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We present a Landau theory for large l orientational phase transitions and apply it to the assembly
of icosahedral viral capsids. The theory predicts two distinct types of ordering transitions.
Transitions dominated by the l = 6, 10, 12 and 18 icosahedral spherical harmonics resem-
ble robust first-order phase transitions that are not significantly a↵ected by chirality.
The remaining transitions depend essentially on including mixed l states denoted as l = 15 + 16
corresponding to a mixture of l = 15 and l = 16 spherical harmonics. The l = 15 + 16 transition
is either continuous or weakly first-order and it is strongly influenced by chirality, which suppresses
spontaneous chiral symmetry breaking. The icosahedral state is in close competition with states
that have tetrahedral, D5, and octahedral symmetries. We present a group-theoretic method to
analyze the competition between the di↵erent symmetries. The theory is applied to a variety of
viral shells.

I. INTRODUCTION

The seminal work of Onsager on nematic liquid crystals
in the 1940’s [1] initiated the theoretical study of orienta-
tional phase transitions. Orientational phase transitions
have since been investigated not only for liquid crystals
but also for quasi-crystals, supercooled liquids, metallic
glasses, atomic clusters and Fermi liquids [2, 3]. Theories
of orientational phase transitions are usually expressed in
terms of the orientational order parameterQlm defined as
the coe�cient of the spherical harmonic Y m

l in an expan-
sion of the density ⇢(⌦) of molecules oriented along the
solid angle ⌦ [3]. In Landau theory, the order parameter
associated with a continuous phase transition is charac-
terized by a single irreducible representations (“irrep”)
of the symmetry group G0 of the disordered phase [2]. If
G0 is the group SO(3) of rotations in three dimensions
then the order parameter should be characterized by just
a single value for l. The remaining 2l+1 coe�cients Qlm

of the order parameter must be determined by minimiza-
tion of a Landau free energy functional expressed as an
expansion of the Qlm. The symmetry group G of the
ordered phase must be an isotropy subgroup of G0.

The literature on orientational phase transitions has
been mostly restricted to l values less than or equal to l =
6, but recently an application of orientational transitions
involving larger values of l has emerged in the area of
viral assembly [5, 6]. Simple viruses are composed of a
protein shell – the capsid – that surrounds the viral RNA
or DNA genome molecule(s). Fig. 1 shows a cross-section
of the reconstruction of a typical small, single-stranded
(ss) RNA virus – the flock house virus (FHV) – obtained
by X-ray di↵raction [7].

According to the Law of Mass Action (LMA) of equi-
librium thermodynamics, the self-assembly of an N-
monomer structure (such as a capsid) from a monomer-
containing solution resembles a first-order phase transi-
tion for larger N [8]. Experimental studies appear to
confirm the predictions of the LMA for the case of the

FIG. 1. Cross-section of a reconstruction of the flock house
virus as obtained by x-ray di↵raction viewed along a two-fold
icosahedral axis (J.Johnson, private communication). Red:
capsid composed of 180 identical proteins. Green: enclosed,
single-stranded RNA genome molecule (online in color). The
diameter is 35 nanometers.

assembly of empty capsids [9]. In terms of kinetics,
empty capsid assembly has been described as a di↵usion-
limited “protein-by-protein” nucleation-and-growth pro-
cess where capsid proteins di↵use in from infinity towards
partially assembled protein shells [10, 11]. Di↵usion-
limited assembly of complete viruses encapsidating ss
RNA genome molecules should be enhanced by the pres-
ence of the genome molecule [12]. However, recent exper-
iments [13] indicate that viral assembly in the presence
of the genome molecule also can have the character of the
cooperative ordering of a disordered protein-RNA precur-
sor condensate [14], as shown in Fig. 2. Assembly is not
di↵usion-limited in this case. Numerical simulations of
capsid assembly by Hagan [15] have encountered both
scenarios. This second assembly mode is the focus of the
current paper.

A theory for the cooperative ordering transition of a
shell of capsid proteins on the surface of a condensed ss
RNA globule may be cast in the language of a theory of
an orientational transition by identifying ⇢(⌦) with the
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capsid mass density per unit area on a spherical surface
along a direction ⌦. The direction is measured from the
center of a sphere of radius R, which we identify as the
inner radius of the assembled capsid (see Fig. 2).

FIG. 2. Viral assembly by the solidification of a liquid-like
precursor state (left) in the form of a condensate of single-
stranded RNA material and groups of capsid proteins. The
condensate has a radius R while the basic structural units
composed of one or more proteins have a characteristic size
a. The mass density of the structural units in a direction ⌦
is given by ⇢(⌦).

The free energy of a Landau theory of orientational
transitions is a functional of ⇢(⌦). This primary order-
parameter density should be viewed as a coarse-grained

density distribution of either the capsid proteins or of
groups of capsid proteins that are present in the disor-
dered precursor state as relatively stable entities (see Sec-
tion V). The full density profile, as measured for example
in electron microscopy or X-ray di↵raction studies, must
be constructed by distributing the proteins, or groups of
proteins, in conformity with ⇢(⌦). As discussed in Sec-
tion V, inclusion in the theory of more of the internal
structure of the capsid proteins requires additional “sec-
ondary” order parameters whose values would have to be
determined by more complex density functionals whose
terms would have to vary from virus to virus, The Landau
free energy of the primary order parameter constructed
form symmetry arguments can be expected to represent
only more universal aspects.

In the disordered phase ⇢(⌦) is a constant (equal to
1/(4⇡)) while in the ordered phase it acquires a density
modulations on a length scale a that is of the order of
the size of the molecular groups in the precursor state.
If ⇢(⌦) is expanded in spherical harmonics Y m

l then the
characteristic value of l should be of the order of R/a.
This is in the range of 10�30 and thus considerably larger
than the l values encountered in most earlier studies of
orientational ordering [2].

If one restricts the expansion of ⇢(⌦) to a single value of
l in accordance with the tenets of Landau theory, then the
icosahedral density modulations can be directly obtained
by requiring ⇢(⌦) to be invariant under the actions of
the icosahedral group I. For given l, the resulting linear
combination of spherical harmonics Y m

l are well known
as the icosahedral spherical harmonics, denoted by Yh(l)

[16]. Icosahedral spherical harmonic can be constructed
for even values only if l is given by l = 6j+10k with j, k 2
{0, 1, 2, · · · } and for odd values of l if l = 15 + 6j + 10k
[17]. For even l less than 14, this restricts l to 6, 10, 12
while there are no restriction for larger even l. Odd l
icosahedral states are restricted to l = 15, 21, 25, 27 for l
less than 29 while there are no restrictions for larger odd
l.
The lowest l value that allows construction of an icosa-

hedral shell is thus l = 6. The properties of the l = 6
orientational phase transition have already been exten-
sively explored in the context of quasi-crystals and glasses
[3, 18]. A conventional first-order phase transition sepa-
rates the uniform state from a stable, l = 6 icosahedral
state. The reason the transition is first-order is because
of the presence of a non-zero cubic term in the Landau
free energy. The l = 6 icosahedral state competes with
states that have di↵erent symmetries, but it is stable over
a substantial sector of parameter space.
Could the l = 6 icosahedral orientational transition be

viewed as a model for Landau theories of the assembly of
viral capsids? Like all proteins, those comprising a cap-
sid (which are known as “subunits”) are chiral molecules
that lack an inversion center. X-ray di↵raction and elec-
tron microscopy reconstructions of viral capsids some-
times display a pronounced chiral character [19]. How-
ever, Yh(6) is even under inversion, as are all even icosa-
hedral spherical harmonics. For this reason, all even l
icosahedral spherical harmonics were excluded from the
current Landau theory of viral assembly [5, 6]. The ab-
sence of inversion symmetry is also the reason that the
symmetry group G0 of the disordered phase is SO(3)
rather than O(3). The lowest odd icosahedral spherical
harmonic is l = 15. This should correspond to the small-
est icosahedal viral shells.
Fig. 3A shows a reconstruction of the capsid of the

parvovirus [20] viewed along a 5-fold symmetry and com-
pares it Yh(15) (Fig. 3B). The parvovirus belongs to
the T = 1 class, which includes the smallest icosahedral
viruses composed of 60 proteins (though larger viruses,
such as the picornavirus, also may be classified as T = 1).
The Yh(15) icosahedral spherical harmonic indeed repro-
duces the large-scale features of the capsid. Note that
both have a chiral character. Reversing the sign of the
Yh(15) density produces a new density profile that can-
not be transformed into the old density profile by a ro-
tation. There are thus two isomeric densities that corre-
spond to Yh(15), which is not the case for Yh(6). The
Yh(15) density goes to zero at the 5-fold symmetry sites,
which is true for odd l spherical harmonics in general.
A systematic comparison of other viral capsids and the
odd-l icosahedral spherical harmonics can be found in
refs. [5, 6]. Larger viruses are associated with Yh(l) with
larger odd l. For example, the intensely-studied CCMV
virus, discussed more in Section V, is associated with
Yh(27).
The cubic non-linear terms in the Landau free en-

ergy vanishes for a density represented by Yh(l) with l
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FIG. 3. A) Reconstruction of the parvovirus, viewed along a
5-fold symmetry axis (from ref.a). B) The Yh(15) icosahedral
spherical harmonic.

a
http://www.virology.net/BigVirology/BVDNAparvo.html

odd. This, in turn, means that cooperative viral assem-
bly should always be a continuous transition, at least
in mean-field theory [21]. This is in contrast with the
protein-by-protein capsid assembly scenario that encoun-
ters equilibrium activation energy barriers that are esti-
mated to be large compared to the thermal energy [10].

One problem with the notion that cooperative assem-
bly might be a continuous transition is that in the limit
that the sphere radius goes to infinity, the solidification
of chiral molecules on a spherical surface should reduce
to the solidification of an infinite layer of chiral molecules
but liquids composed of chiral molecules undergo conven-
tional, first-order discontinuous solidification transitions
[22]. Resolving whether capsid assembly is a continuous
or a discontinuous transition is one of the motivations of
the paper.

It should be noted that transitions between di↵erent
states of a capsid are not true phase transitions. If, for
example, a capsid can exist in competing liquid and po-
sitionally ordered states with respective free energies Fl

and Fs then this should be interpreted as stating that in a
solution the concentration ratio Ns/Nl of capsids in solid,
respectively, liquid states equals exp(�(Fs � Fl)/kBT ).
Viral capsids have free energies in the range of 103kBT so
if (Fs�Fl) changes sign as a function of some parameter
then there will be relatively sharp kink in the dependence
of the concentration ratio on this parameter but there is
not a true phase transition. In the following, the use of
the word “transition” should be interpreted in this sense.

In a recent letter [23] we showed that the Yh(15) state
is thermodynamically unstable in linear stability analy-
sis but that stability can be regained by including mix-
ing between the l = 15 and l = 16 states. The order
parameter is then a pair of coe�cients that provides the
weights of the Yh(15) and Yh(16) components. An un-
physical feature of the achiral theory is the presence of
spontaneous chiral symmetry breaking and the absence
of chirality in the uniform and even l icosahedral states.
Chirality was included as the lowest-order pseudo-scalar

term in the free energy density rather then as a selection
rule imposed on the achiral Landau theory [5, 6].
The aim of the present paper is to determine the nature

of the structures that compete with the icosahedral states
and to propose a systematic group-theoretic framework
for constructing stability diagrams. The linear stabil-
ity analysis of icosahedral states for the achiral Landau
free energy is reviewed in sections II A and B. In sec-
tion II C, we develop the group-theoretic formalism that
relates the instabilities to irreducible representations of
the icosahedral group. In section III we review the results
of numerical searches for the competing non-icosahedral
states, using again group theory as a guide, and construct
the stability diagrams. Achiral Landau theory by itself
produces unphysical results, such as the appearance of
spontaneous chiral symmetry breaking transitions. This
is corrected in section IV where we first present a method
for the systematic construction or pseudoscalar invari-
ants and then demonstrate that when the lowest-order
pseudo-scalar invariant is included the uniform and sta-
ble even l states acquire chirality. In sections IV B and IV
C, we treat the e↵ect of chirality on the mixed l = 15+16
state and show that it removes the unphysical chiral sym-
metry breaking transition. We conclude in section V with
a discussion of the predictions of the theory for a number
of di↵erent viruses.

II. ACHIRAL LANDAU-BRAZOVSKII FREE
ENERGY.

Our starting point is the Landau-Brazovskii (LB) free
energy expression for “weak” solidification, which has
been used to describe ordering transitions in liquid crys-
tals, block co-polymers and other soft-matter systems
[2, 24]. The defining feature of a LB free energy is the
fact that the static structure factor S(q), as obtained
from the quadratic terms in the free energy density, has
a maximum at some |~q| = k0 that diverges at a critical
value of a control parameter. The version of the LB free
energy HLB that we use is defined by the free energy
density

HLB =

Z ✓
1

2

⇣
(�+ k20)⇢

⌘2
+

r

2
⇢2 +

u

3
⇢3 +

v

4
⇢4
◆

dS.

(1)

(with kBT = 1). The integral is over the surface of a
sphere of radius R. The� in the first term is the Laplace-
Beltrami operator defined on the spherical surface while
k0 is the characteristic wavenumber of the density mod-
ulation of the ordered state. For the present case, k0 can
be estimated as 2⇡ divided by the size a of the proteins or
protein groups present in the liquid-like precursor state.
The next three terms constitute a Taylor expansion of the
free energy density in powers of ⇢, with r, u, and v expan-
sion coe�cients. If one retains only the quadratic terms
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in the free energy, then the structure factor S(q) = h|⇢q|2i
is proportional to 1/[(k20 � q2)2 + r] in the large R limit.
As required, S(q) has a maximum at q = k0 that diverges
in the limit that the control parameter r goes to zero.

In the large R limit, the minimization of this LB free
energy produces a phase diagram that contains, apart
from the uniform state, a hexagonal two-dimensional
(d=2) crystal and a d=2 lamellar phase [25]. We will
focus here on the transition line between the hexagonal
and isotropic phases. The hexagonal solid is represented
as the superposition of three density waves with wavevec-
tors of magnitude k0 oriented at 120o with respect to each
other. For positive v and non-zero u, this leads for de-
creasing r to a first-order phase transition from a state
with ⇢ = 0 to a state with non-zero ⇢.

The condition for a density modulation to constitute
an extremum of the LB free energy is that the first func-
tional derivative �HLB(⇢)

�⇢ must vanish. This leads to the
Euler-Lagrange equation

�HLB(⇢)

�⇢
= (�+ k20)

2⇢+ r⇢+ u⇢2 + v⇢3 = 0. (2)

As discussed in Section I, if the uniform phase is known
to be invariant under the group SO(3) of rotations in
three dimensions then Landau theory instructs us that,
su�ciently close to a continuous transition, the density
modulation can be associated with a single irrep of SO(3).
It follows that the density modulation is expandable in
spherical harmonics belonging to a particular l value.
The collection of 2l + 1 numbers cm in the expansion

⇢(⌦) =
lX

m=�l

cmYl
m(⌦) (3)

collectively constitute the orientational order parameter.
The condition that the density is real imposes the addi-
tional constraint c⇤m = (�1)mc�m. Under these condi-
tions, the LB free energy simplifies to

HLB([cm])/R2 =

Z ✓
tl
2
⇢2 +

u

3
⇢3 +

v

4
⇢4
◆

d⌦. (4)

Here, tl = r + [(k0R)2 � l(l + 1)]2/R4 while the integral
is over solid angles ⌦. The quantity tl is the e↵ective
reduced temperature for icosahedral ordering in this sub-
space. The optimal l value is the one that minimizes tl for
given k0R. This leads to l ' k0R so the preferred l value
increases linearly with the shell radius R. We now can
divide the k0R axis into segments l2 < k0R

2 < (l+1)2 so
that in each segment the associated tl changes sign with
decreasing r before any of the other tl. For example, con-
densation is dominated by the l = 15 subspace if (k0R)2

lies in the interval 15 < (k0R)2 < 16.
Inserting the expansion for ⇢(⌦) in spherical harmonics

into Eq. 4 produces a quartic polynomial in the 2l + 1
expansion coe�cients cm. Formal minimization leads to

the condition that the 2l + 1 projections of the Euler-
Lagrange equation on the spherical harmonic Ylm must
be zero:

hY m
l ,

�HLB(⇢)

�⇢
i = Gm([cm]) = 0, �l  m  l. (5)

where the Gm([cm]) are a set of 2l+1 cubic polynomi-
als in the cm. The polynomials can be obtained from
the Sattinger algorithm [26], which uses the ladder op-
erators of quantum mechanics as generators of the Lie
algebra of SO(3) in order to generate the most general
polynomials in the 2l + 1 variables (c�l, · · · , c0, · · · , cl)
that are SO(3)-equivariant. One only needs to compute
as many integrals of products of spherical harmonics as
are required to obtain the coe�cients that are left unde-
termined by the Sattinger algorithm. Alternatively, one
can also use the Wigner matrices [27] for integrals over
products of spherical harmonics.
Once a solution has been found, thermodynamic sta-

bility in the fixed l subspace requires that the eigen-
values of the (2l + 1) times (2l + 1) stability matrix

hY m
l | �2HLB

�⇢2 |Y m0

l i (or “Hessian”) are positive apart from
three zero eigenvalues that correspond to global rotations
over the three Euler angles.

A. Icosahedral Free Energy Extrema: odd l

First consider the odd l icosahedral spherical harmon-
ics. The smallest odd l value that supports an icosahe-
dral state l = 15. The invariant icosahedral density is
proportional to Yh(15) where

Yh(15) /
3003

625
Y �15
15 (✓,�)� 33

625

p
15834Y�10

15 (✓,�)

� 3

125

r
667667

5
Y �5
15 (✓,�)� 3

125

r
667667

5
Y 5
15(✓,�)

+
33

625

p
15834Y 10

15 (✓,�) +
3003

625
Y 15
15 (✓,�)

(6)

Note that only 6 of the 31 coe�cients are non-zero and
that the non-zero m terms are multiples of 5 [28]. This
makes sense given that an icoshedral density profile den-
sity must have five-fold symmetry axes. The three-fold
symmetry axes of the icosahedron are not evident in this
expression because of the choice of the z-axis for the m
indices, which lies along a five-fold axis. Acting on the
above expression with a rotation operator that places the
z-axis along one of the three-fold symmetry axes, would
highlight three-fold symmetry. There are 31 coupled
equations hY m

15 ,
@HLB
@⇢ i = 0 for the cm. The equations

are solved for the cm corresponding the coe�cients of
Yh(15) in Eq. 6. The density associated with the l = 15
icosahedral spherical harmonic is thus an extremum of
the LB free energy restricted to the l = 15 sector.
Denote the remaining undetermined overall multipica-
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tive factor of Yh(15) by ⇣. Inserting this in the LB free
energy and setting the derivative with respect to ⇣ to
zero leads to the equation:

⇣
⇣
t15 + 0.789v⇣2

⌘
= 0, (7)

where we set (k0R)2 = 15 ⇥ 16 in the middle of the
l = 15 stability segment. This equation now has the
standard form of a second-order Landau phase transi-
tion. For t15 > 0, the solution is ⇣ = 0 while for t15 < 0

there are two degenerate solutions: ⇣ = ±1.126
p�t15p

v
.

The solution pair is related by inversion. The onset of
an l = 15 icosahedral density modulation thus involves
spontaneous chiral symmetry breaking. The two solu-
tions will be denoted by D (from dextro) for the plus
sign and L (from laevo) for the minus sign.

However, as reported earlier [23], when the eigenval-
ues of the 31 ⇥ 31 stability matrix for the l = 15 state
are computed numerically, one finds that the icosahedral
state has one three-fold degenerate negative eigenvalue
and one four-fold degenerate negative eigenvalue. Simi-
lar instabilities are encountered also for the subsequent
odd l icosahedral states l = 21, l = 25, and l = 27. For
example, the icosahedral spherical harmonic Yh(25) has
a stability matrix with 51 eigenvalues, 27 of which are
negative!

The appearance of negative eigenvalues for l = 15 can
also be demonstrated directly. Perturb about the icosa-
hedral state ⇢ = ⇣Yh(15) + ⇢̂ with the perturbation ⇢̂
restricted to the space of l = 15 spherical harmonics.
The change �H introduced by the perturbation is

�H/R2 =

Z ✓
t15
2
⇢̂2 + |t15|

3

2
(1.126)2Y2

15⇢̂
2

◆
d⌦. (8)

up to quadratic order in ⇢̂. Try ⇢̂ = Y 0
15. By direct in-

tegration of (8) one obtains �H = �0.003261|t15|, which
holds for any non-zero value of w. Since �H is negative,
the icosahedral state is indeed unstable.

We have numerically searched the space spanned by
the 31 expansion coe�cients cm in the l = 15 subspace
without imposing icosahedral symmetry. We searched for
locally stable minima using the FindMinimum subroutine
of Mathematica with randomized initial conditions. Once
a minimum was identified, the Newton-Raphson method
was applied for further refinment. The minimum with
the lowest free energy obtained in this manner is shown in
Fig. 4. It is a non-icosahedral structure with only a single
five-fold symmetry axis. In addition, there are five quasi
two-fold axes at 90 degrees. This density corresponds to
one of the two one-dimensional irreducible representation
of the dihedral group D5, a subgroup of the icosahedral
group I [4].

FIG. 4. Minimum free energy state in the l = 15 sector for
t15 = �0.1 and v = 10. A: View along the single 5-fold
symmetry axis. B: View perpendicular to the 5-fold axis along
a quasi two-fold axis.
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FIG. 5. Solution of Eq. 9 with the order-parameter amplitude
⇠ as a function of r the instability control parameter. The k0
parameter is set at the optimal value k2

0 = 6⇥7 for the Yh(6)
icosahedral spherical harmonic. Stable solution branches are
shown as a solid blue line, metastable branches as a dashed
blue line. Solution branches with one or more negative eigen-
values are shown as a dashed red line.

B. Icosahedral Free Energy Extrema: even l

It is also useful to examine even l icosahedral spherical
harmonics. The lowest even l value is the well-studied
l = 6, with associated icosahedral spherical harmonic

Yh(6) = Y0,0 +
q

7
11Y6,5 �

q
7
11Y6,�5 [29]. Only three

of the 13 coe�cients cm are non-zero. The 13 coupled
equations Gm([cm]) = 0 for the expansion coe�cients are
solved by these cm, which confirms that the icosahedral
state is again an extremum of the LB free energy. If we
denote the undetermined overall multiplicative factor of
Yh(6) by ⇠, insert the Ansatz ⇢I = ⇠Yh(6) into the free
energy and minimizing the free energy with respect to ⇠,
one obtains:

r⇠ + ũ⇠2 + ṽ⇠3 = 0, (9)

with ũ = u(50
p
13/323

p
⇡) and ṽ = 2145v/(1564⇡) for

(k0R)2 = 6 ⇥ 7, so in the middle of the l = 6 stabil-
ity segment. This equation has the standard form for a
first-order Landau phase transition. Fig. 5 shows the
order-parameter amplitude ⇠ as a function of r. Solution
branches for which the 13⇥ 13 stability matrix has pos-
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FIG. 6. Stable icosahedral density profiles for l = 6, 10 and
12. In all three cases, the five-fold symmetry sites are density
maxima for our choice of the sign of u. This holds for all even
l icosahedral spherical harmonics.

FIG. 7. Tetrahedral free energy minimum in the l = 16 sector
for t16 = �0.1 and v = 10 A: View along a 3-fold symmetry
axis. B:

itive eigenvalues plus three zero eigenvalues are shown
as solid and dashed blue lines. The solid blue line is
the minimum free energy state. The onset of icosahedral
order as a function of r proceeds via a first-order transi-
tion with an order parameter discontinuity. The dashed
red curve represents a solution for which the Hessian has
negative eigenvalues, indicating that this is a first-order
transition with metastability. The stability of the l = 6
state is consistent with the earlier work [3, 18]. Stable
icosahedral states were found also for l = 10, l = 12,
and l = 18. The first three stable icosahedral density
modulations are shown in Fig. 6.

This exhausts the list of stable icosahedral spherical
harmonics. The Hessian of the l = 16 icosahedral state
has negative eigenvalues however. We carried out a nu-
merical search for a minimum in the l = 16 sector as
we did for l = 15. The lowest stable minimum energy
structure we found is shown in Fig. 7. The resulting
structure has eight three-fold axes and the symmetry of
a one-dimenisonal irrep of the tetrahedral subgroup T of
both the icosahedral and the octahedral groups. ( See
Figs. 7A and B). The three-fold axes display chirality.
Choosing the four of those axes with the same chirality
to be the locations of vertices generates one tetrahedron.
Choosing the four axes with the opposite chirality gen-
erates a tetrahedron that is dual the the first one. This
same structure has been found earlier by Matthews [4] in
a study of the even l spherical harmonics.

C. Group theory.

So far we used the 2l + 1 spherical harmonics Y m
l as

the basis, which indeed is the natural basis for examin-
ing symmetry breaking of the uniform state with SO(3)
symmetry. It is not however a convenient basis for ex-
amining symmetry breaking of an icosahedral state, as
encountered in the previous subsection. In order to clas-
sify the instabilities of the l = 15 and l = 16 icosahedral
states, we will reorganize the expansion basis. For that
purpose, we construct a new basis composed of groups of
linear combinations of Y m

l that transform according to
the di↵erent irreps of I under the symmetry operations
of I.
The icosahedral group has five irreps with the char-

acter table shown below [30, 31]. The notation for the

TABLE I. Character table for the five irreducible representa-
tions of the icosahedral group

E C5, C4
5 C2

5 , C3
5 C2 C3, C2

3

Ag 1 1 1 1 1

F1g 3 1
2 (1 +

p
5) 1

2 (1�
p
5) -1 0

F2g 3 1
2 (1�

p
5) 1

2 (1 +
p
5) -1 0

Gg 4 -1 -1 0 1

Hg 5 0 0 1 -1

rotational symmetry operations Cj of I is detailed in Ap-
pendix A. The second column, which contains the char-
acters associated with the identity E, also gives the di-
mension d of the irrep. Using this character table, one
can project any spherical harmonic Y m

l onto an irrep i
of I:

5X

j=1

�
(j)
i

X

R2Cj

Y m
l (R(br)) (10)

Here, R is one of the 60 symmetry operations of I while
j runs over the five entries of the appropriate row of the
character table. A rotated spherical harmonic Y m

l (R(br))
can be expanded in terms of the 2l+1 unrotated spherical
harmonics with the same l:

Y m
l (R(br)) =

m0=+lX

m0=�l

[Dl
mm0 ]⇤Y m0

l (br) (11)

where [Dl
mm0 ]⇤ is the complex conjugate of an element of

the (tabulated) Wigner D-matrix [27]. By applying this
projection method to any of the 2l+1 spherical harmon-
ics, one obtains five linear combinations of the spherical
harmonics corresponding to the five irreps of I, generat-
ing in total a set of five times 2l + 1 combinations. This
set is over-complete and in some cases the operation in
Eq. (10) produces a vanishing result. By diligently sift-
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ing through this set and extracting all linearly indepen-
dent terms, one can construct of a new orthonormal basis

composed of 2l + 1 real basis states �(j)
i (✓,�). The sub-

script i again refers to the irrep, while the superscript j
in parentheses runs over the d-dimensional basis within

for that representation. For example, j runs from 1 to 3
for irrep F1g. The normalization is

Z ⇡

0

Z 2⇡

0
�
(j)
i (✓,�)2 sin(✓)d� d✓ = 1 (12)

The basis function corresponding to the one dimensional
irrep Ag remains the familiar Yh(l), which can be ex-
plicitly constructed by this route. In Appendix A we
illustrate the method for the familiar case of l = 6.

D. l = 15

Applying this method to the l = 15 case, one obtains
one instance of the one-dimensional irrep (Ag or Yh(15))
two instances of each of the three dimensional representa-
tions (F1g and F2g), two instances of the four dimensional
representation Gg and two instances of the five dimen-
sional representation Hg. This yields a total number of
new basis states equal to 1⇥1+2⇥3+2⇥3+2⇥4+2⇥5 =
31 that equals to 2l+ 1 as required for a complete basis.

Start by allowing only the one-dimensional irrep Ag.
Including non-linear terms, the LB free energy takes the
form

1

2
t15⇣

2 +
0.789

4
v⇣4 (13)

As discussed below Eq., this predicts a continuous tran-
sition to an ordered l = 15 icosahedral state at the point
t15 = 0. Now allow the other 30 basis functions to par-
ticipate in the Hamiltonian but include their expansion
coe�cients only to quadratic order. The resulting Hamil-
tonian is then diagonal in terms of these expansion coe�-
cients plus ⇣. Diagonal entries are the same for the basis
states of a given irrep. We define ti(k) to be the quadratic
coe↵cient for the instance k that irrep i is realized.

Table II lists the tis: All coe�cients are proportional
to the e↵ective temperature t15 of the one-dimensional
irrep Ag shown in the first row. The zero in the sec-
ond row for one of the F1g corresponds to the three zero
eigenvalues associated with rotation, as mentioned ear-
lier. Instabilities are associated with negative values for
ti(k). The first one is a three-fold instability associated
with F2g while the second one is a a four-fold instability
associated with Gg so together there are seven negative
eigenvalues.

The new basis is complete in the l = 15 space but for it
to be an economical basis for the present case, the struc-
ture shown in Fig. 4 should be the superposition of the
one-dimensional representation Ag plus a small number
of densities that transform according to the higher dimen-
sional irreps. In the simplest case, those would be the two

TABLE II. Quadratic coe�cients ti for the nine instances of
irreps of the icosahedral group for l = 15. The relationships
hold when t15 < 0

Irreducible representation Quadratic coe�cient, t15,i

tAg (k = 1) 2|t|15
tF1g (k = 1) 0

tF1g (k = 2) 0.016385|t15|
tF2g (k = 1) �0.0184816|t15|
tF2g (k = 2) 0.00332569|t15|
tGg (k = 1) �0.00239087|t15|
tGg (k = 2) 0.0429669|t15|
tHg (k = 1) 0.335413|t15|
tHg (k = 2) 0.0618115|t15|

irreps with negative ti. We find that the structure of Fig.
4 is a linear superposition of Ag plus one copy each of the
four d=3 irreps F1g(k = 1, 2) and F2g(k = 1, 2). In each
case, one must pick an eigenvector with 5-fold symmetry.
All four of the five-fold axes must be aligned with one of
the 5-fold axes of Ag. The d=4 irrep Gg does not appear
to contribute. Group theory thus indicates that Fig. 4
can be viewed a distorted l = 15 icosahedral structure.
The expectation that only irreps with negative ti should
be present in the final structure is, however, wrong. As
noted previously, this state also corresponds to the one-
dimensional A2 irrep of the dihedral group D5.

E. l = 16

When the same analysis is carried out for l = 16, the
lowest even l icosahedral structure that is unstable, one
encounters one instance of the one dimensional repre-
sentation, Ag, corresponding to Yh(16), two instances of
the three dimensional representation F1g, one instance of
the three dimensional representation F2g, two instances
of the four dimensional representation Gg and three in-
stances of the five dimensional representation Hg. The
total number of basis states is 1 ⇥ 1 + 2 ⇥ 3 + 1 ⇥ 3 +
2⇥ 4 + 3⇥ 5 = 33, which equals 2l + 1 as required. Re-
striction to the one dimensional representation leads to
the free energy expression whose extrema correspond to
solutions of Eq. (9). If the cubic coe�cient is equal to
zero then there is a continuous ordering transition as t16
passes through zero, and the ordered state is quadrati-
cally stable. However, when the third order coe�cient is
non-zero the ordered state acquires instabilities. Fig. 8
is a plot of quadratic coe�cients: Two of the curves lie
below the horizontal axis and correspond to instabilities,
one of them to a three dimensional irrep and the other to
a four dimensional irrep. One of the curves lies along the
horizontal axis, corresponding to a three dimensional ir-
rep and reflecting the rotational invariance of the energy
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FIG. 8. The quadratic coe�cients, t16,i when there is ordering
for l = 16. The nine curves correspond to the nine irreducible
representations comprising the basis set (one one dimensional,
three three dimensional, two four dimensional and three five
dimensional). The dashed horizontal curve along the axis
t16,iv/u

2 = 0, corresponds to one of the three dimensional
representations that reflects the rotational invariance of the
energy of the condensed state. The vertical dashed line in-
dicates the onset of the first order transition to ordering at
t16 ' 0.002u2/v. All curves terminate at the far right, cor-
responding to the onset of a local non-zero minimum in the
free energy at t16 ' 0.004u2/v.

of the condensed state.
This basis set applied to the decomposition of the

l = 16 structure shown in Fig. 7 does not provide an
economic description. Alternatively, Fig. 7 can be
shown to comport with the symmetry of the octahedral

group. The octahedral group is composed of the 24 ro-
tations that leave the octahedron—or its dual regular
polyhedron, the cube—unchanged. This group has five
irreducible representations, the character table of which
is shown in Table III. In the case of this group there

TABLE III. The character table of the octahedral group. As
in the case of Table I, the number in the second second column
is the dimensionality of the representation.

Irrep E C3(8) C2(3) C2(6) S4(6)

A1 1 1 1 1 1

A2 1 1 1 -1 -1

E 2 -1 2 0 0

F2 3 0 -1 1 -1

F1 3 0 -1 -1 1

are two one dimensional irreps. The first,A1, is invariant
under the action of rotations that leave the octahedron
unchanged. The second, A2, is either transformed into
itself or minus itself under such a rotation.

For the case of l = 16 there are two instances of the
irrep A1 and one instance of A2, as well as three of the
two dimensional irrep E and four each of F1 and F2, for a
total of 2⇥1+1⇥1+3⇥2+4⇥3+4⇥3 = 33 basis states,
su�cient to replace the 33 Y m

16 (✓,�)’s as a complete basis

set. We find that the structure of Fig. 7, which was
obtained by minimization of the Landau-Brazovskii free
energy, consists of a linear combination of three densities
corresponding to two instances of A1 and one instance of
A2. The structure thus can also be described as having
distorted octahedral, or cubic, symmetry.

III. ICOSAHEDRAL ORDERING IN THE
l = 15 + 16 COMPOSITION SPACE

At this point, LB theory does not account for the sta-
bility of the parvovirus whose capsid has a density that
closely resembles the l = 15 icosahedral spherical har-
monic Y15(h), which we found to be unstable. In this
section we go beyond standard Landau theory by allow-
ing the order-parameter to be described by more than
one irrep and hence by multiple l.

The fact that free energies minimization can lead
to coupling between di↵erent irreducible representations
was noted by Dimmock [32] and others [33, 34]. A pri-
mary order parameter associated with one irrep can en-
train a secondary order parameter associated with a dif-
ferent irrep. This can happen because the non-linear
terms in the Landau energy may produce terms that
are linear in the secondary order parameter times an
(integer) power of the primary order parameter. Alter-
natively, at an accidental degeneracy point the uniform
state may lose stability simultaneously against two dif-
ferent irreps. Multiple irreps also have been used in the
context of the application of the LB free energy to block
copolymers [35].

For the present case, mixing two states with di↵erent l
values is in fact natural near the points along the k0R axis
that mark the borders between the stability segments of l
and l+1. For l = 15 and l = 16, the point where t15 = t16
is at k0R = 16. More generally, if an odd l segment
supports an icosahedral state then l can be expressed as
l = 15+6j+10k for certain integers j and k. The adjacent
segment at l + 1 = 6(j + 1) + 10(k + 1) then necessarily
obeys the condition for an even l segment to be able
to support an icosahedral state. Every odd l segment
that supports an icosahedral state is thus bordered at
k0R = l+ 1 by an even l+ 1 segment that also supports
an icosahedral state. Note that this is not the case for
even l: the l = 6, l = 10, and l = 12 icosahedral states
do not have icosahedral neighbors.

A. Composite icosahedral order parameters.

Consider the space formed by the composition of the
l = 15 and l = 16 subspaces. In this extended space,
icosahedral density modulations can be expressed as

⇢(⇣, ⇠) = ⇣Yh(15) + ⇠Yh(16), (14)
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FIG. 9. Solution branches of Eq. 32 for k0 = 16, u = -
10, w = 10 that have stable sections. Stable sections of the
branch are shown in blue, unstable sections in red. (left)
Coe�cient ⇣ of Yh(15) as a function of the control parameter
r. The two branches marked D and L are degenerate. (right)
Coe�cient ⇠ of Yh(16) as a function of ⇣ for varying r.

This density is characterized by the pair of order-
parameter amplitudes ⇣ and �. When this ansatz is in-
serted into the LB free energy density and minimized
with respect to the pair (⇣, ⇠) then the free energy is
found to have an extremum when (⇣, ⇠) obeys the pair of
coupled cubic equations [36]:

t16⇠ + u1⇠
2 + u2⇣

2 + v1⇠
3 + v2⇠⇣

2 = 0, (15a)

t15⇣ + u3⇠⇣ + v3⇣
3 + v4⇣⇠

2 = 0, (15b)

A numerical solution of the pair of coupled equations
at k0R = 16 is shown in Fig. 9 which shows the order-
parameter pair ⇣, ⇠ for two degenerate solution branches,
marked D and L that are related under inversion when
⇣ ! �⇣ and ⇠ ! ⇠. The superposition state is thus
neither even nor odd under inversion. Note the resem-
blance of Fig. 9A with Fig. 5, suggestive of a first-order
transition. Fig. 9B shows that ⇣ and ⇠ are comparable
in magnitude and (approximately) proportional to each
other.

B. Stability Diagrams.

The stability of the 15 + 16 superposition state was
examined, as before, by computing the eigenvalues of the
64 ⇥ 64 Hessian matrix. We found that in the (r, k0R)
plane there indeed is an area near k0R = 16 where the su-
perposition state has positive eigenvalues (plus the usual
three zero eigenvalues). This is shown in Fig. 10. The
icosahedral state has no negative eigenvalues inside the
area bordered by the solid blue lines. The diagram shows
that if, for fixed r, the dimensionless radius of curvature
k0R is increased from the lower stability of the mixed
state to the upper stability limit then the icosahedral
state changes from “15-like”, with 60 maxima, to “16-
like” with 72 maxima with the new maxima appearing
at the twelve 5-fold sites. The stability of icosahedral
states around k0R = 16 could be conceived as a form
of “interference” between the l = 15 minimum energy
state, which has a single five-fold axis, and the l = 16

FIG. 10. Stability diagram of the l = 15 + 16 superposition
state in the r, k0R plane near k0R = 16 with r the global
control parameter. Solid blue lines: locus of points where the
superposition icosahedral state acquires negative eigenvalues.
Dashed lines: locus of points where the uniform state acquires
negative eigenvalues. The densities of two states with di↵erent
k0R at the opposite stability limits are shown.

minimum energy state which has four three-fold axes.
The icosahedral state is then a compromise that allows
both types of symmetry to coexist in one structure. The
dashed lines give the locus of points where the uniform
state acquires negative eigenvalues. The dashed and solid
lines coincide along the central section, which means that
along this section there could in principle be a continuous
transition from a uniform to an icosahedral state.
Enlarged views of the central section of the stabil-

ity diagram are shown in Fig. 11 We introduced here
the new variables t and � such that the reduced tem-
perature in the l = 15 sector equals t15 = t � � and
that in the l = 16 sector t16 = t + �. The linear
stability thresholds t15 = 0 and t16 = 0 of the uni-
form phase are thus t = �, respectively, t = ��.
In terms of r, k0 and R the new variables can be ex-
pressed as t = r + [(k0R)4 � 256(k0R)2 + 65792]/R4 and
� = [�16(k0R)2+8192]/R4. In Fig. 11, the solid red line
is the stability threshold of the uniform phase. The in-
set shows that in the narrow sliver between the solid red
and dashed blue lines, the minimum free energy state has
tetrahedral symmetry. Figure 12 shows that this tetrahe-
dral state di↵ers from the minimum energy state in the
l = 16 sector. The tetrahedral density is shown along
one of the four triangular faces. The tetrahedral sliver
disappears near � = �14.

C. First-order and second-order transitions.

By combining the stability diagram with numerical cal-
culation of the free energy one can determine the order
of the various transitions in Fig.11. We start with the
solid black line for positive � and negative t. The min-
imum free energy state in the non-icosahedral sector on
the right side of the icosahedral sector is identical to the
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FIG. 11. Enlarged view of the central section of the sta-
bility diagram of the l = 15 + 16 superposition state near
k0R = 16. The variables t and� are defined by the conditions
that t15 = t � � and t16 = t + �. The two non-icosahedral
modulated states have here tetrahedral or modified octahe-
dral symmetry. The two black lines bordering the icosahedral
sector are spinodal lines with lines of first-order transitions
tracking the spinodal lines just inside the icosahedral sector
(not shown). The red line outside the boxed sector indicates
a line of continuous phase transitions between the isotropic
and icosahedral states. The inset shows an enlarged view of
the boxed sector when a tetrahedral state interposed between
the isotropic and icosahedral states. Here, the red line is the
stability limit of the uniform state. Blue dots: states whose
densities are shown below.

FIG. 12. Tetrahedral density, denoted “Tetrahedral 2” in
Fig. 11, corresponding to � = �6 and t = �5.7, inside the
tetrahedral strip in the stability diagram shown along one of
the three-fold axes (blue dot)

tetrahedral l = 16 state that was discussed in the previ-
ous section. The density corresponding to the blue dot in
that sector near t = � = 0 in Fig. 11 was already shown
in Fig. 7. Figure 13 shows the di↵erence �F between the
lowest free energy state and the icosahedral free energy
as a function of � for fixed t = �0.1.

For � . 0.3 the free energy di↵erence is zero, meaning
that the icosahedral state has the lowest free energy. For
� & 0.3, the tetrahedral state has a lower free energy
with �F going continuously to zero. This is the thermo-
dynamic signature of a first-order phase transition. The

FIG. 13. Free energy di↵erence �F between the lowest free
energy state and the icosahedral free energy as a function of
� for fixed t = �0.1. The red dashed line shows the stability
limit of the icosahedral state

icosahedral state acquires negative eigenvalues at the red
dashed line, which thus corresponds mathematically to a
saddle-point and physically to a spinodal point. The solid
black line in the stability diagram thus should be inter-
preted as a spinodal line. A line of first-order transitions
runs near this spinodal line.
We next consider the solid red line outside the boxed

sector in Fig. 11 with � . �14. It denotes the joint
stability limits of the icosahedral and uniform states. It
is in fact a line of continuous phase transitions, notwith-
standing the fact that the cubic non-linearity in the LB
free energy is non-zero! It is thus indeed possible to have
a continuous transition from a uniform state to a stable
l = 15 like icosahedral state.
We saw that for �14 . � < 0, a tetrahedral state

interposes between the icosahedral and uniform states.
The group-theoretical method developed in the previous
section to describe instabilities of the icosahedral state
can be readily extended to the l = 15 + 16 composition
space. Using this method, we find that the tetrahedral
state is a superposition of the two one-dimensional irreps
Ag of the l = 15 and l = 16 subspaces plus one copy each
of the two four-dimensional irrepsGg belonging to the l =
15 and l = 16 subspaces. For the case of the tetrahedral
state shown in Fig. 12, Ag contributes a fraction of about
0.79 to the density while Gg contributes the remainder.
Transitions from an icosahedral state to a tetrahedral
state of this type have been shown to be first-order [37].
The dashed blue inside the boxed sector is thus a line of
first-order phase transitions, as confirmed by Fig. 9. The
point where the dashed blue line merges with the red line
presumably corresponds to a tricritical point but we did
not investigate this further.
Finally, the solid black line for negative � and neg-

ative t is a mirror image of the one for positive �: it
is again a spinodal line where the icosahedral state be-
comes unstable. A line of first-order transitions tracks
the spinodal line. But there is a surprise: the minimum
free energy state is not the dihedral l = 15 minimum
energy state that might have been expected. Instead, it
also is a modified-octahedral state as shown in Fig. 14.
This asymmetry is related to the fact that l = 15 ordering
entrains l = 16 as a secondary order parameter through
the cubic term in the free energy, which generates terms
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FIG. 14. Modified octahedral state corresponding to� = �65
and t = 0.2 (left blue dot in Fig. 11).

that are linear in l = 16 and bilinear in l = 15. On the
other hand, l = 16 ordering can not entrain l = 15 as a
secondary order parameter because l = 15 is odd under
inversion. The non-linear terms in the free energy now
cannot produce terms that are linear in l = 15.

The entrainment of even a small amount of l = 16 has
dramatic e↵ects for � = �65. If the density is decom-
posed as

⇢(✓,�) = ⇢15(✓,�) + ⇢16(✓,�) (16)

then the ratio h⇢216i/h⇢215i of the square integrated den-
sities in Fig. 14 is only about 2 ⇥ 10�3. The density is
principally made up of contributions from l = 15 spher-
ical harmonics, as one should expect. Yet without this
admixture, the state would switch back from modified
octahedral to modified icosahedral state. The modified
icosahedral state is recovered for � ' �400.

Further decomposition in terms of the irreps of the oc-
tahedral group using the methods discuss in the previous
section yields

⇢15(✓,�) = ⇢15,A1(✓,�) + ⇢15,E(✓,�) + ⇢15,F2(✓,�)(17)

⇢16(✓,�) = ⇢15,A2(✓,�) + ⇢15,E(✓,�) + ⇢15,F1(✓,�)(18)

where the symbols in the subscripts refer to the one di-
mensional, (A1 and A2), two dimensional (E) and three
dimensional (F1 and F2) representations of the octahe-
dral group. The relative square integrated densities con-
tributing to the ⇢15 term are

h⇢215,A1
i

h⇢215i
= 0.0647066 (19)

h⇢215,Ei
h⇢215i

= 0.326297 (20)

h⇢215,F2
i

h⇢215i
= 0.608996 (21)

Note the small relative weight of the one-dimensional ir-
rep A1. The density deviates strongly from a purely octa-
hedral structure. The relative square integrated densities

contributing to the ⇢16 term are

h⇢216,A2
i

h⇢216i
= 0.114579 (22)

h⇢216,Ei
h⇢216i

= 0.231169 (23)

h⇢215,F2
i

h⇢215i
= 0.654252 (24)

This is completely di↵erent from the l = 16 deformed
octahedral state one encounters on the right hand side of
the phase diagram, which was a combination of the two
one-dimensional irreps A1 and A2.

D. Spinodal lines and group theory

The instabilities of the l = 15 + 16 icosahedral state
along the two spinodal lines can be analyzed by group
theory. The appearance along this line of three negative
eigenvalue is associated with the irrep F2g. A natural
choice for the eigenvectors is one with the (1, 1, 1) di-
rection along a three-fold symmetry direction and the
(0, 0, 1) direction along a two-fold direction. Define vec-
tors ~⌘ = (⌘1, ⌘2, ⌘3) with respect to these axes. On gen-
eral group-theoretic grounds, the Landau energy �F (~⌘)
in this space must have the form [37]:

�F (~⌘) / �3

2
|⌘|2 + V

4
|⌘|4 + W

6
|⌘|6 +�

p
5

2
⌘21⌘

2
2⌘

2
3

+�

p
5

60
(⌘61 + ⌘62 + ⌘63) +

�

4

�
⌘41(⌘

2
3 � ⌘22) + cyclic perm.

�

(25)

to sixth order in ⌘. Here, �3 is the eigenvalue that
changes sign at the transition while V and W are positive
constants. The terms proportional to W and � in Eq. 25
are generated by sixth and higher order terms in ⇢ in the
free energy functional that we did not include. �F (~⌘) de-
scribes a continuous symmetry-breaking transition that
takes place at �3 = 0. For � = 0, the Landau energy
is O(3) isotropic with arbitrary rotations in ~⌘ space con-
necting degenerate states. For � negative, the minimum
of �F (~⌘) lies along the C3 direction and for � positive
along the C5 direction.

It is suggestive that the two non-icosahedral states bor-
dering the icosahedral state in Figs. 10 and 11 should
correspond to the C5 and C3 eigenvectors, as proposed
in our first publication [23]. However, this is incorrect
according to our numerical minimization results. Appar-
ently, when the amplitude of ~⌘ begins to grow at the
instability point, this entrains other irreps. Eventually,
the system evolves to the quite di↵erent tetrahedral and
modified octahedral states we just discussed.
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FIG. 15. Stability diagram in the l = 25 + 26 superposition
space. The horizontal axis � and the vertical axis t are de-
fined through t25 = t�� and t25 = t��. The red line is a
line of first-order phase transitions from the isotropic to the
icosahedral state. The two other lines bordering the icosahe-
dral phase are spinodal lines.

E. l = 25 + 26

We applied the same methods to the l = 25+ 26 com-
positions space. Both l = 25 and l = 26 support icosahe-
dral spherical harmonics but in neither case is this state
stable within the LB free energy. We found that around
k0R = 26 a mixed l = 25+26 icosahedral state can again
be stable. The stability diagram, shown in Fig. 15 is
quite similar to the stability diagram in the l = 15 + 16.
However, the red line separating the icosahedral state
from the uniform state now is a line of first-order transi-
tions.

IV. CHIRAL LANDAU-BRAZOVSKII FREE
ENERGY.

According to the achiral LB theory, there are two types
of transitions from an isotropic to an icosahedral state.
The first case is exemplied by the l = 6, 10, 12 and 18
cases when the transition is first-order. These icosahe-
dral states are even under inversion and thus violate the
condition of broken chiral symmetry for viral capsids. In
the l = 15 + 16 composition space, the transition is con-
tinuous and the resulting structures have spontaneously

broken chiral symmetry. However, spontaneous chiral
symmetry breaking transition is not allowed, also because
capsid proteins have intrinsic chirality. Thus, the achiral
theory leads to unphysical results in either case.

In this section we generalize the LB free energy so
that it can be applied to ordering transitions in systems
composed of chiral units. Landau free energies for chi-
ral materials, such as cholesteric liquid crystals [38], are
constructed by obtaining the lowest-order energy density
depending on ⇢ that transforms under inversion as a pseu-

doscalar density. This pseudoscalar density, multiplied
by a pseudoscalar coe�cient, is then to be added to the
achiral free energy density constructed from scalar den-
sities. We first construct such pseudoscalars in the large
R limit – so for a flat plane – with ⇢ a scalar density ex-
pressed in terms of the cartesian coordinates x = (x, y).
The chiral contribution to the free energy density f is, as
usual, assumed to be local and to depend on ⇢(x) and its
first and second derivatives r⇢ and rr⇢, respectively.
The chiral contribution to the free energy is

�H� =

Z
f(⇢,r⇢,rr⇢) d2x, (26)

The symmetry group of the uniform phase in the large
R limit is SO(2) = {R✓|✓ 2 [0, 2⇡)}, the group of proper
rotations of the plane. The action on ⇢ is defined by

⇢(x) 7! ⇢(RT
✓ x) = ⇢(x̃),

where x̃ = R

T
✓ x and

R✓ =

 
cos ✓ � sin ✓

sin ✓ cos ✓

!
.

The gradient vector r⇢ and the tensor rr⇢ of second
derivatives transform covariantly:

r⇢ 7! R✓r̃⇢,

rr⇢ 7! R✓(r̃r̃⇢)RT
✓ ,

where r̃⇢ = (@x̃⇢, @ỹ⇢).

The free energy (26) is invariant under SO(2) if the
free energy density satisfies,

f(⇢,r⇢,rr⇢) = f(⇢,R✓r⇢,R✓rr⇢RT
✓ ), (27)

for all ✓ 2 [0, 2⇡]. Expand f as a polynomial in the six
variables ⇢, ⇢x, ⇢y, ⇢xx, ⇢xy and ⇢yy. Equation (27) then
imposes constraints on the polynomial that take the form
of a system of linear equations for the coe�cients. Their
solution give us the most general form of the invariant
free density energy up to the order of the polynomial con-
sidered. For instance, at quadratic order the symmetry-
restricted free energy density involves five independent
terms:

f2 = a1(�⇢)2 + a2 det(rr⇢) + a3⇢�⇢+ a4|r⇢|2 + a5⇢
2,

(28)
The subscript 2 for f reminds the reader of the order
of the polynomial considered. All terms here are scalars
so there are no pseudoscalar terms at quadratic order.
Choosing a1 = 1/2, a3 = k20, a4 = 0 and a5 = (k20 + r)/2
reproduces the quadratic contributions to the LB energy
density (30).
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At third order we encounter one pseudoscalar term:

f3 = r⇢ · (rr⇢) · (n⇥r⇢),

where n is the normal to the plane (co-incident with the
z-axis). This term is closely related to the Helfrich-Prost
(HP) free energy density for chiral surfaces [39]. There
are two fourth-order pseudoscalar terms namely

fa
4 = ⇢r⇢ · (rr⇢) · (n⇥r⇢)

and

f b
4 = r⇢ · (rr⇢)2 · (n⇥r⇢).

Each pseudoscalar density on a flat surfaces generates a
corresponding pseudoscalar density on a curved surface
that is obtained by replacing all partial derivatives by
covariant derivatives and replacing n by the local unit
normal to the surface. In Appendix B we show that the
surface integrals of the covariant expressions for f3 and
fa
4 over a spherical surface are zero. Our final expression
for a chiral LB free energy thus only involves f b

4

H� =

Z  
1

2

⇣
(�+ k2o)⇢

⌘2
+

r

2
⇢2 +

u

3
⇢3 +

v

4
⇢4

+ �r⇢ · (rr⇢)2 · (n⇥r⇢)

!
dS.

(29)

where � is a pseudoscalar that measures the strength
of the chiral character of the interactions between the
constituent units.

In Appendix C we show that the integral
Z

S2

(rY m1
l · (rrY m2

l ) · (rrY m3
l ) · (n⇥rY m4

l )) dS = 0

(30)

is zero for any set of (m1,m2,m3,m4) and for any l. The
same is true if any of the spherical harmonics is replaced
by its complex conjugate. The chiral term thus does not
a↵ect minimization of the free energy if the minimization
is restricted to only one l sector.

A. Chirality and the even l icosahedral states.

We first consider the e↵ect of the chiral term on the
stable even-l icosahedral states such as l = 6, 10, 12. To
be specific, assume that k0R is in the interval segment
6 < k0R < 7 where l = 6 icosahedral ordering takes place
such that t6 is slightly negative while the other tl still are
positive. As before, let ⇠ be the l = 6 icosahedral order
parameter. We saw that if only l = 6 spherical harmonics
are included then the chiral term has no e↵ect so we must
allow coupling of the l = 6 icosahedral state to spherical
harmonics with l di↵erent from l = 6. Since the t5 and

t7 are the lowest tl after t6, these are the obvious candi-
dates. Neither l = 5 nor l = 7 supports icosahedral order.
First, minimize the free energy in the l = 5 + 6 compo-
sition space. Define the set c�m to be the set of eleven
expansion coe�cients of the l = 5 sector with m now run-
ning from �5 to +5. The l = 5 spherical harmonics will
be entrained by the l = 6 density if the variational free
energy has terms linear in the l = 5 terms. In a perturba-
tion expansion, neither the cubic nor the quartic achiral
nonlinear terms can produce terms that are linear in the
c5m because the Y m

5 are odd under inversion while Yh(6)
is even. When the non-linear chiral term is computed as
a mixture of the Y m

5 and the Y m
6 then the only non-zero

integrals are found to be composed of one factor of Yh(6)
and three factors of Y m

5 , which results in a polynomial
that is the sum of terms of the form ⇠cm1cm2cm3. Since
chiral mixing produces only cubic terms in the cm, Yh(6)
type ordering does not entrain secondary ordering of the
neighboring l = 5 segment. The same is true for the
the l = 7 segment. Similar conclusions are arrived at for
l = 10 and l = 12.
Could the chiral term entrain other icosahedral spher-

ical harmonics? The chiral term is found to be non-zero
for combinations that are third order in Yh(6) and lin-
ear in Yh(15). It follows that icosahedral ordering in the
l = 6 sector, with a density that is even under inversion,
entrains l = 15 icosahedral ordering, with a density that
is odd under inversion. The same holds for the l = 10
and l = 12 states. The chiral term thus removes the ob-
jection against icosahedral ordering in the l = 6, 10 and
12 segments because it generates secondary icosahedral
contributions that are odd under inversion. The resulting
density is neither odd nor even under inversion.

B. Chirality and the mixed l = 15 + 16 icosahedral
state.

Now consider the e↵ect of the chiral term on the iso-
meric pair of mixed l = 15 + 16 icosahedral states. As-
sume a primary icosahedral density of the form

⇢(⇣, ⇠) = ⇣Yh(15) + ⇠Yh(16), (31)

and minimize H� with respect to ⇣ and ⇠. The resulting
equations are

(c1+r)⇠+u1⇠
2+u2⇣

2+w1⇠
3+w2⇠⇣

2+�(3a1⇠
2⇣+a2⇣

3) = 0,
(32a)

(c2 + r)⇣ + u3⇠⇣ +w3⇣
3 +w4⇣⇠

2 +�(a1⇠
3 +3a2⇣

2⇠) = 0,
(32b)

with both a2 and a3 positive. Recall that for � = 0
there were two degenerate solutions (D and L) related
by ⇣ ! �⇣. The two terms proportional to � in the two
equations lift this degeneracy. To lowest order in �, the
chiral term causes the free energy to shift by an amount
�
�
a1⇠

3
0⇣0 + a2⇠0⇣

3
0

�
where (⇣0, ⇠0) denotes the � = 0 so-

lution. Since this term is odd in ⇣0, the chiral term selects
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whether the D or the L isomer has the lower free energy.
Because the chiral term breaks the symmetry between
the isomers, the ordering transition no longer involves
unphysical chiral symmetry breaking.

C. Chirality and the uniform state.

This still leaves the uniform state. The free energy
minimum in the uniform state has a density modulation
⇢ = 0 so the chirality of the uniform state cannot be de-
termined by the properties of ⇢ under inversion. Instead,
we can determine the chirality of the uniform state by
its response to a probe that couples to density in a man-
ner that is sensitive to the chirality of the state. From
the previous arguments, it follows that to lowest order
in the density ⇢ a local scalar chiral probe that couples
to the density must have the form �H = �h�

R
f b
4 dS

where h� is an infinitesimal chiral scalar that measures
the strength of the chiral probe. The chirality M� of the
system is defined as M� = �(dF/dh�)h�=0 where F is
the free energy computed from the Hamiltonian H�+�H
that includes the probe. It is easy to see that M� = hf b

4i
where h..i indicates an average over a Boltzmann prob-
ability distribution with Hamiltonian H�. Calculating
M� perturbatively in �, one finds that the lowest-order
non-zero contribution toM� is proportional to ��h(f b

4)
2i,

where the thermal average is to be computed for � = 0.
Since (f b

4)
2 is positive definite, this average is non-zero

so the isotropic state is indeed chiral. Physically, the
uniform state is chiral because thermally excited density
fluctuations are chiral.

V. EXAMPLES AND CONCLUSION.

In this final section, we compare for a number of spe-
cific viral capsids the predictions of the proposed chiral
Landau-Brazovskii theory with the existing Landau the-
ory. Before doing that, we first must briefly review the
Caspar-Klug (CK) classification of viral capsids [40].

A. Caspar-Klug Construction

The CK construction is based on the notion that iden-
tical capsid proteins should be distributed over an icosa-
hedral capsid in a manner that minimizes local defor-
mation of the proteins. Such deformations are the (un-
avoidable) consequence of the fact that not all sites can
be symmetry-equivalent. The claim of CK theory is that
such deformations are minimized by constructiing icosa-
hedra in the manner shown in Fig. 16:

Icosahedra are generated by cutting templates from a
hexagonal sheet composed of twenty adjacent equilateral
triangles (see Fig. 16A). The base of each triangle is a
lattice vector expressed as ~A(h, k) = hâ1 + kâ2. Here
{h, k} are a pair of non-negative integers and â1,2 are

FIG. 16. Construction of icosahedra. A: A lattice vector of
a two-dimensional hexagonal lattice is used to construct an
equilateral triangle with vertices on lattice sites (from [41]).
B: By gluing the edges of the folding template, icosahedra can
be constructed ([40]). C: A T = 7 icosahedron with h = 2
and k = 1 is chiral.

a pair of basis vectors of the hexagonal lattice (see Fig.
16A and C). The icosahedron is constructed by pasting
together adjacent exposed edges of the template (see Fig.
16B). This construction can be repeated for every pair of
integers h and k. Fig. 16C shows the case of h = 3 and
k = 1. The size of the icosahedron is determined by the
length of the base vector ~A(h, k). It follows from sim-
ple geometry that twice the area per triangle | ~A(h, k)|2
equals T (h, k) = h2 + k2 + hk. CK icosahedra are fully
characterized by this “T Number”. As can be verified
from Fig. 16B, CK shells are composed of 12 pentagons
and 10(T � 1) hexagons. The smallest shell is T = 1,
composed of 12 pentagons, followed by the T = 3 and
T = 4 shells shown in Fig. 16. The T = 1, 3 and 4
CK icosahedra are invariant under inversion. However,
the two larger shells shown in Fig. 16 are the T = 7
and T = 13 icosahedra and they can be constructed in
two disntict, chirally asymmetric ways that are related
by inversion.

These CK icosahedra should be be compared to the
Bravais lattices of solid-state physics: they are purely
mathematical constructs. To produce a physical capsid,
capsid proteins must be assigned to the CK icosahedra
just as a “basis” of molecules must be assigned to a Bra-
vais lattice to produce physical crystals. In the simplest
case, three proteins are placed on equivalent sites of each
of the triangles of Fig. 16. Capsid proteins in general
have no symmetry at all and are neither even nor odd
under inversion. Thus, for the T=1, 3, and 4 icosahedra,
chiral proteins “decorate” achiral CK icosahedra. This
extrinsic source of chirality must be distinguished from
the intrinsic chirality of the T = 7 and T = 13 shells,
which would remain chiral even for (hypothetical) cap-
sid proteins with an inversion center. In LB theory, ex-
trinsic chirality is generated perturbatively through the
pseudoscalar term while intrinsic chirality would be pro-
duced by spontaneous chiral symmetry breaking in the
absence of the pseudoscalar term.
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1. Parvovirus.

Our first example is the parvovirus discussed before
(see Fig.3). It is known to assemble reversibly from sixty
monomers [20]. One thus expects that at a continuous
ordering transition, sixty density maxima should evolve
from the uniform state. As already noted, Yh(15) de-
scribes the coarse-grained features of the measured den-
sity profile for parvovirus and it has sixty maxima. The
proposed LB theory states that there must be a contri-
bution to the primary order parameter that transforms
as Yh(16) under the symmetry operations of I. Could
the amplitude ratio of the l = 15 and l = 16 contribu-
tions be obtained from a decomposition of the measured
density profile into spherical harmonics? This leads to
di�culties because neither Yh(15) nor the l = 15 + 16
superposition state can describe the fine-structure of the
parvovirus capsid. For example, the small 5-fold sym-
metric structures located right at the five-fold symmetry
sites in Fig. 3 are not reproduced by Yh(15). Density
maxima located right at the five-fold sites of parvovirous
have to be described by secondary order parameters rep-
resented by even-l icosahedral spherical harmonics, start-
ing from l = 16. This means that it is very likely that an
l = 16 component would be found in a decomposition of
the density but this could not be viewed as a confirma-
tion of the proposed theory. Fine-structure contributions
to the density profile in fact have to be described by sec-
ondary order parameters, generated by higher-order non-
linear terms in the density functional that are specific to
parvovirus. These virus-specific secondary contributions
will produce densities proportional to an integral power
of the order parameter. They can be neglected close to a
continuous ordering transition, as we did implicitly. The
primary l = 15+ 16 term predicted by LB theory indeed
would dominate in that case. However, experimentally
measured density profiles (probably) represent density
profiles quite far below the ordering transition. In that
case it would be challenging to distinguish primary from
secondary contributions.

The LB theory for l = 15 + 16 predicts that the on-
set of icosahedral order should either be a continuous
transition – as in the existing theory – or a tetrahedral
phase should intervene between the uniform and icosa-
hedral states. Discovery of this tetrahedral phase indeed
would be important evidence in favor of the LB descrip-
tion. This prediction is predicated on the assumption
that the quartic coe�cient v is positive. For negative
v, additional higher-order non-linear terms have to be
included. In that case, the transition is in general first
order. The same reservations applies to the next cases as
well.

Numerical simulations would seem to be the simplest
route to test the theory. Small T=1 viruses, such as
parvovirus, would be good candidates due to their small
size. We mentioned that numerical simulations of coarse-
grained models already have reported that capsids can
assemble from a precursor condensate composed of cap-

sid proteins that associate with genome molecules [15].
Simulations testing the theory would have to be done in
the regime where the binding energy of the capsid pro-
teins to the RNA molecule is su�ciently strong to form a
globular precursor state. The proteins should have posi-
tively charged tail groups that cause the condensation of
the negatively charged genome molecule(s).

2. Picornavirus.

Our second example concerns the picornaviruses, a
group of animal viruses that includes the rhino and po-
lioviruses (see Fig. 17b-c). Note that the capsid again has
a pronounced chiral character. In solution, picornavirus

FIG. 17. (a) T = 1 CK construction. (b) Solution structure
of native picornavirus particles (the Equine rhinitis A virus)
and (c) the corresponding structure of the expanded particle
(from ref. [42]). (d) Interpretation as an L = 6 orientational
transition.

capsid proteins are organized into stable pentagons [9].
The pentagons are composed of five asymmetric units,
each of which is composed of three proteins. In total.
There are thus 15 proteins per pentagonal unit and 12
such units per capsid for a total of 180 capsid proteins.
This can be indexed as a T = 3 CK capsid. It is how-
ever known that the pentagons survive as distinct units
inside assembled picorna capsids because picorna capsid
can be swollen (by chemical treatment), causing the pen-
tagons to separately emerge while maintaining contact at
their vertices (see Fig. 17c). Treating the pentagons as
separate entities leads to a T = 1 assignment.
Treating picorna virus as an example of a T=1 capsid

assembled from 12 units means that twelve density max-
ima should emerge at the transition. In the proposed
theory, this would correspond to the Yh(6) icosahedral
spherical harmonic (see Fig. 17d), which is stable. If the
primary order parameter is l = 6 then the solidification
process should have the nature of a discontinuous transi-
tion. Chirality is extrinsic, i.e., imposed by the chirality
of the proteins and not by the CK shell. On the other
hand, the current Landau theory does not admit even
l icoshaedral spherical harminics. In that case, picorna
is treated as a T=3 shell with l = 25 and the transi-
tion should be continuous. Chirality is intrinsic in this
case. There is thus a marked distinction between the two
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descriptions for picorna assembly.

3. Cowpea Chlorotic Mottle Virus.

The Cowpea Chlorotic Mottle Virus (CCMV), a T = 3
RNA plant virus, is the one case for which a precursor
assembly state has in fact been observed [13]. Though
CCMV capsid proteins in solution are dimers, at least
some fraction of the capsid proteins in the precursor state
appear to be organized into capsomers, i.e., pentamers
and hexamers of capsid proteins. Fig. 18b shows an elec-
tron micrograph of CCMV and compares it to a T = 3
CK organizational diagram (Fig. 18a) The capsomers

FIG. 18. (a) A T = 3 CK shell is divided up into twelve
pentagons and twenty hexagons. Proteins are represented as
kite-shaped units with 6 proteins per hexagons and 5 pro-
teins per pentagon (b) Electron micrograph of the CCMV
virus (from ref. [43]). (c) Interpretation as an l = 10 icosa-
hedral spherical harmonic. (d) Interpretation as an l = 27
icosaehdral spherical harmonic (from ref. [5]).

are prominently visible in the assembled capsid. Other
T = 3 Bromoviridae are organized in the same manner.
Note that neither (a) nor (b) has an obvious chiral char-
acter. Under inversion, the representation scheme only
exchanges green and red colors.

There are again two approaches possible. Assuming a
CCMV capsid to be assembled from 12 pentamers and
20 hexamers, the primary ⇢(⌦) of CCMV the capsomer
organization should exhibit thirty two maxima. This cor-
responds to a Yh(10) state shown in Fig. 18c. The as-
sembly transition should be first order-and chirality is
extrinsic. Alternatively, if one assumes that assembly is
signaled by the development of 180 maxima then Yh(27)
would again be the primary order parameter density. Ex-
perimental evidence [44] indicates that the assembly of
CCMV is first-order.

4. Dengue Virus.

The Dengue virus is a T = 3 RNA animal virus [45],
composed of 180 subunits like CCMV but, unlike CCMV,
there are no compact hexamers or pentamers in the cap-
sid organization. There also appear to be no pentamers
or hexamers in solution (Fig. 19a). The capsid is com-
posed of elongated dimers, outlined schematically. Cap-
sid proteins that border the 5-fold sites (shown as blue)

FIG. 19. (a) The Dengue virus is composed of 90 homod-
imers organized in a T = 3 lattice. The three colors corre-
spond to the three di↵erent symmetry environments for the
capsid proteins (from ref. [5]). (b) A l = 25 + 26 icosahe-
dral shell. High density (red/orange) correspond to the ends
of the dimers. (c) A chiral superposition state of di↵erent
icosahedral spherical harmonics with 90 maxima.

dimerize with the capsid proteins that border the 3-fold
sites (shown as red) The capsid proteins that occupy
the 2-fold sites (green) dimerize with themselves. As
noted by in ref.[5], the density of the Dengue virus cap-
sid matches to Yh(25) (see Fig. 19b, density maxima
correspond to the ends of the dimers).
But there is a problem: dimers of the Dengue capsid

protein are stable in solution. Assembly involves combin-
ing 90 such dimers into a capsid [46]. This suggests that
the primary order parameter should have 90 maxima.
However, none of the Yh(l) have 90 maxima. As shown
in Fig. 19c, it is possible to construct an icosahedral
state with 90 maxima by superposition. The coe�cients
c2(l) are in this case 0.014(l = 6), 0.15(l = 10), 0.04(l =
12), 0.03(l = 15), 0.14(l = 16), 0.26(l = 18), 0.26(l =
21), 0.02(l = 22), 0.08(l = 25), 0.01(l = 26) (normalized
to add to one) but it is unclear how such a sequence of
coe�cients can be generated either by LB theory or the
current Landau theory. This sequence is an example of
the secondary order parameter series discussed for the
parvovirus case.

5. HK97

The HK97 virus is an extensively studied T = 7 bac-
teriophage virus [47]. Protein hexamers and pentamers
are stable in solution [48] with assembled capsids formed
from 60 hexamers and 12 pentamers. The initial assem-
bly state is the “Prohead”, shown in the upper left panel
of Fig. 20. The hexamers of the prohead are strongly
sheared [50] and have pronounced chirality. The shear-
ing due to a net of � groups below the hexamers [50].
Following initial assembly, the shear strain on the hex-
amers is released by the scissioning of the � groups. The
resulting “E1” state is shown in the lower panels of Fig.
20. It has only a weakly chiral character.
Figure 20 indicates that the weakly chiral E1 state can

be reasonably well described by the l = 16 icosahedral
spherical harmonic, which we found to be unstable. On
the other hand, the initial assembly is into the strongly
Prohead state. It is suggestive that the Prohead state
is better described as an l = 15 + 16 stable mixed state
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FIG. 20. Left top: Reconstruction of the first assembly stage
of HK97 (Prohead 1). Three-fold and five-fold sites are indi-
cated. The hexamers are highly sheared (from Ref.[49]). Left
bottom: Reconstruction of the first EI “expanded” stage. The
hexamers are symmetric. Right top: l = 15 + 16 icosahedral
capsid near the border with the l = 16 sector. Right bottom:
pure l = 16

(though the maxima of the l = 15+16 state correspond-
ing to the hexamers are not particularly chiral). In this
view, the enhanced chirality of the hexamers assists in
the stabilization of the icosahedral state. Once stronger
bonds have formed, the chirality can be relaxed without
risk of destabilization. According to the LB theory, or-
dering transitions in the 15 + 16 composition space with
predominant l = 16 character are expected to be contin-
uous or weakly first-order with a tetrahedral intermedi-
ate. It would be interesting to try and adjust the k0R
parameter, for example through point mutations of the�
sections, so as to reduce the shear strain of the hexamers.
The LB theory predicts that this could lead to destabi-
lization of icosahedral shells in favor of l = 16 shells with
tetrahedral symmetry.

HK97 is part of a family of bacteriophage and herpes
viruses with double-stranded DNA genomes. In most
cases, the capsids in this familiy assemble on top of a
precursor spherical protein sca↵old, which o↵er a nice
realization for the supporting spherical surface assumed
by the theory (HK97 is an exception).

B. Limitations

The proposed theory has obvious limitations. The as-
sumption of the presence of a rigid spherical sca↵old that
stabilizes the precursor state is an example. As men-
tioned, there are instances for which the presence of a
spherical sca↵old is well-documented, such as the Herpes
Simplex virus. This premise is not obviosuly valid for
smaller viruses that are stabilized not by a sca↵old but by
orientational interactions between the capsid proteins.

In continuum theory, such interactions can be included
in a coarse-grained sense [51] by introducing a Helfrich
bending energy term. In the introduction we noted that
below the ordering transition, HLB reduces to the elastic
energy of a two-dimensional material with elastic moduli
proportional to the square of the order parameter. If a
Helfrich bending energy is added to this elastic energy,
one would recovers the elasticity theory of thin shells [52].
For icosahedral shells, thin shell elasticity theory predicts
a buckling transition as a function of the ratio of the 2D
Young’s Modulus and the bending modulus [51]. The
shell should be spherical at low values of the ratio. Since
the elastic moduli are proportional to the square of the
order-parameter amplitude, this ratio should go to zero
at a continuous ordering transition. It follows that the
assumption of a spherical shell may be valid. However,
preliminary work on assembly of deformable shells indi-
cates that deformability has important e↵ects. A second
important limitation of the theory is the neglect of ther-
mal fluctuations. The precursor state of CCMV reported
in [13] appears to be quite non-uniform with transient
protein clusters forming shell fragments. It is in fact well
known that thermal fluctuations strongly a↵ect free en-
ergy expressions of the LB form. Specifically, continuous
transitions are tranformed into first-order transitions by
thermal fluctuations [24]. We hope to address both
questions in future work.
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Appendix A: The irrep basis of the icosahedral
group and thermodynamic stability.

In this appendix we replace the spherical harmonic ba-
sis functions with a new set associated with the irreducble
representations of the symmetry group. We use it to dis-
cuss the stability of the famiiar case of the l = 6 icosahe-
dral spherical harmonic.
The icosahedral group is composed of 60 rotations that

map an icosahedron into itself (see Fig. 21). They fall
into five classes. In the notation of Hamermesh [54]
these are: the identity E with one member, two ro-
tations about a fivefold axis, C5, C4

5 with 12 members,
an additional two rotations about a fivefold axis, C2

5 , C3
5

with 12 members, the rotations about twofold axes, C2,
with 15 members, and the rotations about threefold axes,
C3, C2

3 , with 20 members. The five-fold rotations are here
about the axis passing through two vertices on oppo-
site sides of the icosahedron (see Fig. 21); the three-
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FIG. 21. The icosahedron, with examples of a five-fold, a
three-fold, and a two-fold symmetry axis. The fivefold axis
emerges from a vertex, the threefold axis from the center of a
triangular face and the twofold axis from an edge.

fold rotations are about an axis that passes through the
centers of two triangles on opposite side of the icosahe-
dron and the two-fold rotations are through axes that
pass through the center of edges on opposite sides of the
polyhedron. The number of members of the five classes
1 + 12 + 12 + 15 + 20 = 60 is the same as the number of
elements of the group, as it should. For finite groups, the
number of classes equals the number of irreducible rep-
resentations (irreps) [54]. The five irreps of I are listed

in table 1 of the main text where �
(j)
i where �

(j)
i is the

character of class j for the ith irrep.

Using this character table, one can project an appropri-
ate mathematical object O onto a given irrep as follows:

5X

j=1

�
(j)
i

X

R2Cj

R · O (A1)

Here, R is one of the rotation operations of I while Cj

denotes the collection of symmetry operations of the j’th
class while i is the irrep in question. In the present case,
the mathematical objects are the spherical harmonics be-
longing to a certain l. The action of the rotation operator
R on the spherical harmonic Y m

l (br) produces Y m
l (R(br)).

The rotated spherical harmonic can be expanded in the
2l + 1 spherical harmonics with the same l:

Y m
l (R(br)) =

m0=+lX

m0=�l

[Dl
mm0 ]⇤Y m0

l (br) (A2)

Here, [Dl
mm0 ]⇤ is the complex conjugate of an element

of the Wigner D-matrix, which is readily calculated [27].
For a given l, we can, in this way, generate 2l+1 functions
of br that transform under the symmetry operations of the

group as a particular irrep of that group.

1. l = 6

As an example, consider the case of l = 6. Operating
on the 13 functions Y m

6 (br) with Eq. (A1) for the case of
the one-dimensional irrep Ag produces a 13 by 13 matrix:

0

BBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0 0 0 0

0 84
5 0 0 0 0 � 12

p
77

5 0 0 0 0 � 84
5 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 � 12
p
77

5 0 0 0 0 132
5 0 0 0 0 12

p
77

5 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 � 84
5 0 0 0 0 12

p
77

5 0 0 0 0 84
5 0

0 0 0 0 0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCA

(A3)
One obtains results as the entries of a column vector gen-
erated by operating with this matrix on the column vec-
tor whose 13 entries are Y m

6 (✓,�). The column vectors
that result from this operation have only three non-zero
entries in the form of three function of br, the second, sev-
enth and twelfth from the top. They are all proportional
to each other and to the icosahedral spherical harmonic
Yh(6). This means that there is exactly one combination
of l = 6 spherical harmonics that generates a density
with full icosahedral symmetry and only one instance of
the one-dimensional irrep of the icosahedral group that
can be constructed by this method.
Performing similar operations for the four other irreps

of the icosahedral group, we find that one representa-
tive from each of three irreps can be constructed out
of the Y m

6 (✓,�)s. Those three irreps are the first three
dimensional, the four dimensional and the five dimen-
sional representation. Adding up dimensions, we have
1 + 3 + 4 + 5 = 13 dimensions, corresponding to 13 ba-
sis states, exactly as many as are provided by the 13
spherical harmonics for l = 6. Thus, the basis states for
the irreps provide an alternative basis for the analysis
of the various properties of a “crystallized” l = 6 state.
The new basis set consists of normalized basis states of
the irreducible representations, �(j)

i (✓,�) where the sub-
script refers to the representation, and the superscript in
parentheses refers to the basis within the representation.
In the case of the one dimensional representation, corre-
sponding to �1(✓,�) = Yh(6), the superscript is omitted.
The normalization is

Z ⇡

0

Z 2⇡

0
�
(j)
i (✓,�)2 sin(✓)d� d✓ = 1 (A4)
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It is now possible to recast the Landau Hamiltonian (4)
in terms of these l = 6 basis states. First assume that the
only basis state participating is the one corresponding to
perfect icosahedral symmetry, i.e. the identity irrep Ag.
The e↵ective Hamiltonian takes the usual form of a first-
order transition

t6
2
a21 �

10u

969

r
143

⇡
a31 +

4719v

31280⇡
a41 (A5)

where a1 is the amplitude of �1(✓,�) = Yh(6). When the
quadratic coe�cient, t6, is su�ciently small, a first order
phase transition occurs to an ordered state, in which a1
is non-zero; its sign is determined by the sign of the third
order coe�cient, u—positive for positive values of u and
negative for negative u values.

Determining the stability of this state entails allowing
all basis states to participate in the Hamiltonian. This
expansion is greatly simplified in the irrep-based expan-
sion because it is entirely diagonal so one can investigate
the properties of each irrep separately. Furthermore all
diagonal entries are the same for the basis states of a
given irrep so can define e↵ective temperatures t6,i for
each irrep.

For example, if a(i)5 is the amplitude of a basis state of
the five-dimensional irrep Hg, then the quadratic term
in the expansion of the e↵ective Hamiltonian about the
ordered state has the form

a
(i) 2
5

⇣ t6
2
+ 3a1,s

u

3

Z ⇡

0

Z 2⇡

0
�1(✓,�)�

(j)
i (✓,�)2 sin(✓)d� d✓

+ 6a21,s
v

4

Z ⇡

0

Z 2⇡

0
�1(✓,�)

2�
(j)
i (✓,�)2 sin(✓)d� d✓

⌘

(A6)

where only quadratic terms in the coe�cient a(i)5 are in-
cluded. The amplitude a1,s in (A6) is the minimizing
solution to Eq. (A5). The term inside the large brackets
is half the e↵ective temperature t6,5 associated with Hg.

The integrals in (A6) are all independent of superscript
(j). If the third order coe�cient u is zero and the quar-
tic coe�cient v positive, then the term in parentheses
turns is positive for negative t6 and proportional to |t6|.
The precise relations are listed in Table IV for the case
u = 0. The expressions in the table hold when t6 < 0,
corresponding to icosahedral ordering. In the case of the
one dimensional representation, the quadratic coe�cient
governs fluctuations in the amplitude of the icosahedral
order. The fact that there are three basis states with
quadratic coe�cient zero reflects the invariance of the
energy of an ordered state with respect to overall rota-
tions of the density.

If u is non-zero, then the expression in parentheses
are more complicated. The quadratic coe�cients, t5,i, of

the a
(i)
6 ’s are graphed in Fig. 22, expressed in terms of

their ratio with respect to u2/v. The dashed line along
the horizontal axis corresponds to the three dimensional

TABLE IV. Values of the e↵ective quadratic coupling for the
four irreducible representations of the icosahedral group when
l = 6 The cubic coe�cient, u is equal to zero. The relation-
ships hold when t6 < 0

Irreducible representation Quadratic coe�cient, t6,i

One dimensional, Ag 2|t|6
Three dimensional, F1g 0

Four dimensional, Gg (42/2299)|t6|
Five dimensional, Hg (2492/11495)|t6|

-2.0 -1.5 -1.0 -0.5 t6v/u2
0.5

1.0

1.5

2.0

2.5

t6,i v/u2

FIG. 22. The quadratic coe�cients, t6,i when there is ordering
for l = 6. The four curves correspond to the one dimensional
representation, (straight, blue dashed), the four dimensional
representation (red, dashed), the five dimensional representa-
tion (black, solid) and the three dimensional representation
(dashed, along the horizontal axis).

representation and, again, reflects the fact that the den-
sity is insensitive to overall rotations of the sphere. Note
that all these coe�cients are either zero or positive. This
means that the icosahedral state is locally stable.

Appendix B: Chiral terms

Without loss of generality, it is su�cient to consider
the density defined on a unit sphere S2. Let

I3 =

Z

S2

r⇢ ·rr⇢ · (n⇥r⇢) dS. (B1)

which can be expressed as:

I3 =

Z

S2

(r↵⇢)(r↵r�⇢)("
�⌫r⌫⇢) dS.

Integrating by parts,

I3 =

Z

S2

r↵
h
⇢"�⌫r⌫⇢(r↵r�⇢)

i
�⇢r↵

h
"�⌫r⌫⇢(r↵r�⇢)

i
dS.

(B2)



20

Since a sphere has no boundary, the first term is zero
by divergence theorem. Expanding the second term and
using the definition of the Laplace-Beltrami, r↵r↵ =:
�,

I3 = �
Z

S2

⇢�(r�⇢)("
�⌫r⌫⇢)+⇢(r↵r�⇢)"

�⌫r↵r⌫⇢ dS.

The second term involves the product of the anti-
symmetric "�⌫ and the symmetricr↵(r�⇢)r↵(r⌫⇢) and
is therefore zero. Using the following identity on the unit-
sphere,

�(r�)⇢ = r�(�⇢) +r�⇢,

we obtain,

I3 = �
Z

S2

⇢"�⌫r�(�⇢)r⌫⇢+ ⇢"�⌫r⌫⇢r�⇢ dS.

Again, the second term in this expression is zero as it in-
volves the product of symmetric and antisymmetric ten-
sors. Applying the divergence theorem to the first term,

I3 =

Z

S2

(�⇢)"�⌫
h
r�⇢r⌫⇢+ ⇢r�r⌫⇢

i
dS = 0,

where the last equality follows from the observation that
the integrand is the product of symmetric and anti-
symmetric tensors, thus establishing the fact that the
integral of the cubic chiral term over a spherical surface
is zero.

Using this same method, it can be shown that one of
the two quartic chiral terms is zero:

Ia4 =

Z

S2

fa
4 dS =

Z

S2

⇢r⇢ ·rr⇢ · (n⇥r⇢) dS = 0.

The only non-trivial chiral term that we find is the
quartic term,

Ib4 =

Z

S2

f b
4 dS =

Z

S2

r⇢ · (rr⇢)2 · (n⇥r⇢) dS. (B3)

Appendix C: Chirality for a single irrep.

In this section we show that the if the density ⇢ is
written in terms of a single representation expansion, i.e.,

if

⇢ =
lX

m=�l

cmY m
l ,

then the surface integral of the cubic chiral term is zero,

I =

Z

S2

r⇢ · (rr⇢)2 · (n⇥r⇢) dS = 0. (C1)

To see this, rewrite I in its coordinate representation,

I =

Z

S2

(r↵r�⇢)(r�⇢)(r↵r⌫⇢)("
⌫�r�⇢) dS.

Using the product rule on the first two product terms of
the integrand gives,

I =
1

2

Z

S2

r↵(|r⇢|2)(r↵r⌫"
⌫�r�⇢) dS.

Using the divergence theorem, we obtain

2I =

Z

S2

r↵
h
|r⇢|2(r↵r⌫"

⌫�r�⇢)
i

�|r⇢|2r↵[(r↵r⌫⇢)"
⌫�r�⇢] dS.

Dropping the first surface term (since S2 has no bound-
ary) and expanding the gradient in the second term, we
find

2I = �
Z

S2

|r⇢|2
h
�(r⌫⇢)"

⌫�r�⇢+"⌫�(r↵r⌫⇢)(r↵r�⇢)
i
dS.

The second term, being a product of a symmetric and
an anti-symmetric tensor, evaluates to zero. Using the
identity, �(r⌫⇢) = r⌫(�⇢) + r⌫⇢, for unit sphere, we
can rewrite the first term in previous integral as,

I = �1

2

Z

S2

|r⇢|2r(�⇢)⇥r⇢ dS, (C2)

having eliminated the term involving the product
"⌫�r⌫⇢r�⇢ as zero.Using the fact that if ⇢ =Pl

m=�l cmY m
l then �⇢ = �l(l + 1)⇢ it follows that, due

to the cross product term in the integrand, the integral
(C2) evaluates to zero.
This proof breaks down for an enlarged composition

space containing multiple irreps. For instance, if

⇢ = ⇠Yh(16) + ⇣Yh(15),

the direct integration shows that I is not zero.
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