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Many neurons in the auditory system of the brain must encode periodic signals. These neurons
under periodic stimulation display rich dynamical states including mode-locking and chaotic re-
sponses. Periodic stimuli such as sinusoidal waves and amplitude modulated (AM) sounds can lead
to various forms of n : m mode-locked states, in which a neuron fires n action potentials per m
cycles of the stimulus. Here, we study mode-locking in the Izhikevich neurons, a reduced model of
the Hodgkin-Huxley neurons. The Izhikevich model is much simpler in terms of the dimension of
the coupled non-linear differential equations compared to other existing models, but excellent for
generating the complex spiking patterns observed in real neurons. We obtained the regions of ex-
istence of the various mode-locked states on the frequency-amplitude plane, called Arnold tongues,
for the Izhikevich neurons. Arnold tongues analysis provides useful insight into the organization of
mode-locking behavior of neurons under periodic forcing. We found these tongues for both class-1
and class-2 excitable neurons in both deterministic and noisy regimes.

I. INTRODUCTION

Mode-locking is a ubiquitous phenomenon in the au-
ditory system. Recent research has uncovered evidence
of mode-locking in single-unit extracellular chopper and
onset cells of guinea pigs[1, 2], in the auditory midbrain
of the fish Pollimyrus in response to acoustic signals[3-5]
and in saccular hair bundle cells when exposed to pe-
riodic mechanical deflections[6]. In order to study the
mode-locking behavior of a single neuron one must focus
on the periodic external forcing (input) and the resulting
neuronal spike pattern (output). In the aforementioned
studies sinusoidal stimuli were used, therefore in order to
address the phase relations seen in these experiments one
can use sinusoidal current injections into the model neu-
ron and then measure mode-locking behavior utilizing an
Arnold tongue analysis[7, 8]. The analysis strategy pre-
sented here is tested on the data set that contains the
responses of an inferior colliculus neuron in the awake
rabbit in response to Sinusoidally Amplitude Modulated
(SAM) stimuli across a range of amplitudes and frequen-
cies [9]. This data set was recorded as part of a study
to determine physiological responses to SAM stimuli, in
which the methods are described in detail [10].

A neuron is said to be n : m mode-locked to a periodic
stimulus if it fires n action potentials in m cycles of the
stimulus, where n and m are positive integers. Phase-
locking is defined as 1 : 1 mode-locking. For two mode-
locked oscillators the locking condition is as follows[11,
12]:

|dn,m| < const., (1)

where ¢, o (t) = né1(t) — mea(t) and ¢, 4, is the gener-
alized phase difference also known as the relative phase.
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It is clear that in the case when n = m = 1 Eq.
(1) becomes |¢1(t) — ¢2(t)] < const.. This behavior
is indicative of constant phase shift, or phase-locking,
which is generally considered the simplest way to describe
synchronization[12].

In order to analyze the synchronization of such an os-
cillator undergoing external forcing, it is constructive to
obtain a global map of synchronization regions. Synchro-
nization between a neuron’s action potentials or spike
trains and an external input depends on both amplitude
and frequency of the input. Hence, one can obtain regions
on the amplitude-frequency plane that are indicative of
mode-locking and synchronization of the two signals, i.e.
synchronization of the injected periodic signal and the
neuronal output. Within these regions, which are com-
monly referred to as Arnold tongues[12], Eq. (1) holds.

Arnold tongue diagrams have been produced for the
Hodgkin-Huxley model[13], oscillators in the canonical
model[14] and leaky integrate and fire (LIF) neurons[2].
The analysis of mode-locking for nonlinear oscillators
(such as Hodgkin-Huxley) with nonlinear stimuli has
been a difficult task[15] and investigators provided the
Arnold tongues for such models numerically[13]. Never-
theless, analytical calculation of Arnold tongues have al-
ready been done for a simple integrate and fire model[15,
16] by using the Poincaré map. We compute the Arnold
tongues for Izhikevich model numerically and present the
stability analysis by studying the bifurcations.

To our knowledge, this is the first paper which utilizes
and reports Arnold tongue diagrams for single Izhike-
vich neurons in both deterministic and stochastic situa-
tions. In the presence of noise, synchronization still oc-
curs. However, in order to measure the stability of syn-
chronized states one must introduce a measure. This can
be done using vector strength (VS) so that synchroniza-
tion can be measured both with and without the presence
of noise in this model. VS takes a value of 1 if all spikes
occur at one precise point and 0 for a uniform distribu-
tion of phases across the stimulus cycle. VS gives a good



indication as to whether a phase preference exists in the
data both with and without noise [2]. There have been
studies to measure the stability of mode-locked patterns
using different neuronal models such as Morris-Lecar [17]
and LIF neurons [18]. Here we measure the stability of
different mode-locked states using Izhikevich model.

In this study, we first explain the neuronal model
(Izhikevich 2003) that will be utilized. We then present a
brief description of Class-1 and Class-2 excitable neurons
with their corresponding bifurcations. Then we compute
the Arnold tongues for the deterministic case and show
examples of mode-locking. The formation of harmonics
and sub-harmonics in the frequency response of the neu-
ron are then analyzed for some example points in the
mode-locking regions. Next, we consider mode-locking
in the presence of noise, which more accurately simulates
biological conditions. This is done by computing the vec-
tor strength to measure the stability of mode-locked re-
gions. The computational tools and analytical methods
developed here can also be applied to physiological spike
trains for any type or class of neuron.

II. MODEL AND METHODOLOGY

A. The Izhikevich model

One of the most significant and influential models
in computational neuroscience is the Hodgkin-Huxley
model of the squid giant axon[19]. This model cap-
tures the generation of action potentials by modelling
the inward and outward currents into a neuron through
voltage-gated ion channels. In general it consists of four
coupled non-linear differential equations and many pa-
rameters that depend on the electrophysiology of the neu-
ron under study. These parameters are usually obtained
by experiment.

The spiking model of Izhikevich is a canonical model
based on the Hodgkin-Huxley model, with reduced di-
mensionality. This simple model consists of two coupled
nonlinear differential equations that give the time evo-
lution of the components of the system in phase space
[19, 20]:

Co=k(v—uv.)(v—wv)—u+I(t) (2)

= a[b(v —v,) — ul

if V> Upear then vi—c, u<—u+d

where v is the membrane potential, u is the membrane
recovery variable which accounts for the activation of K+
ionic currents and inactivation of Nat. u provides neg-
ative feedback to v. In this model, C' presents the mem-
brane capacitance (in nF), v, is the resting membrane
potential, v; is the instantaneous threshold potential and

Upeak 1S the spike cutoff value. a is the recovery con-
stant, c is the voltage reset value, and d is the parame-
ter that describes the total flow of ionic current during
the spike and affects the after-spike behavior[19]. I(t) is
the time-dependent injected current to the neuron that
includes a constant part Ipc, and an alternating one,
I4c = Asin(wt):

I(t) = Ipc + Iac = Ipc + Asin(wt) (3)

where A is the periodic stimulus amplitude and w = 27 f
with f as the periodic forcing frequency in Hz.

The coefficients are chosen such that both membrane
potential v and ¢ are represented in millivolts and mil-
liseconds, respectively. Different values of the param-
eters a, b, c,d in the model correspond to known types
of neurons. This reduced model is derived based on an
approximation of Hodgkin-Huxley model nullclines. The
Izhikevich model is simple yet incredibly precise, and has
broad applications to almost all types of neurons. It ex-
hibits firing patterns of all known types and is efficient
in large-scale simulation of cortical networks[20].

As introduced by Izhikevich[19], the sum of all slow
currents that modulate the spike generation mechanism
is represented by the phenomenological variable u. De-
pending on the sign of b, u is either an amplifying (for
b < 0) or resonating (for b > 0) variable that defines the
class of excitability.

B. Different classes of neurons

A simple but useful criterion for classifying neuronal
excitability was suggested by Hodgkin [21]. He discov-
ered by stimulating a cell by applying currents of var-
ious strength that when the current was weak the cell
was quiet, conversely when the current became strong
the cell began to fire repeatedly. Thus, he divided neu-
rons into two classes according to the frequency of emerg-
ing firing: class-1 neural excitability, in which action po-
tentials can be generated with arbitrarily low frequency
that increases in accordance with the applied current,
and class-2 neural excitability, where action potentials
are generated in a certain frequency band that is rela-
tively insensitive to changes in the strength of the applied
current. These two classes are reproduced by changing
the parameters of Izhikevich model, Egs. 2, in Fig. 1.
For both classes of neurons in Fig. 1, C' = 100 nF,
Upeak = 35 mV and k£ = 0.7. For the class-1 neuron
with the F-I curve illustrated in Fig. la, a = 0.03,b =
—2,¢ = =50,d = 80,vy = —45 mV and v, = —64 mV.
For the class-2 neuron with the F-I curve shown in Fig.
1b, a = 0.1,b = 2,¢c = —30,d = 100,v; = —40 mV and
v, = —60 mV.

As was described earlier, the sign of b determines the
neuron’s excitability class, i.e. one can convert from a
class-1 model neuron to a class-2, by changing the sign
of b. For class-1 neurons, such as the regular spiking cor-
tical pyramidal cells, the resting state disappears through



a saddle-node on an invariant circle (SNIC) bifurcation.
Conversely, for class-2 neurons, such as the fast spik-
ing cortical interneurons, the resting state loses stabil-
ity via either a saddle-node, sub-critical or supercritical
Andronov-Hopf bifurcation. One of the reasons for using
this classification is its importance and usefulness to un-
derstanding the emergence of frequency components of
neuronal output (harmonics and sub-harmonics) which
are computed in section III.

60 -

(o))
o
T

N
o

Response Frequency (Hz)
n (]
o o

-
©o
T

0 50 62 100 150 200

Injected DC current (uA/cmz)
(a)

150
~
120
g
e 100
]
]
T
o
w
]
5 50
o
7]
Q
oc

0 L n )
0 50 100 120 150 200
Injected DC current (uAIcmz)
(b)

FIG. 1: F-I curves for (a) Class-1 and (b) Class 2 neurons
with parameters given in the text.

III. RESULTS AND ANALYSIS

To study mode-locking we inject the neuron with an
external stimulus I(t) = Ipc + Asin(wt), as described in
section ITA. Ipc is present to ensure that the neuron
spikes. Thus, the value of Ipc should be determined by
referring to Fig. 1, i.e. it should be selected such that
the neuron is in the firing state.

A. Arnold Tongues Diagram for Class-1 Neuron

Fig. 2 shows the regions of amplitude-frequency plane
where different mode-locking ratios can be observed for
the class-1 neuron. We computed n : m mode-locked re-
gions for n,m € {1,2,3,4,5}. This plot represents the

mode-locked regions as a function of the amplitude and
frequency of the sinusoidal forcing, with the direct cur-
rent of Ipc = 62 uA/cm?. Note that the 1 : 1 tongue
starts off the = axis at f = 9 Hz, the inherent frequency
of the class-1 neuron, shown in Fig. la.

As mentioned previously, the n : m ratio is indicative
of a mode-locked state. For example, for stimulus ampli-
tudes and frequencies corresponding to the orange region
the neuron exhibits 3 : 1 mode-locking.
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FIG. 2: Arnold tongues diagram for a class-1 Izhikevich
neuron with the F-I curve shown in Fig. 1a, driven by an
external sinusoidal forcing. The DC current is 62 pA /cm?.

For each element of the amplitude-frequency matrix
that forms the plane, we simulated the model for 10 sec-
onds. Then in order to have a stable firing pattern of
the neuron, the last 5 seconds of the spiking pattern and
corresponding stimulus were considered. If Eq. 1 is sat-
isfied, this particular element takes the value of n : m,
otherwise it takes zero. The same procedure is done to
find the other elements of the matrix and form the whole
plane in Figs. 2 and 5. Note that using Eq. 1 in a com-
puter code requires defining a tolerance zone, i.e. the
constant value defined on the RHS can be any number
less than a tolerance zone defined by the user.

We demonstrated the time series of the spiking pattern
plus the frequency spectrum of the spike trains for the
two different points of this diagram which, as previously
mentioned, correspond to two different amplitude and
frequencies of the stimulus. For A = 45 pA/em? and
f = 7.5 Hz, we have 3 : 2 mode-locking that is presented
in Fig. 3a. For the corresponding values of A and f, the
frequency spectrum of the output has been computed by
a Fourier transform and presented in Fig. 3b as well.
The sharp peak observable in Fig. 3b corresponds to
the driving frequency of the neuron, i.e. 7.5 Hz. There
are peaks as multiples of this driving frequency, which
present the input harmonics. Also, there is a smaller
ratio of the driving frequency that corresponds to a sub-
harmonic of the input. This example of a 3 : 2 mode-
locking state has a sub-harmonic frequency of 3.75 Hz
which was calculated by dividing the deriving frequency



by 2.(the denominator of the mode-locked state). Fig.
3c shows phase space trajectories of the system for the
above selection of A and f.
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FIG. 3: 1° example, 3 : 2 mode-locked pattern

(a) Time series diagram of a sinusoidal stimulus with
amplitude of A = 45 puA/cm? and frequency of f = 7.5 Hz
(blue) and the corresponding spike pattern (red). (b)
Frequency spectrum of the spike pattern. (c) Phase space
diagram.

Another example is A = 20 pA/ecm? and f = 5
Hz. The corresponding input-output time series and fre-
quency spectrum of the output can be seen in Fig. 4.
The formation of harmonics can be observed in Fig. 4b.
However, there are no sub-harmonics observed here since
the denominator of the mode-locked state is 1. Fig. 4c
shows phase space trajectories of the system for this par-
ticular example.

B. Arnold Tongues Diagram for Class-2 Neuron

Next, we compute Arnold tongues for the class-2 neu-
ron, Fig. 5. Note that the 1 : 1 tongue initiates at
f = 120 Hz from z axis, the inherent frequency of the
class-2 neuron (refer to Fig. 1b). In class-2 neurons ac-
tion potentials are generated in a certain frequency band,
which are not highly dependent on the applied current
(Fig. 1b). Hence, the tongues in Fig. 5 are not tilted as
much as the ones in Fig. 2. Furthermore, the tongues oc-
cur at relatively higher frequencies (refer to x-axis) than
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FIG. 4: 2" example, 2 : 1 mode-locked pattern

(a) Time series diagram of a sinusoidal stimulus with
amplitude of A =20 pA/cm? and frequency of f = 5 Hz
(blue) and the corresponding spike pattern (red). (b)
Frequency spectrum of the spike pattern. (c¢) Phase space
diagram.

the class-1 neuron. This is consistent with the fast spik-
ing behavior of class-2 neurons, Fig. 1b.
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FIG. 5: Arnold tongues diagram for a class-2 Izhikevich
neuron driven by an external sinusoidal forcing that
corresponds to the neuron with the F-I curve and parameters
shown in Fig. 1b. The DC current is 120 uA/ch.



Again we consider two example points of this diagram
in order to visualize the mode-locked behavior. The cor-
responding time series and frequency spectra along with
phase space diagrams are given in Figs. 6 and 7.

Note the formation of harmonics and sub-harmonics
again. The amplitude of sub-harmonics are much greater
and more dominant than those seen in class-1 neurons. In
Fig. 6b we have a sub-harmonic of the driving frequency
37.5 Hz, which corresponds to 75/2 (driving frequency
divided by the denominator of the mode-locked state).
In the case of Fig. 7b, which depicts the mode-locked
region of 2 : 3 (smaller than 1), sub-harmonic construc-
tion is even more dominant than in the case of Fig. 6b,
additionally it is also greater in amplitude than the sub-
sequent harmonics. In Fig. 7b we have two observed
sub-harmonics at 60 and 120 Hz. The first one is the
driving frequency divided by 3 (180/3 = 60 Hz) and the
second one is 2 x 60 = 120 Hz, since the numerator of
the mode-locked state is 2.
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FIG. 6: 1° example, 3 : 2 mode-locked pattern

(a) Time series diagram of a sinusoidal stimulus with
amplitude of A = 110 pA/cm? and frequency of f = 75
Hz(blue) and the corresponding spike pattern (red). (b)
Frequency spectrum of the spike pattern. (c) Phase space
diagram.

As has been previously studied[19, 22, 23], class-1 and
class-2 neurons differ in the way they respond to in-
put. In class-1 neurons, whose quiescent state disappears
through a SNIC bifurcation, the neuron can fire with an
arbitrarily low frequency. Conversely, in class-2 neurons
the resting potential loses stability via either a saddle-
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FIG. 7: 2™ example, 2 : 3 mode-locked pattern

(a) Time series diagram of a sinusoidal stimulus with
amplitude of A = 120 uA/cm? and frequency of f = 180 Hz
(blue) and the corresponding spike pattern (red). (b)
Frequency spectrum of the spike pattern. (c¢) Phase space
diagram.

node, subecritical or supercritical Andronov-Hopf bifur-
cation, i.e. the neuron acts similarly to a bandpass filter
in that it extracts the frequencies which correspond to
resonant frequencies. This information can be related to
our observations and help explain why sub-harmonics for-
mation in Class-2 neurons can be more dominant than in
Class-1 neurons. The small amplitude oscillations make
the neurons to resonate to the driving frequency. The
firing frequencies given in F-I curves (Fig. 1) depend on
factors beside the type of bifurcation of the resting state
[19].

At Arnold tongues boundaries, our system undergoes
a state transition at a slight change of amplitude or fre-
quency of the periodic stimulus. Plotting phase space
trajectories helps us understand the transient oscillations
of the system between these regions.

As an example, we select A = 110 yA/cm? and f = 36
Hz in Fig. 5 that corresponds to 3 : 1 mode-locking. Fig.
8 shows solutions of the system in time domain and phase
space at this particular state. Mode-locking corresponds
to stable solutions that are also true for the next succes-
sive periods. Now we slightly displace the system from
this stable solution by changing the stimulus frequency
to 35 Hz. The solutions in time domain and phase space
are shown in Fig. 9. This solution is not stable anymore,



which leads to disappearance of mode-locking. The phase
space diagrams suggest an unstable limit cycle with spiral
focus that leads to transient oscillations in class-2 neuron
and explains the formation of strong sub-harmonics.
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FIG. 8: (a) Time series and (b) phase space diagram of the
system corresponding to A = 110 uA/cm? and f = 36 Hz in
the class-2 neuron. Referring to Fig. 5, shows this selection
of stimulus parameters leads to 3:1 mode-locking. This can
be seen also in the solution and formation of limit cycle here.

C. Computing Arnold tongues based on vector
strength

The methods used to compute Arnold tongues in Figs.
2 and 5 work well for the deterministic model (system of
Eqgs. 2). However, they begin to break down when noise
is applied to the model. We use the spiking model of
Izhikevich with the additive white Gaussian noise 7(t),
which has a normal distribution with zero mean p = 0,

and the variance o2:

Co=k(v—uv)(v—v) —u+I(t)+n(t)
4 =a[b(v —v,) — ul
if V> Upear then v+—c, u+—u+d

The level of noise in our following simulations is varied
by changing the value of 02, which consequently creates
different noisy regimes of the system under study.

In addressing this more realistic situation we consider
vector strength (VS). As mentioned previously, VS takes
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FIG. 9: (a) Time series and (b) phase space diagram of the
system corresponding to A = 110 uA/cm? and f = 35 Hz in
the class-2 neuron. The solution is not stable any more,
which leads to disappearance of mode-locking and periodic
decay in phase space.

on a value near 1 when the neuronal spike events always
occur at the same phase of the stimulus and vanishes for
equally distributed spike times.

Vector strength quantifies the amount of periodicity in
the neuronal response to a given periodic signal. The
neural response is denoted by a sequence of spike times
{t1,t2,...,tn} where in general n > 1. t; is defined for
1 < j < n. VS is the length of the synchrony vector[24]:

1 e— _;
VS =— Tty 4
Y e (@
Jj=1
Here, w = 2% denotes an angular frequency for some

period T'. Eq. 4 transforms the spike times ¢;, or more
precisely, the dimensionless times t; /7T onto a circle with
radius 1.

The advantage of using VS based Arnold tongues is
that it can be used for the noisy model. However, there
exists the fundamental problem that VS can only be used
to analyze 1 : 1 mode-locking[11]. Nevertheless, we sug-
gest an idea that lets us extend this method to all mode-
locked states by considering the pattern existence, i.e. to
use Eq. 4 by substituting the time of the first spike per
period. Using VS in this way is akin to 1:1 mode-locking
analysis, and can be done by looking at the interspike
intervals.



Interspike intervals (ISI = tj11 — tj) can be plotted
successively so that they form ISI return maps. Figs.
10 and 11 show some examples of these maps for dif-
ferent mode-locked states and their corresponding spike
trains. If the model is deterministic (no noise), the clus-
ters shrink to the number of points corresponding to
the denominator of the mode-locking ratio, m periods of
stimulus. In the presence of noise, however, there tends
to be clusters of points bound in regions around the de-
terministic points. The boundaries around these points
can be defined in a way that yields the area of clusters
depending on the level of noise. This allows us to com-
pute the mode-locked regions in the presence of noise.
Smaller clusters result in bigger VS and consequently,
the stability of the mode-locked state is higher.
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FIG. 10: (a) Spike trains of a 1:1 mode-locked state without
noise and (b) the corresponding ISIs. (c) After adding the
white Guassian noise with 1 = 0 and ¢ = 5, the
mode-locking pattern becomes less stable and (d) the
corresponding ISIs do not overlap on a well-defined point
anymore.

The number of clusters tells us the denominator of the
mode-locking ratio. We chose only one of the clusters,
and then measured VS over the whole time of recording
only for that cluster. The method to choose the preferred
cluster in ISI return maps is analogous to selecting the
preferred phase around a mean value on a circle defined
by a radius that has a magnitude equal to VS. Fig. 12
shows the phase analogue of the ISIs in Fig. 11d. We find
the mean value of the smaller angle ¢, which corresponds
to the center of one of the clusters by ¢ = wt and choose a
window d¢ that is defined by the user. This §¢ is related
to the radius of the already chosen cluster by d¢ = wdt.
Note that we are allowed to do this since the relationship
between the angle ¢ and time ¢ is linear. In this case, even
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FIG. 11: (a) Spike trains of a 2:1 mode-locked state without
noise and (b) the corresponding ISIs. (c) After adding the
white Guassian noise with g = 0 and 62 = 5, the
mode-locking pattern becomes less stable and (d) the
corresponding ISIs do not overlap on two well-defined points
anymore.

under noisy conditions there will still be synchronization,
albeit with less stability than the deterministic model.

FIG. 12: The unit circle that is used to find the smallest
phase, ¢. The window d¢ is defined by the user and indicates
the radius of the cluster under study in the ISIs, Fig. 11d.

Fig. 13 illustrates the evaluated Arnold tongues based
on the VS concept for the noisy class-1 neuron in two
different noise regimes. In the same fashion we obtained
VS based Arnold tongues for the noisy class-2 neuron in
Fig. 14. In the presence of noise (Figs. 13 and 14), it is
observed that the tongues edges (boundaries) become less
distinct and some of the tongues (e.g. 5 : 4) completely
disappear. In this process it appears that the tongues
corresponding to n : m mode-locked states with n > m
are more stable than those with n < m.

Fig. 15a represents Arnold tongues for the noisy class-
2 neuron as in Fig. 14a but with the broader range of



amplitude and frequency of the periodic external forcing.

Arnold tongues on the left hand side of the diagram
that are shown with the red rectangle, entangle for higher
amplitudes. A zoomed-in map is presented in Fig. 15b.
The entanglement of these tongues lead to chaotic be-
havior of the neuron.

It appears that the mode-locked region boundaries har-
bor a fine structure. A more detailed structure of the
1:2 tongue is shown in Fig. 15c. Also, there are sub-
structures within the 2:1 tongue and similarly for other
tongues. The stability and creation of sub-structures
within the boundary depends on the amount of noise.
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different mod-locked states lose their stabilities with the
addition of noise compared with Fig. 2.
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FIG. 14: VS based Arnold tongues diagram of the class-2
neuron in the presence of noise with different strengths (a)
p=0,0%=2and (b) u=0,0%> =5. Time step for
computing the Izhikevich model is 0.05 ms. The color code
represents the amount of vector strength. Note how the
different mod-locked states lose their stabilities with the
addition of noise compared with Fig. 5.
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FIG. 15: (a) Arnold tongues for the noisy class-2 neuron in
a broader range of amplitude and frequency of periodic
stimulus. (b) Zoomed region on the left side of (a) shown
with a red rectangle. The tongues are entangled at high
amplitudes. (¢) Zoomed part of 1:2 tongue shown with a red
rectangle in (a).

IV. CONCLUSION

Computational techniques used to investigate mode-
locking have become an important tool in the analysis of
synchronization. Recent investigations into periodic forc-
ing have provided a wealth of information regarding the
processing of temporal information and the characteris-
tics of synchronization[13, 25]. Arnold tongues and other
bifurcation structures in phase space can help us explain
the neuronal behaviors seen in auditory signal processing
neurons such as those in the Cochlear Nucleus (CN)[2]
and Inferior Colliculus (IC)[9].

Using Izhikevich neurons, we have constructed a deter-
ministic model which simulates the mode-locking of a sin-
gle neuron to external sinusoidal forcing. However, real
neurons have noisy responses. Traditional approaches
cannot be directly applied here, so we slightly adjusted
the vector strength method in order to account for the
stochastic nature of the system. Employing this method,
we constructed Arnold tongue diagrams for a stochas-
tic system in which we examined how the presence of
noise influenced the degree to which mode-locking was
observed. This is of importance because neural encoding
in the auditory system is inherently noisy[4, 8, 26]. In-
ner hair cell (IHC) receptor potentials follow oscillatory
motion, but are low-pass filtered[6, 26]. There is stochas-
tic neurotransmitter release between IHC and auditory
nerve fibers (AN) and the resulting action potentials re-
flect the time-varying nature of IHC membrane oscilla-
tions. AN fibers project to CN of the brainstem. The
stellate cells in CN include choppers and onsets which
differ in timing of the firing in response to periodic stim-
uli. This sensory coding includes the mode-locking phe-
nomenon and is also observable in higher levels of the
auditory system such as the IC[9, 10].

In order to understand and address these complex in-
teractions, Arnold tongue diagrams of the cells afore-
mentioned give us a global map in parameters space
that could be used in justifying the observations. We
have specifically utilized Arnold tongues diagrams for
the Izhikevich model presented in this study, to help
in the understanding of the organization of the re-
sponses to SAM tones across a range of amplitudes and
frequencies[9], for a given set of data that is recorded
from the awake rabbit’s IC cells[10].
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