, Felix V. Almonte, Ji Chul Kim, and Edward W. Large. Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals. Hearing Research, 308:41–49, 2014.
- [9] AmirAli Farokhniaee. Simulation and Analysis of Gradient Frequency Neural Networks. Doctoral dissertations 1282, University of Connecticut, 2016.
- [10] Laurel H. Carney et al. Suboptimal use of neural information in a mammalian auditory system. The Journal of Neuroscience, 34:1306–1313, 2014.
- [11] P. Tass et al. Detection of n:m phase locking from noisy data: Application to magnetoencephalography. *Physical Review Letters*, 81:3291–3294, 1998.
- [12] Arkady Pikovsky, Michael Rosenblum, and Jurgen Kurts. Synchronization, A universal concept in nolinear sciences. Cambridge nonlinear science series 12. Cambridge University Press, 2001.
- [13] Sang Gui Lee and Seunghwan Kim. Bifurcation analysis of mode-locking structure in a hodgkin-huxley neuron under sinusoidal current. *Physical Review E*, 73:041924,

- 2006.
- [14] Kim JC and Large EW. Signal processing in periodically forced gradient frequency neural networks. Front. Comput. Neurosci., 9:152, 2015.
- [15] Leon Glass and Michael C. Mackey. A simple model for phase locking of biological oscillators. J. Math. Biology, 7:339–352, 1979.
- [16] Leon Glass. Synchronization and rhythmic process in physiology. *Nature*, 410:277–284, 2001.
- [17] Myongkeun Oh and Victor Matveev. Loss of phaselocking in non-weakly coupled inhibitory networks of type-i model neurons. *Journal of Computational Neu*roscience, 26:303–320, 2009.
- [18] Timothy J. Lewis and John Rinzel. Dynamics of spiking neurons connected by both inhibitory and electrical coupling. *Journal of Computational Neuroscience*, 14:283– 309, 2003.
- [19] Eugen M. Izhikevich. Dynamical Systems in Neuroscience. The MIT press, 2007.
- [20] Eugene M. Izhikevich. Simple model of spiking neurons. IEEE Transactions of Neural Networks, 14:1569–1572, 2003.
- [21] A.L. Hodgkin. The local electric changes associated with repetitive action in a non-medullated axon. *Journal of Physiology*, 107:165–181, 1948.
- [22] Frank C. Hoppensteadt and Eugen M. Izhikevich. Weakly Connected Neural Networks, volume 126 of Appied Mathematical Sciences. Springer, 1997.
- [23] Eugene M. Izhikevich. Neural excitability, spiking and bursting. *International Journal of Bifurcation and Chaos*, 10, No.6:1171–1266, 2000.
- [24] J. Leo van Hemmen, André Logtin, and Andreas N. Vollmayr. Testing resonating vector strength: Auditory system, electric fish, and noise. Chaos, An Interdisciplinary Journal of Nonlinear Science, 21, 047508, 2011.
- [25] Youngtae Kim. Identification of dynamical states in stimulated izhikevich neuron models by using a 0-1 test. *Journal of Korean Physical Society*, 57(6):1363–1368, 2010.
- [26] S. Coombes, R. Thul, J. Laudanski, A.R. Palmer, and C.J. Sumner. Neuronal spike-train responses in the presence of threshold noise. Frontiers in Life Science, iFirst:1–15, 2012.