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Subdiffusion in conformational dynamics of proteins is observed both experimentally and in sim-
ulations. Although its origin has been attributed to multiple mechanisms, including trapping on a
rugged energy landscape, fractional Brownian noise, or a fractal topology of the energy landscape, it
is unclear which of these, if any, is most relevant. To obtain insights into the actual mechanism, we
introduce an analytically tractable hierachical trapping model, and apply it to molecular dynamics
simulation trajectories of several proteins in solution. The analysis of the simulations introduces
a subdiffusive exponent that varies with time, and associates plateaus in the mean-squared dis-
placement with traps on the energy landscape. This analysis permits us to separate the component
of subdiffusion due to a trapping mechanism from that due to an underlying fluctuating process,
such as fractional Brownian motion. The present results thus provide new insights concerning the
physical origin of subdiffusion in the dynamics of proteins.

Proteins are dynamic structures [1, 2] whose internal
motions evolve on a rugged potential energy suface, with
minima separated by barriers of varying heights [3]. The
conformational dynamics are subdiffusive, characterized
by the slow non-exponential relaxation of dynamical ob-
servables such as IR spectra [4], fluorescence fluctua-
tions [5], and principal component displacements com-
puted from MD simulations [6]. The mean-squared dis-
placement (MSD) of a subdiffusive process evolves sub-
linearly in time:

〈r2(t)〉 ≡ 〈|r(t)− r(0)|2〉 ∼ tα, 0 < α < 1, (1)

in contrast to normal diffusion for which α=1. Here 〈·〉
denotes either an ensemble or temporal average, and r
represents the system coordinates). Protein dynamics
has been found to exhibit values of α in the range of
0.1− 0.4 [7, 8]. Although it is generally agreed that sub-
diffusion can arise from the ruggedness of the protein
energy landscape [1–3, 6], the high dimensionality of the
latter (3N − 6 degrees of freedom for a protein with N
atoms) makes its detailed characterization difficult [5–
10]. Conceptual models of protein subdiffusion generally
fall into two categories. The first involves trapping on
a rugged energy landscape [5, 6, 10, 11], and the sec-
ond includes models that are fractal in nature, such as
fractional noise [12–16] or a fractal topology of the en-
ergy landscape [17, 18]; in the second category, trapping
per se does not play a role.

The motivation behind trapping models dates back to
the studies of Frauenfelder and coworkers [9] on the re-
binding of CO to myoglobin (Mb) at low temperatures.
Based on their experiments, the authors proposed that
Mb is organized into conformational macrostates com-
posed of clustered sub-states, and postulated that the
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energy landscape is organized into a hierarchy of tiers,
i.e. valleys separated by progressively higher barriers.
Further support for the hierarchical landscape model was
provided by subsequent analyses of MD simulations us-
ing principal components [19], inherent structural basins
obtained from quenching of trajectories [10], and confor-
mational transition networks [17, 18]. It has been argued
that trapping models are not fully consistent with exist-
ing observations of protein dynamics under equilibrium
conditions, and non-equilibrium behavior has been pro-
posed [18] . In this communication, we first consider the
properties of hierarchical trapping models, and then re-
late the analysis to molecular dynamics simulations of
proteins. The results are used to determine whether the
observed subdiffusive behavior requires an intrinsic, pos-
sibly fractal mechanism, in addition to trapping.

We performed 1µs-long MD simulations of three pro-
teins to analyze their dynamics. Figure 1a–c illustrates
the range of coordinates observed for the three proteins
considered here. To make the analysis of MD trajectory
data tractable without losing essential details, the evolu-
tion of 3N atomic positions is projected onto the first two
principal components (PCs), which contain most of the
slow diffusive dynamics; higher modes tend to correspond
to harmonic motions [19–21], and are not treated explic-
itly [42]. The projected trajectory of the Fre-FAD com-
plex in Fig. 2a illustrates trapping on the energy land-
scape. The dynamics are transiently confined to different
configurational regions with different sizes. The associ-
ated 2D free energy landscape in Fig. 2b displays four
main minima, which enclose smaller-sized nested min-
ima.

I. HIERARCHICAL TRAPPING MODEL

To model the influence of trapping on the dynamics,
we begin by introducing a hierearchy of tiers. The i-th
tier is composed of valleys with a characteristic size Li
separated by energy barriers with a characteristic value
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FIG. 1: Illustration of MD trajectories of the proteins considered in this study. (a) protein G [23] modeled in α-helical
conformation; (b) Rab11a [24]; (c) Fre-FAD complex [25]. Initial structures are shown in ribbon representation, and backbone
structures sampled from MD simulations every 1ns are overlaid as cyan traces.
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FIG. 2: (a) Evolution of the 1µs MD trajectory of Fre-FAD
complex projected onto the first two PCs (see text). The
vertical axis corresponds to time, with the markers colored
chronologically from blue to red. (b) Free energy landscape
of the Fre-FAD complex computed from the last 500ns of
the projected MD trajectory shown in Fig. 1(c) as E/kBT =
− logH+c, where kBT is the thermal energy, H(r) is 2D his-
togram of trajectory values, and c is an arbitrary constant
chosen so that min{E} = 0. The contours are drawn corre-
sponding to eight equispaced energy values, at 0.6, 1.2, 1.8,
2.4, 3.0, 3.6, 4.2 and 4.8 kBT ).

Ei. These valleys in turn contain smaller valleys that
belong to tier i-1, with Li−1 < Li, separated by lower
characteristic barriers Ei−1 < Ei, and so on. L1 and E1

represent the lowest tier. For simplicity, the potential
energy is set to zero everywhere except at the barriers.
Because dynamical memory effects are known to vary
between proteins, the dynamics on the landscape are left
unspecified at this stage. They will be identified from
fitting the model to MD simulation data [43]. For illus-
tration, a Brownian dynamics simulation over a two-tier
hierarchy with square valleys is presented in Fig. 3.

To show how such a hierarchy can lead to effective
subdiffusion, we first consider the case of a single tier with
L1=L and E1=E. The protein trajectory is assumed
to be a random walk (RW) initiated somewhere in the
valley, undergoing unhindered diffusion until it reaches
the barrier after some characteristic valley crossing time
τ c. The (Arrhenius) probability of crossing the barrier is
p ∝ exp[−E] (E is nondimensional in units of kBT , where
kB is Boltzmann’s constant and T the temperature). At
some characteristic escape time τe, the RW overcomes
the barrier and crosses to a neighboring valley. Assuming
that successive escape attempts are uncorrelated, τe is
approximately

τe ' 1

p
τ c. (2)

For times in the range τ c < t < τe the RW is effectively
confined to the valley, and the MSD is at a plateau, the
value of which is proportional to the square of the valley
size L;

〈r2〉plt ∝ L2, (3)

with a proportionality constant that depends on the ge-
ometry and dimensionality of the system. In the case of
a 2D square lattice, shown in Fig. 3, we have 〈r2〉plt ≡
1
L4

∫
|x2 − x1|2dx1dx2 = L2/3, which is a Boltzmann av-

erage over the valley x1, x2 ∈ [0, L] × [0, L] (recall that
the energy in the valley is assumed to be constant). We
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FIG. 3: Brownian dynamics simulations on a model two-tier
energy landscape (inset); L1 = 4, L2 = 16, p1 = 0.01 and
p2 = 0.0001, where pi=exp(−Ei); (black) MSD of a ran-
dom walk simulation, exhibiting two plateaus associated with
each tier; (blue) MSD for a single tier with valleys of size L2

(e.g. with p1=1); (dotted) variable exponent α(t) computed
using finite differences of ∆ log 〈r2(t)〉/∆ log t whose minima
identify the plateaus. Plateau intervals τ c < t < τe predicted
from random walk theory and indentified from simulations
(see Computational Methods) are highlighted in bold. The
theoretical plateau location for second tier (L2

2/3 ' 85; see
text) is drawn as a dashed line.

note that the relation is independent of the nature of
the dynamics within the valley; i.e. Eq. (3) is a purely
thermodynamic relation.

To relate the temporal scales τ to the spatial scale L,
we first recall that for any purely diffusing system, the
average length lc of a classical RW trajectory from entry
to first exit for an arbitrary spatial domain of dimension-
ality d depends only on the ratio of the domain volume
Ld and the enclosing surface Ld−1 [22], i.e. lc=CL, where
C is a geometry-dependent constant; in the special case
of a RW on a square system with isotropic incidence,
C=π/4 [22]. Assuming an average velocity v, the average
crossing time is τ c = lc/v = Cv−1L. For this single-tier
case, the dynamics within the domain will be diffusive un-
less the underlying dynamical process is intrinsically sub-
diffusive, e.g. due to a fractal nature of the bath [14, 15].
In the latter case, we would have 〈r2(t)〉 ∼ tαf , with
αf < 1, and the relation between time and space is effec-
tively rescaled, so that

τ c =
C

v
L1/αf . (4)

Note that the relation corresponding to normal diffusion
is recovered with αf = 1. To ensure dimensional consis-
tency a generalized velocity with fractional distance units
is used, i.e. v ∼ δr1/αf /δt.

Having determined the basic scaling relations, we con-
sider a multi-tiered hierarchical landscape. The hierar-
chy assumption (i.e. Ei > Ei−1; Li > Li−1) requires only
that E increase monotonically with L, but does not pro-
vide the functional relation between Ei and Li. However,

the relation can be determined from the MD simulations.
To compute the subdiffusional exponent of the MSD, we
recall that each tier in the hierarchy will have a charac-
teristic escape time τei determined by Li and Ei=− log pi.
Combining Eqs. (2), (3), and (4) we obtain

〈r2(τei )〉 ' C2 (τei pi)
2αf . (5)

The reason that Eq. (5) holds approximately for each tier
i, independently of the inner tier structure, is that the
inner tier structure does not significantly impact the av-
erage number of barrier crossing attempts. The essential
effect of the inner barrier hierarchy is to slow the diffusion
within the outer valley, which does not change the prob-
ability of being located near the outer boundary, or the
average outward flux across this boundary. Eqs. (2) and
(3) yield values for Li and pi (and therefore Ei) provided
that 〈r2(τei )〉, τ ci and τei are known. These are obtained
from MD simulations using a trajectory postprocessing
analysis (see Hierarchical Plateau Analysis in Computa-
tional Methods). We find that the relation Ei vs. Li is
logarithmic (see Fig. 4b in Results), i.e.,

Ei = E0 + γ log(Li/L0), (6)

with the hierarchy parameter γ ∼ 2-4.5 [44]. To compute
the subdiffusional exponent of the MSD, we use Eqs. (2),
(4), and (6) and write pi in Eq. (5) as a function of τei ,
i.e., pi=C3(τei )−γαf/(1+γαf ). This leads to the effective
subdiffusive power-law, as also verified in Brownian sim-
ulations shown in Fig. 6 in the Appendix.

〈r2(t)〉 ∝ t
2

1/αf+γ = tα, (7)

where we have defined the effective subdiffusive exponent
α=2/(αf

−1+γ) and replaced τe by t (i.e. interpolating
the power law between the discrete times τei ). In the
special case of normal diffusion, where αf=1, the model
predicts the subdiffusive exponent due to trapping alone
with

αt ≡ 2/(1 + γ). (8)

We note that the derivation of Eq. (7) requires the ex-
istence of well-defined plateaus (so that Eq. (2) is valid),
which in turn implies the existence of significant energy
barriers (Ei � 0). For this reason, setting γ = 0 is not
permissible in Eq. (7), and does not lead to the correct
scaling for normal diffusion in Eq. (7). Numerical tests of
Eq. (7) on model hierarchical landscapes (see Fig. 6 in the
Appendix) show that Eq. (7) is accurate for γ >1. Ad-
ditional subdiffusion arising from the effects of the bath,
reflected in αf , will act to decrease the subdiffusive ex-
ponent.

II. APPLICATION TO PROTEINS

We use the hierarchical trapping model to interpret
molecular dynamics (MD) trajectories of three proteins
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FIG. 4: (a) Illustration of Hierachical Plateau Analysis applied to the Fre-FAD complex (see Fig 8 for plots corresponding
to Rab11a and protein G). (black solid) MSD for the projected trajectory; (black dashes) fit to a constant power law as
in Eq. (1), with α = 0.24; the standard deviation of the MSD is shown in light gray; (dotted blue curve) the time-varying
exponent α(t)=d log 〈r2(t)〉/d log t (see Computational Methods); plateaus extracted from the MSD curve (see Computational
Methods) are highlighted in light blue; (b) Characteristic energy barriers Ei (units of kBT ) vs. Li fitted to Eq. 6, yielding the
corresponding values for γ. (c) Average crossing time τ ci vs. valley size Li fit to Eq. 4, yielding the corresponding values for
the exponent αf .

of varying size and complexity (see Fig. 1): a 16-amino-
acid fragment of protein G [23] (247 atoms), a signaling
protein from the Ras family Rab11 [24] (2725 atoms) and
the Flavin reductase enzyme (Fre) complexed with Flavin
adenine dinucleotide (FAD) [25] studied previously [5, 6]
(4064 atoms). The simulations are summarized in Com-
putational Methods and in the Appendix.

We apply the Hierarchical Plateau Analysis to MD

simulations extracting the quantities 〈r2〉plt
i , τ ci and τei ,

and apply Eqs. (2), (3), and (4) to compute estimates for
the characteristic valley sizes Li, the energy barriers Ei,
and the subdiffusion exponent intrinsic to the dynam-
ics, αf (see Fig. 4 and Table II in the Appendix). The
barrier energies are in the range ∼ 2 − 5 kBT , and the
valley sizes shown are between ∼4Å and ∼11Å (Fig. 4b).
The model estimates are in rough accord with the free
energy landscape in Fig. 2b for the Fre-FAD complex.
Further, Rab11a and Fre-FAD have higher barriers and
smaller valley sizes compared to protein G. This is con-
sistent with a visual examination of the MD trajectories,
which show that protein G appears more flexible than
Rab11a and Fre-FAD (see Fig. 1), and with the average
RMS deviations of the protein backbones from the aver-
age MD simulation structures, which were 2.32Å, 0.97Å,
and 0.98Å for protein G, Rab11a, and Fre-FAD, respec-
tively; in part, the larger apparent flexibility of protein
G arises from the unfolding of the helix at the termini
(Fig. 1a). The plot of Ei vs. Li (Fig. 4b) shows the ex-
tracted values for the hierarchy parameter γ in Eq. (6),
obtained from a least-squares fit to the data for protein
G, Rab11a, and Fre-FAD. Substituting γ into Eq. (8)
yields αt, the subdiffusive exponent resulting from the
contribution of trapping alone; i.e. the exponent that
would be observed if the underlying diffusive process were
Brownian. The values for the different proteins can be
compared to the subdiffusive exponents αfit, obtained by
a least-squares fit to the MSDs (Table I). αt is signifi-
cantly larger than αfit in all three cases, indicating that
trapping alone cannot account fully for the observed sub-

αt = 2
1+γ

αf α = 2
1/αf+γ

αfit

protein G 0.58 0.26 0.31 0.30

Rab11a 0.60 0.18 0.25 0.25

Fre-FAD 0.37 0.21 0.22 0.24

TABLE I: Model predictions of the subdiffusive exponents
representing, from left to right: (i) the contribution due to
trapping alone, αt in Eq. (8); (ii) the underlying fluctuations
alone, αf ; (iii) the combined contribution of both mechanisms
α in Eq. (7). For comparison, the subdiffusive exponent αfit

is computed by the least squares fit to the MSD.

diffusion. Figure 4c confirms the power-law relation be-
tween τ ci and Li in Eq. (4), and provides values for αf ,
the subdiffusive exponent corresponding to the inherent
dynamics. It is noteworthy that αf < 1 for all three
proteins, indicating that the inherent dynamical process
is not Brownian, but rather subdiffusive. Further, αf is
also significantly larger than αfit, indicating that neither
can the inherent process alone account for the measured
subdiffusion, as found for the trapping mechanism. Only
the effective exponent α brought in Eq. 7, that combines
the two sources of subdiffusion, shows excellent agree-
ment with αfit, demonstrating that both mechanisms are
critical for explaining the subdiffusive dynamics.

III. DISCUSSION

We present an analytically tractable hierarchical trap-
ping model, consistent with the postulates of Frauen-
felder et al. [9], which shows how a particular hierarchi-
cal structure of the energy landscape provides a source
of subdiffusion due to trapping. The model is general
with respect to the geometry of the energy wells and di-
mensionality of the energy landscape, which influence the
proportionality constants but not the functional form of
the derived subdiffusive power law (Eq. (7)). An im-
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portant distinction between this model and traditional
continuous-time random walk (CTRW) models is that
the subdiffusion is not due to ageing, which is essentially
the lack of ergodicity in the dynamics [18]. In the present
model, the subdiffusion arises naturally in the ergodic
setting from the hierarchical arrangement of energy wells
and barriers.

While the model uses a single value for the energy and
length scale in each tier of the hierarchy, Ei and Li, re-
alistic energy landscapes are expected to exhibit distri-
butions of energy barriers and valley sizes. However, our
finding of distinct plateaus in the MSD computed from
the protein simulations suggests that the distributions
of the energy barriers and the valley sizes are relatively
compact. Otherwise, the plateaus would be smeared out
by the temporal averaging inherent in the MSD compu-
tation. The identified plateau regions were robust with
respect to the choice of the threshold ε (see Fig. 9 in the
Appendix), projecting the dynamics onto different com-
binations of principal component vectors (see Fig. 10 in
the Appendix), as well as to repeating the calculation
with non-overlapping trajectory segments (see Fig. 11 in
the Appendix), indicating that they are not artifacts of
dimensionality reduction [26], or noise. These results per-
mit us to conclude that the distributions of energies and
length scales can be characterized by single values Ei and
Li for each tier i, representing the most probable or aver-
age values. The logarithmic relationship between energy
barrier heights and valley sizes found for all three pro-
teins considered here, as described in Eq. (6), provides
evidence that the energy landscape is, in fact, hierarchi-
cal.

The dominant conformational macrostates of the
larger proteins, Rab11a and Fre, are shown by clustering
the MD trajectories on the basis of the free energy land-
scape of the first three PCs (see Fig. 5). The macrostates
are seen to differ mainly in the conformations of flexi-
ble loop regions (Fig. 5a,b) and in the relative positions
of secondary structure motifs, primarily α-helices, which
do not undergo significant internal structural changes
(Fig. 5c) [27]. For the Flavin reductase, the differences
between the clusters appear largest in the vicinity of the
FAD binding pocket (Fig. 5b,c). These differences could
explain the experimental observation of dynamic disorder
in the distance between the isoalloxazine moiety of FAD
and the active site residue Tyr35 found by Yang et al.
[5], since transitions between the macrostates affect the
position of the isoalloxazine ring, as was suggested on
the basis of short MD simulations [6]. Further, if the
rates of the Flavin reduction reaction by Fre are substan-
tially different for each macrostate, one would expect to
see dynamic disorder of reaction rates, and nonexponen-
tial relaxation of dynamical observables, as described by
Frauenfelder et al. [9] for the rebinding of CO to myo-
globin, or by Lu et al. [28] for enzymatic turnovers of
cholesterol oxidase molecules.

We emphasize the conclusion that hierarchical trap-
ping alone cannot account fully for the observed subdiffu-

sion. We have consistently found that parametrizing the
trapping model from MD simulation data predicts sub-
diffusion that is faster than what is observed by fitting
the calculated MSD directly. For example, projecting the
MD trajectory data onto different principal components
(see Fig. 10 in the Appendix) did not change significantly
the value of the trapping exponent. Further, we found
that the size of the valley L does not scale linearly with
the time needed to cross it τc, as would be expected for
Brownian diffusion. This non-linear scaling law is consis-
tent across all tiers, for all three proteins. We therefore
assumed that the fluctuating process itself (i.e., indepen-
dently of energy barriers) is itself subdiffusive, as cap-
tured by the parameter αf in Eq. (4).

The origin of the inherent subdiffusion could be the
fractal topology of proteins, fractional noise of the unre-
solved (“bath”) degrees of freedom, or another, as yet un-
specified, source. This finding is also consistent with the
fact that observations from both experiments and sim-
ulations show that autocorrelation functions calculated
for protein dynamics typically exhibit slow power-law de-
cay [4–6], whereas trapping models with a truncated dis-
tribution of finite energy barriers lead to a truncated dis-
tribution of waiting times, producing exponentially de-
caying autocorrelation functions [40].

The present study thus demonstrates that subdiffu-
sion in protein dynamics originates from multiple physi-
cal phenomena. Given that internal protein motions are
intimately related to biological function, the results are
expected to be of general interest in the study of proteins.

IV. COMPUTATIONAL METHODS

Molecular Dynamics Simulations. The protein
structures for protein G, Rab11, and Fre were obtained
from Protein Data Bank (PDB) files 1GB1, 1YZK, and
1QFJ, respectively. Unresolved protein coordinates were
modeled using the the program CHARMM [29], and co-
ordinates for the FAD ligand were taken from the ac-
tive site of Flavodoxin reductase/FAD complex (PDB ID
1FDR), which is structurally homologous to Fre. MD
simulations in the canonical ensemble were performed
with the program ACEMD [32] for 1µs for the three pro-
teins, using the CHARMM energy function [33, 34, 37].

To check that the data selected for analysis were equi-
librated, the trajectories were divided into four consec-
utive segments of 250ns, and the subdiffusive exponent
was calculated for each segment. The exponent started
from higher values and relaxed to a constant value in less
than 500ns for all proteins. Therefore we parametrized
the trapping model using only the final 500ns of the MD.
Principal Component Analysis. The coordinates of
the Cα atoms were extracted from the MD simulation
trajectories at 1ps intervals. Principal components (PCs)
were computed using the program CARMA [38]. To ob-
tain the coordinates used in the hierarchical model, the
original coordinates were projected into the first three
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FIG. 5: Conformational ensembles corresponding to the dominant free energy minima obtained from principal component
analysis of (a) Rab11a [39], (b) Fre [25] and (c) Fre (side view). The ensembles are drawn for Fre in red, green, and blue, in
the order of increasing free energy. For clarity, only two ensembles are shown for Rab11a in red and green. In (a), NBP is the
nucleotide binding pocket, which contains GTP (see Fig. 1a).

PCs. Because similar plateau parameters were obtained
using projections on various combinations of PCs (see
Fig. 10 in the Appendix), the main results are presented
in the 2D space of PC1 and PC2 to facilitate visualization
of the corresponding free energy landscape in Fig. 1d,e.

Hierarchical Plateau Analysis. Working in projected
coordinates, we calculate the MSD using a moving aver-
age:

〈r2(t)〉 =
1

T − t

∫ T−t

0

|r(τ + t)− r(τ)|2dτ, (9)

where T is the trajectory length. For t → T sam-
pling becomes poor, and thus we only consider the
range t < 0.1T ). The MSDs were fit to a power law
as in Eq. (1), using least squares to obtain the over-
all exponent αfit, displayed in Table I. More gener-
ally, we consider the exponent α as variable in time,
and compute it using a finite-difference approximation
to α(t)=d log 〈r2(t)〉/d log t. MSD plateaus are identified
as local minima of α(t). The onset (τ ci ) and end (τei ) of
the plateaus, highlighted in Fig. 4a, are related to the
first time point for which dα(t)/dt < −ε, and the last
point for which dα(t)/dt > ε, respectively, where ε is en
empirically tuned constant, which we set to 0.015. Ad-
ditional details are given in Section B in the Appendix.
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Appendix A: Trapping on a model hierarchical
energy landscape

In this section we illustrate subdiffusion caused by
trapping in a hierarhical structure with an underlying
Brownian process, i.e. with αf=1. We use a model 2D
landscape, similar to the one in Fig. 3. We consider a
maximum of six tiers, with the valley sizes correspond-
ing to each tier indicated in Fig. 6 (see legend). The
hierarchy is specified using Eq. (6) with different values
for the parameter γ. To generate the simulation trajec-
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FIG. 6: (color online) Evolution of the MSD of a Brownian
random walker for 2D landscapes with different hierarchies.
The dashed lines corresponds to the power law 〈r〉 ∝ tαt pre-
dicted by Eq. (9) in the main text, i.e. αt = 2/(1+γ), yielding
αt=0.376, 0.463 and 0.602. Horizontal dotted lines indicate
theoretical plateau locations 〈r〉plt as calculated from Eq. (3)
for L = 16 and L = 32. Brownian diffusion law 〈r2〉 ∝ t
is shown as a dash-dot line in the case of a single tier (blue
triangles). The MSDs were computed from RW simulations
with 40 million Monte Carlo steps; time t corresponds to the
number of steps. E=∞ corresponds to an impenetrable bar-
rier.
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tories, we use a discrete 2D random walk on a square lat-
tice, with stepping probabilities of 0.25 in each of the four
available directions (left, up, right, down). Fig 6 shows
that the agreement between model predictions and direct
calculations is very good. For comparison with a non-
hierarchical case, a simulation with a single tier (L1=16,
p1=0.00001) is used, which results in Brownian diffusion
before and after the single plateau.

Appendix B: Hierarchical Plateau Analysis (HPA)

Computing crossing times (τ ci ) and escape times
(τei ) in a multi-tier hierarchy. The validity of Eq. (5)
rests on the fact that the time to escape from a valley
of size Li is not changed significantly by the presence
of smaller inner valleys with lower barriers inside Li.
This can be easily seen from a transition state theory
argument, whereby the ratio of the partition function of
the outer barrier (assuming a small finite barrier width)
to that of the enclosed valley changes only slightly with
the addition of inner barriers, provided that the widths
of the inner barriers are not too large relative to the
valleys. However, the inner barriers affect significantly
the kinetics of motion within the outer valley, and in
particular, the time required to cross the outer valley,
which is needed to extract the valley sizes from the MSD,
via Eq. (4).

To apply Eq. (4) to the MSD in the presence of the
multi-tier hierarchy, we coarse-grain the spatial dynamics
inside Li. Specifically, we define a (possibly fractional)
coarse-grained velocity vi, consistent with the units of
Eq. (4), as

vi = L
1/αf
i−1 /τei−1, (B1)

and use it in Eq. (4) to define a coarse-grained crossing
time τ̂ ci as,

τ̂ ci =
C

vi
L

1/αf
i = Cτei

(
Li
Li−1

)1/αf

= Cτei
τ ci
τ ci−1

, (B2)

where in the second step we used Eq. (4) to eliminate Li
and Li−1.

The only difference between Eqs. (4) and (B2) is the
velocity. Clearly, the inner barriers imply that v � vi
(and therefore τ̂ ci � τ ci ); in fact, the main effect of using
vi instead of v is to remove the relatively faster equili-
bration of trajectories within the inner valleys. Other-
wise, the apparent valley crossing time τ c would appear
too low. More specifically, it would be “contaminated”
by frequent encounters with the same boundary due to
transient confinement near the tier-i boundary by the
inner barriers, which would prevent estimating Li from
the MSD. This effect is seen in Fig. 3, where, for the
two-tier case, the second plateau appears two orders of
magnitude later in time than the plateau in the single-tier

case. Solving Eq. (B2) for τ c we obtain

τ ci =
1

C
τ̂ ci
τ ci−1

τei−1

. (B3)

τ̂ ci is obtained directly from the MSD by analyzing its
temporal finite differences, as described below. In prac-
tice, Equation (B3) is applied recursively for each tier
i, starting at tier 1, for which τ̂ c1=τ c1 . The onset (τ̂ ci )

FIG. 7: Application of plateau identification to Brownian mo-
tion simulations in a single tier L=4 and p = exp(−E)=0.01.
The identified plateu is marked in a light blue block, and the
theoretical value for the plateau escape time τe is ∼ L/p=40.

and end of the plateaus (τei ) in the MSD are identified as

the first point at which ∆α(t)
∆t < −ε, and the last point

at which ∆α(t)
∆t > ε, respectively, where ε is an empiri-

cal threshold, taken here to be 0.015, and ∆’s indicate
that a finite difference approximation to the derivative
was used. This method of locating plateaus in the MSD
curves was validated by applying it to 2D model poten-
tials (see Fig. 7).
HPA applied to Rab11 and protein G. Figure 8
shows the plateaus identified from the MSD curves of pro-
teins Rab11a and protein G using Hierarchical Plateau
Analysis, marked with light blue blocks. The results of
HPA applied to each of the three proteins are summa-
rized in Table II.
Sensitivity of HPA to ε. To evaluate the sensitivity
of HPA on the choice of plateau threshold parameter ε,
we performed HPA on the Fre-FAD complex using five
values of ε in the range [0.01, 0.03]. Fig. 9 shows that
the corresponding values of αt are essentially unchanged,
indicating the robustness of the obtained exponents.
Sensitivity of HPA to the choice of principal com-
ponents. To assess the sensitivity of HPA to the choice
of the principal component vectors (PCVs), we repeated
the analysis of the Fre-FAD complex MD trajectories
using the three possible pairs of PCVs from the set of
the three PCVs corresponding to the largest eigenvalues.
HPA was performed on each projection and the values
for Ei and Li were extracted at each tier i. The cor-
responding trapping exponents αt, shown in Fig. 10, do
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protein G Rab11a Fre-FAD

247 atoms 2725 atoms 4064 atoms

i τ ci τei Ei Li τ ci τei Ei Li τ ci τei Ei Li

[ps] [ps] [kBT ] [Å] [ps] [ps] [kBT ] [Å] [ps] [ps] [kBT ] [Å]

1 9.0 125 2.63 5.43 9.0 350 3.66 4.55 9.0 325 3.59 4.54

2 32.1 625 2.97 6.95 12.3 525 3.76 5.00 13.2 625 3.86 5.02

3 50.7 925 2.91 7.67 16.4 725 3.79 5.19 17.5 950 3.99 5.20

4 66.2 2250 3.53 8.47 25.2 1250 3.91 5.50 22.3 2250 4.61 5.53

5 84.3 5250 4.13 9.77 38.5 3000 4.36 6.05 34.7 4500 4.87 6.09

6 77.5 7000 4.50 6.78 46.6 7000 5.01 6.42

TABLE II: Tier values extracted via Hierarchical Plateau Analysis of the MSDs calculated for the projected MD trajectories
for protein G, Rab11a, and the Fre-FAD complex. Tier i = 1 corresponds to the first plateau in the MSD.

not vary significantly across the three PCV projections,
and suggest that the conclusions are robust.

Convergence of simulations. To assess the conver-
gence of the results, we split the equilibrated MD tra-

100 101 102 103 104
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100

101

〈 r2 (t
)〉
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)
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〈
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〉
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α(t)〈
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〉
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α(t)〈
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FIG. 8: Illustration of Hierarchical Plateau Analysis applied
to (a) Rab11a and (b) protein G ; black solid: MSD for the
projected trajectory; black dashes: fit to a constant power
law with α=0.25 and 0.30 for Rab11a and protein G, respec-
tively; the standard deviation of the MSD is shown in light
gray; blue : the time-varying exponent α(t) (see Computa-
tional Methods); plateaus extracted from the MSD curve (see
Computational Methods) are highlighted in light blue (color
online).

4 5 6 7 8

Li [Å]

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

E
i
[k
B
T
]

ε= 0. 01 : αt = 0. 39

ε= 0. 015 : αt = 0. 37

ε= 0. 02 : αt = 0. 39

ε= 0. 025 : αt = 0. 39

ε= 0. 03 : αt = 0. 39

FIG. 9: Barrier energies and valley sizes (Ei vs Li) for the
Fre-FAD complex obtained from HPA using different values
of parameter ε (see text). The trapping exponent αt was
computed from Eqs. (6) and (8).

jectory of the Fre-FAD complex into two subtrajectories
of equal lengths, and computed α(t) and the tier values
Ei and Li for each subtrajectory (see Fig. 11). The re-
sulting plateaus were similar, and lead to essentially the
same scaling constants.

Appendix C: Details of MD Simulations

Protonation states of titratable residues were assigned
using the program PROPKA [31]. The resulting proto-
nation states were the same as those in pH-neutral solu-
tion. The structures were immersed in pre-equilibrated
cubic boxes with TIP3 water molecules, ensuring an en-
vironment of solvent molecules between the protein and
the nearest box boundary of at least 11Å. From the set
of water molecules that were at least 5Å away from the
proteins, some were replaced with Na+ and Cl− ions to
achieve a charge-neutral system with a concentration of
about 100mM. The CHARMM22 force field with CMAP
correction [33] was used for all simulations. Initial force
field parameters for FAD ligand were obtained from the
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4 5 6 7

Li [Å]

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

E
i
[k
B
T
]

PCs 1 2: αt = 0. 37

PCs 2 3: αt = 0. 38

PCs 3 1: αt = 0. 31

FIG. 10: HPA of Fre-FAD complex simulations projected onto
three 2D principal component eigenvector (PCV) spaces, 1−
2, 2 − 3 and 1 − 3, with the PCVs numbered in the order
of decreasing eigenvalue. Barrier energies and valley sizes
(Ei vs Li) are plotted for the different projections, and αt is
computed from Eqs. (6) and (8).

www.paramchem.org server using CGENFF tools [34],
and refined using the FFTK software [35] for Visual
Molecular Dynamics [36]. Each solvated system was equi-
librated in the NPT ensemble at 300K and 1 atm for 1ns
with weak harmonic positional restraints acting on the
heavy protein atoms, to allow the solvent atoms to relax
around the protein, and to adjust the system volume to
the imposed pressure. An additional 1ns of equilibration
was performed without harmonic restraints. For these
(equilibration) and for all subsequent (production) sim-
ulations, the Langevin thermostat with a small friction
coefficient of 0.1/ps was used. Such a small value ensures
that the protein dynamics are only slightly perturbed by
the thermostat, while still maintaning a prescribed tem-
perature. The barostat was then turned off (to increase
simulation speed), and the systems were simulated in the
canonical ensemble for 1000ns for protein G, Rab11 and
Fre-FAD. For these production simulations, the following
long-range force options were used. The cutoff for the van
der Waals (VDW) and short-range electrostatic interac-
tions was 9Å, and the VDW interactions were smoothly
scaled to zero for inter-atom distances in the range 7.5Å–
9Å using the CHARMM cutoff function [29]. Long-range
electrostatics were re-evaluated at every other simulation
step using PME with a multiple-step RESPA integra-
tor. The masses of hydrogen atoms were increased to 4
a.m.u.; the masses of the atoms bonded to the hydro-
gens were decreased to keep the total mass unchanged;
all bonds involving hydrogens were constrained using
the SHAKE/RATTLE algorithms [41]. These adjust-
ments allow the simulation step to be increased to 4fs.
Each simulation required about 5 days on a workstation
equipped with a NVIDIA GTX780 graphical processor.
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FIG. 11: Analysis of Fre-FAD complex simulation for two
consecutive sub-trajectories of 250ns each. Top: α(t) (the
time-dependent subdiffusive exponent of the MSD) calculated
for the first and second half of the full trajectoy, exhibiting
similar behavior; bottom: plateau values (Ei vs Li) extracted
from HPA analysis run on the two sub-trajectories. Both
trajectories exhibit a similar power-relation.
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