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A model of interdependent networks of networks (NoN) has been introduced recently [Proc. Natl.
Acad. Sci. USA 114 3849 (2017)] in the context of brain activation to identify the neural collective
influencers in the brain NoN. Here we investigate the emergence of robustness in such a model
and develop a new approach to derive an exact expression for the random percolation transition in
Erdös-Rényi NoN of this kind. Analytical calculations are in agreement with numerical simulations
and highlight the robustness of the NoN against random node failures, which thus presents a new
robust universality class of NoN. The key aspect of this robust NoN model is that a node can be
activated even if it does not belong to the giant mutually connected component, thus allowing the
NoN to built from below the percolation threshold, which is not possible in previous models of
interdependent networks. Interestingly, the phase diagram of the model unveils particular patterns
of interconnectivity for which the NoN is most vulnerable, thereby marking the boundary above
which the robustness of the system improves with increasing dependency connections.

PACS numbers: 64.60.aq, 64.60.ah, 05.70.Fh

I. INTRODUCTION

Many biological, social and technological systems are
composed of multiple, if not vast numbers of, interact-
ing elements. In a stylized representation each element is
portrayed as a node and the interactions among nodes as
mutual links, thus forming what is called a network [1].
A finer description further isolates several sub-networks,
called modules, each of them performing a different func-
tion. These sub-networks are, in turn, integrated to form
a larger aggregate referred to as a network of networks
(NoN). A compelling problem is how to define the in-
terdependencies between networks, specifically how the
functioning of nodes in one network controls the func-
tioning of nodes in other networks [2–6].

Current models of such interdependent NoN inspired
by the power grid represent such dependencies across net-
works through prohibitively fragile couplings [2, 3], such
that the random failure of few nodes gives rise to a catas-
trophic cascading collapse of the entire NoN. The reason
for such a catastrophic vulnerability lies in a global rule of
interconnectivity between networks: nodes are activated
only when they are part of the mutually connected giant
component. Thus, a single node has to carry the infor-
mation about the entire extensive giant component and
small isolated activated clusters are not allowed as the
node’s activity depends globally on the connectivity of
the whole NoN. This global dependency for functionality
in the network leads to discontinuous sudden transitions
from a connected phase to a disconnected phase, which
is, however, not reversible, i.e. the NoN cannot be built
from below the percolation transition.

Many real-life systems, however, exhibit high resilience
against malfunctioning. The prototypical example of
such robust modular architectures is the brain, which
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thus cannot fit in catastrophic NoN models [6]. To
overcome the fragility of current NoN models, we re-
cently introduced a model of interdependencies in NoN
in which dependency/control links do not need to be
part of the global giant connected component G for their
proper functioning [7]. Our model is inspired by the phe-
nomenon of top-down control in brain activation between
neural networks connected by weak links [8–10]. The key
point in our model is that a node can be activated even
if it does not belong to G. We thus separate the (local)
notion of activity from the (global) concept of the gi-
ant connected component, allowing us to build the NoN
from below the percolation threshold, which is not possi-
ble in previous models of interdependent networks [2, 3].
As a result, dependencies, which are now called control-
ling links in the robust NoN, do not lead to cascades of
failures and the robust model exhibits second order tran-
sitions at the percolation threshold. Interestingly, similar
ideas have been put forward in a NoN model in Ref [11].

We initially [7] studied the impact of rare events, i.e.
non-random optimal percolation [12], on this NoN, allow-
ing us to identify the neural collective influencers (NCI)
in the brain [7], with application to neurological disor-
ders. These NCI are the minimal number of nodes in the
NoN, that upon removal, lead to the destruction of the
mutually giant connected component, which is the gen-
eralization of the optimal percolation process presented
in [12, 13] from single networks to NoN.

Here we investigate the robustness of this NoN model
with respect to typical node failures, i.e. random perco-
lation. More precisely, we develop a new approach to
derive an analytical expression for the random percola-
tion phase diagram in Erdös-Rényi (ER) NoN and ER
multiplex networks. Our calculations unveil the condi-
tions responsible for the emergence of robustness and
predict the critical fraction of interdependencies above
which the system becomes more robust with an increase
in dependency connections, thus presenting a new robust
universality class.
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FIG. 1: (Color online) Robust interdependent 2-NoN.
Intra-module links (black) represent connectivity, while inter-
module links (wiggly blue lines) express mutual control. The
occupation variable ni specifies whether a node is present
(ni = 1; indicated by an −→ to guide the eye) or removed
(ni = 0; no arrow). The activation state σi, defined through
inter-module control links, indicates whether a node is acti-
vated (σi = 1; ) or inactivated (σi = 0; ◦ and •). Nodes can
be activated even if they do not belong to the giant connected
activated component G and control links do not need to be
part of G for their proper functioning (see for instance top-
most pair of nodes in b). A node can be part of G without
being part of the largest connected activated component in
its own module (consider for instance the top left node in a).
Legend: σi = 1; • ni = 1, σi = 0; ◦ ni = 0, σi = 0.

II. DEFINITION OF CONTROL LINKS

Consider N nodes in a NoN composed of several inter-
dependent modules (Fig. 1). We distinguish the roles of
intra-module connectivity links, connecting nodes within
a module, and inter-module control/dependency links,
connecting nodes across modules: while the former only
represent whether or not two nodes are connected, the
latter additionally express mutual control. Every node i
has kconni connectivity links and kctri control connections,
respectively referred to as node i’s connectivity-degree
and control-degree.

Each node can be present or removed, and, if present, it
can be activated or inactivated. We introduce the binary
occupation variable ni = 1, 0 to specify whether node i is
present (ni = 1) or removed (ni = 0). By virtue of inter-
module control/dependency connections, the functioning
of a node in one module controls/depends on the func-
tioning of nodes in other modules. In order to concep-
tualize this form of control, we introduce the activation
state σi, taking values σi = 1 if node i is activated and
σi = 0 if not. A node i with one or more inter-module
control links (kctri ≥ 1) is activated (σi = 1) if and only if
it is present (ni = 1) and at least one of its inter-module
neighbors j is also present (nj = 1), otherwise it is not
activated (σi = 0). In other words, a node with one
or several inter-module dependencies is inactivated when
the last of its inter-module neighbors is removed.

The rationale for this control rule is that the activation
(σi = σj = 1) of two nodes connected by, for instance,
one inter-link occurs only when both nodes are occupied

(ni = nj = 1). If just one of them is unoccupied, let’s
say nj = 0, then both nodes become inactive. Thus,
σi = 0 even though ni = 1, and we say that j exerts a
control over i. This rule models the way neurons control
the activation of other neurons in distant brain modules
(via fibers through the white matter) in a process known
as top-down influence in sensory processing [10]. Mathe-
matically, σi is defined as

σi = ni

[
1−

∏
j∈F(i)

(1− nj)
]

for kctri ≥ 1 , (1)

where F(i) denotes the set of nodes connected to i via
a control link. Conceptually, the control links define a
mapping from the configuration of occupation variables
~n ≡ (n1, ..., nN ) to the configuration of activated states
~σ ≡ (σ1, ..., σN ), as given by Eq. (1).

Not all nodes participate in the control of other nodes
via dependencies, however, i.e. a certain fraction of them
does not establish inter-module control connections. If
a node does not have inter-module links, it activates as
long as it is present:

σi = ni for kctri = 0 . (2)

This property also guarantees that we recover the sin-
gle network case for vanishing inter-module connections
(〈kctri 〉 = 0), i.e. when considering the limiting case of
one isolated module only.

The above control rule can alternatively be expressed
by the McCulloch-Pitts model of neural activation [14]:

σi = 0 direct inactivation (3)

σi = Θ

 ∑
j∈F(i)

σj

 indirect inactivation (4)

where a node can be inactivated directly (in which case
we set σi = 0) or it can be inactivated indirectly as a re-
sult of lacking input from its inactivated neighbors. The
sum over F(i) in the second equation reflects the integra-
tion of incoming activity from nodes j in other modules
connected to node i via control links. The threshold op-
eration via the Heaviside step function Θ indicates that
a minimum of incoming activity is needed for activation
to propagate.

When a fraction of nodes is removed, the NoN breaks
into isolated components of activated nodes. In this work
we focus on the largest (giant) mutually connected acti-
vated component G, which encodes global properties of
the system. In contrast to previous NoN models [2, 3],
in our model a node can be activated even if it does not
belong to G (see Fig. 1). Indeed, the activation of a node,
given by Eq. (1), is not tied to its membership in the giant
component. Therefore, a node can be part of G without
being part of the largest connected activated component
in its own module (consider for instance the top left node
in Fig. 1a). As a consequence, controlling dependencies
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FIG. 2: (Color online) Percolation transition. Frac-
tion of nodes in G (black dots) and 200 ∗ size of the second
largest connected activated component (red dots) as a func-
tion of q for an ER 2-NoN with 〈kconn〉 = 4, 〈kctr〉 = 2 and
N = 2× 106. The percolation threshold qc denotes the criti-
cal fraction of randomly removed nodes at which G(qc) = 0
collapses. The numerical value qnumc = 0.788 is obtained at
the peak of the second largest activated component. The per-
colation transition, separating the phases G > 0 and G = 0,
is of second order in the robust NoN.

in the NoN do not lead to cascades of failures, which ul-
timately explains the robustness of our NoN model. In
the model of Refs. [2, 3], on the other hand, a node can
be activated (therein termed “functional”) if and only
if it belongs to the largest connected component of its
own module and (for the case that it has inter-module
dependency links) its inter-module neighbors also belong
to the giant component within their module. Indeed, in
Refs. [2, 3] the propagation of failures is not local as in
Eq. (1), implying that the failure of a single node may
catastrophically destroy the NoN.

In order to quantify the robustness of our NoN, we
measure the impact of node failures ni = 0 on the size
of G [2–4]. More precisely, we calculate G under ran-
dom configurations ~n, sampled from a flat distribution

with a given fraction q ≡ 1 −
∑N
i=1 ni/N of removed

nodes, and show that G remains sizeable even for high
values of q. In practice, starting from q = 0, we com-
pute G(q) while progressively increasing the fraction q
of randomly removed nodes. The robustness of the NoN
is then formally characterized by the critical fraction qc,
the percolation threshold, at which the giant connected
activated component collapses G(qc) = 0 [2, 3]. Conse-
quently, NoN models with high qc (ideally close to 1) are
robust, whereas low qc is considered fragile. A plot of
G(q) for ER 2-NoN is shown in Fig. 2.

III. MESSAGE PASSING

From a practitioners point of view, the size of G in
a particular NoN realization can be computed using
a breadth-first search strategy [1], which consecutively
identifies activated neighbors (and neighbors of neigh-

bors etc.) until all nodes have been assigned the label of
the corresponding cluster they belong to.

In the limit of large network size (N →∞), the prob-
lem of calculating G can also be solved using a message
passing approach [4, 12, 15] which provides exact solu-
tions on locally tree-like NoN, containing a small num-
ber of short loops [15]. This includes the thermody-
namic limit of Erdös-Rényi and scale-free random graphs
as well as the configuration model (the maximally ran-
dom graphs generated from a given degree distribution),
which contain loops whose typical length grows logarith-
mically with the system size [16].

The virtue of the message passing approach lies in the
fact that it allows us to make statements about the typ-
ical percolation behaviour of large networks through the
computation of ensemble averages, i.e. by averaging the
message passing equations over all realizations of ran-
domness inherent in the percolation process [15].

In principle, message passing works like this: each node
receives messages from its neighbors containing informa-
tion about their membership in G. Based on what they
receive, the nodes then send further messages until every-
one eventually agrees on who belongs to G. In practice,
we need to derive a self-consistent system of equations
that specifies for each node how the message to be sent
is computed from the incoming messages [17]. To this
end, we introduce two types of messages: ρi→j running
along an intra-module connectivity link and ϕi→j run-
ning along an inter-module control link. Formally, we
denote ρi→j ≡ probability that node i is connected to
G other than via intra-module neighbor j, and ϕi→j ≡
probability that node i is connected to G other than via
inter-module neighbor j. The binary nature of the occu-
pation variables and the activation states constrains the
messages to take values ρi→j , ϕi→j ∈ {0, 1}.

The self-consistent system of message passing equa-
tions corresponding to our model can then be derived as
follows. A node can only send non-zero information if
it is activated, hence the messages must be proportional
to σi. Assuming node i is activated, it can send a non-
zero intra-module message ρi→j to node j if and only
if it receives a non-zero message by at least one of its
intra-module neighbors other than j or one of its inter-
module neighbors. Similarly, we can consider the mes-
sage ϕi→j along an inter-module link. Assuming node i
is activated, it can send a non-zero message to node j
if it receives a non-zero message by at least one of its
intra-module neighbors or one of its inter-module neigh-
bors other than j. Thus, the self-consistent system of
message passing equations is given by:

ρi→j = σi

[
1−

∏
k∈S(i)\j

(1− ρk→i)
∏

k∈F(i)

(1− ϕk→i)
]
, (5)

ϕi→j = σi

[
1−

∏
k∈S(i)

(1− ρk→i)
∏

k∈F(i)\j

(1− ϕk→i)
]
, (6)

where S(i) denotes the set of node i’s intra-module near-
est neighbors and F(i) denotes the set of i’s inter-module



4

nearest neighbors. Note that products over empty sets
S(i) = ∅ or F(i) = ∅ default to one.

In practice, the message passing equations are solved
iteratively. Starting from a random initial configuration
ρi→j , ϕi→j ∈ {0, 1}, the messages are repeatedly updated
until they finally converge. From the converged solutions
for the messages we can then compute the marginal prob-
ability ρi = 0, 1 for each node i to belong to the giant
connected activated component G:

ρi = σi

[
1 −

∏
k∈S(i)

(1− ρk→i)
∏

k∈F(i)

(1− ϕk→i)
]
. (7)

The size of G, or rather the fraction of nodes belong-
ing to G, can then simply be computed by summing the
probability marginals ρi and dividing by the system size:

G(~n) =
1

N

N∑
i=1

ρi . (8)

IV. PERCOLATION PHASE DIAGRAM

In what follows we derive an exact expression for the
percolation threshold in Erdös-Rényi 2-NoN, defined as
two randomly interconnected ER modules. Each module
is an ER random graph with Poisson degree distribution,

Pz[k
conn = k] = e−zzk/k! for k ∈ N0 , (9)

where z ≡ 〈kconn〉 denotes the average connectivity-
degree. Similarly, we consider the inter-module links to
form a bipartite ER random graph with Poisson degree
distribution,

Pw[kctr = k] = e−wwk/k! for k ∈ N0 , (10)

where w ≡ 〈kctr〉 denotes the average control-degree. The
corresponding distributions for the connectivity-/control-
degree of the node at the end of a randomly chosen intra-/
inter-link are given by

Qz[k
conn = k] = kPz[k

conn = k]/z ,

Qw[kctr = k] = kPw[kctr = k]/w ,
(11)

for k ∈ N+.
The random percolation process is then defined by re-

moving each node in the NoN independently with prob-
ability q, which is equivalently formulated as taking the
configurations ~n = (n1, ..., nN ) at random from the fol-
lowing product of Bernoulli distributions,

Pp[~n] =

N∏
i=1

pni(1− p)1−ni , (12)

where p = 1− q denotes the occupation probability. We
thus take a slightly different yet mathematically equiva-
lent perspective on the percolation process here: instead

of randomly removing a fixed number qN of nodes, we
consider configurations where each node is independently
removed with probability q. In the thermodynamic limit
of large network size, both approaches are equivalent, as
the distribution of configurations Pp[~n] is highly peaked
around configurations ~n with qN removed nodes.

The probability Pp[σi = 1|kctri = k] that a node with
control-degree kctri = k is activated when a randomly
chosen fraction p of nodes in the NoN is present, can
readily be obtained from the corresponding expectation〈
σi
〉
~n

, which is given by averaging the activation state σi,

in Eq. (1), over the distribution of configurations Pp[~n] :〈
σi
〉
~n

= p1{kctri =0} + p
[
1− (1− p)k

ctr
i
]
1{kctri >0} , (13)

where 1{·} denotes the indicator function. The ex-

pected fraction of activated nodes in the NoN
〈
σi
〉
~n,kctri

is furthermore given by averaging
〈
σi
〉
~n

over the control-

degree distribution Pw[kctri = k] :〈
σi
〉
~n,kctri

= p
[
1 + e−w − e−wp

]
. (14)

Unlike a node’s probability to be occupied Pp[ni =
1|kctri = k] = Pp[ni = 1] = 〈ni〉~n = p, the probability
that a node with control-degree kctri = k is activated

Pp[σi = 1|kctri = k] =

{
p , k = 0

p
[
1− (1− p)k

]
, k > 0

(15)

is therefore highly dependent on the node’s control-
degree kctri . In other words, the deactivation (σi = 1 →
σi = 0) are highly degree dependent, even if the fraction q
of nodes to be removed from the NoN (ni = 1→ ni = 0)
is chosen randomly!

To compute the expectation of messages within the
ensemble of ER 2-NoN, we average the expressions for
ρi→j and ϕi→j , representing the converged solutions to
the message passing equations, over all possible realiza-
tions of randomness inherent in the above distributions
(9)-(12). In doing so, we must however make sure to
properly account for the fact that, for nodes i with con-
trol links (kctri ≥ 1), the binary occupation variable ni
shows up more than once within the entire system of mes-
sage passing equations, due to the activation rule for σi.
Indeed, since the occupation variable is a binary number
ni ∈ {0, 1}, powers of nki = ni for each exponent k ∈ N+

and therefore the self-consistency is not affected by the
existence of multiple ni per node. Yet, when naively av-
eraging with the distribution of configurations, we would

incorrectly obtain nki
Pp−→ pk instead of nki

Pp−→ p, without
properly accounting for the binary nature of the occupa-
tion variable across the entire system of message passing
equations.

More precisely, when inserting the expression for the
message ϕk→i, determined by Eq. (6), into the expres-
sion for ρi→j , given by Eq. (5), then the activation state
σk = nk[1− (1− ni)

∏
`∈F(k)\i(1− n`)

]
(within ϕk→i)
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reduces to nk, since ni(1− ni) = 0 for binomial variables.
In other words, we need to replace σk (σi) with nk (ni)
within the expression for ϕk→i (ϕi→j , Eq. (6)) when com-
puting expectations.

Thus, the modified message passing equations we need
to average read:

ρi→j = σi

[
1−

∏
k∈S(i)\j

(1− ρk→i)
∏

k∈F(i)

(1− ϕk→i)
]
,

ϕi→j = ni

[
1−

∏
k∈S(i)

(1− ρk→i)
∏

k∈F(i)\j

(1− ϕk→i)
]
.

(16)

In practice, we expand ρi→j , given by Eq. (16), and
perform the averaging separately for each term:

ρi→j = ni

[
1−

∏
k∈S(i)\j

(1− ρk→i)
]
1{kctri =0} (17)

+ σi

[
1−

∏
k∈S(i)\j

(1− ρk→i)
∏

k∈F(i)

(1− ϕk→i)
]
1{kctri >0} .

The only non-trivial expectation involves the following
expression:

〈
σi
∏

k∈S(i)\j

(1− ρk→i)
∏

k∈F(i)

(1− ϕk→i)1{kctri >0}

〉
=
〈
ni
∏

k∈S(i)\j

(1− ρk→i)
[ ∏
k∈F(i)

(1− ϕk→i)

−
∏

k∈F(i)

(1− nk)(1− ϕk→i)
]
1{kctri >0}

〉
,

(18)

where we have to account for the fact that (1− nk)(1−
ϕk→i) = (1 − nk). The final expression for the average
intra-module message ρ reads:

ρ = p
[
1 + e−w− e−wp− e−zρ−w+ e−zρ−wp− e−zρ−wϕ

]
.

(19)
Averaging the modified inter-link message ϕi→j , given

by Eq. (16), over all possible realizations of randomness
inherent in the percolation process yields:

ϕ = p
[

1− e−z ρ−wϕ
]
. (20)

The percolation threshold pc = 1 − qc of the ER 2-
NoN can now be found by evaluating the leading eigen-
value determining the stability of the fixed point solution
{ρ = ϕ = 0} to the averaged modified message passing
equations [15]:(

∂ρ
∂ρ

∂ϕ
∂ρ

∂ρ
∂ϕ

∂ϕ
∂ϕ

)∣∣∣∣∣
{ρ=ϕ=0}

=

(
pz
[
1 + e−w− e−wp

]
pz

pw pw

)
(21)

The corresponding eigenvalues can readily be obtained as

λ±=
p

2

[
z[1+h]+w±

√
z2[1+h]2 +2zw[1−h]+w2

]
(22)

FIG. 3: (Color online) Percolation phase diagram for ER
2-NoN. Blue curves show our analytical prediction of the
percolation threshold, qanalyticc , as a function of w ≡ 〈kctr〉
for different values of z ≡ 〈kconn〉 = 0, 2, 4, 6, obtained from
Eq. (23). Black dots show the measured numerical percolation
threshold, qnumc , from direct simulation of the random perco-
lation process, obtained at the peak of the second largest con-
nected activated component. The green dashed line indicates
the maximal vulnerability qmin

c of the NoN. Errors are s.e.m.
over 10 NoN realizations of system size N = 2× 106.

FIG. 4: (Color online) Maximal vulnerability of ER
2-NoN. Critical average control-degree w∗(z) ≡ 〈kctr〉∗(z)
for which the ER 2-NoN is most vulnerable, obtained from
the solution of Eq. (24), for given average connectivity-degree
z ≡ 〈kconn〉. w∗(z) minimizes the critical fraction qc(z, w) of
randomly removed nodes for which the giant activated com-
ponent collapses G(qc) = 0, thereby marking the boundary
above which an increase in the density of dependencies leads
to a more robust NoN. The corresponding curve for qmin

c is
shown in Fig. 3.

where we define h(p) ≡ e−w − e−wp. Formally, the fixed
point solution {ρ = ϕ = 0} is stable if and only if λ+ ≤ 1
[12, 15]. The implicit function theorem then allows us to
obtain the percolation threshold pc = 1−qc by saturating
the stability condition as follows:

λ+ (p, z, w ) = 1 → pc (z, w ) . (23)

Results for qc(z, w) = 1 − pc(z, w) in ER 2-NoN are
shown in Fig. 3 and confirm the excellent agreement be-
tween direct simulations of the random percolation pro-
cess on synthetic NoN and the theoretical percolation
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threshold calculated from Eq. (23). The numerically mea-
sured percolation thresholds, qnumc (z, w), were obtained
at the peak of the second largest activated component
(Fig. 2), measured relative to the fraction of randomly re-
moved nodes in synthetic ER 2-NoN. The analytical pre-
diction of the percolation threshold, qanalyticc (z, w), was
obtained from the numerical solution of Eq. (23).

The large values of qc in the percolation phase diagram
confirm that the NoN is very robust with respect to ran-
dom node failures. The results indicate, for instance,
that a fraction of more than 70% of randomly chosen
nodes in an ER 2-NoN with 〈kconn〉 = 4 can be damaged
without destroying the giant connected activated compo-
nent G. Moreover, the percolation transition, separating
the phases G > 0 and G = 0, is of second order in the
robust NoN (see Fig. 2).

Interestingly, the phase diagram reveals that, for a
given average connectivity-degree z, the NoN exhibits
maximal vulnerability qmin

c (z, w∗) = 1 − pmax
c (z, w∗) at

a characteristic average control-degree w∗(z), indicated
by the dip in the percolation threshold qc in Fig. 3. The
equation determining w∗(z) can straightforwardly be ob-
tained via implicit differentiation of λ+(pc, z, w) = 1, us-
ing ∂pc/∂w |w∗ = 0. Explicitly, w∗(z) is determined by:

pc
2

[
1+z

∂h

∂w
+
z2[1+h] ∂h∂w + z[1−h]− zw ∂h

∂w + w√
z2[1 + h]2 + 2zw[1− h] + w2

]∣∣∣∣
w∗

= 0

(24)
with pc(z, w) given by Eq. (23). The numerical solution
for w∗(z) is depicted in Fig. 4. The corresponding curve
for qmin

c (z, w∗) is shown in Fig. 3 and can readily be seen
to agree with the minimum of the analytical predictions
qanalyticc for the percolation thresholds.

Conceptually, the dip in qc occurs as a consequence of
the competition between dependency and redundancy ef-
fects in the NoN. For 〈kctr〉 < w∗, the percolation thresh-
old qc, and therefore the robustness of the NoN, decreases
as the relative fraction of dependency links is increased.
For 〈kctr〉 > w∗, however, the robustness of the NoN
increases again with increasing redundancy among the
dependency connections. In other words, the critical av-
erage control-degree w∗(z) marks the boundary above
which the onset of redundancy reduces the impact of
deactivations on the giant connected activated compo-
nent G and an increase in the density of dependencies
therefore leads to a more robust NoN.

The underlying mechanism responsible for the remark-
able robustness of the NoN is best understood from the
behaviour of the model in the limit 〈kconn〉 = 0, which
corresponds to a bipartite network equipped with our ac-
tivation rule for σi, given by Eq. (1). The corresponding
message passing equations are straightforwardly obtain-
able from Eqs. (5)&(6), ϕi→j = σi

[
1 −

∏
k∈F(i)\j(1 −

ϕk→i)
]
, and can readily be seen to coincide with the

usual single network message passing equations by ob-
serving that σi can actually be replaced with ni in this
case (the reason is the following: assuming node i is
present (ni = 1), σi = 0 implies that none of i’s inter-

module neighbors is present and so none of the incom-
ing inter-module messages can be non-zero either). This
property can of course directly be obtained also from
Eq. (22), which in the limit z = 0 implies

λz=0
± =

p

2

{
w ±

√
w2
}
→ pz=0

c = 1/w . (25)

Therefore, the functioning of control links is well-
defined even if they connect nodes that do not belong to
the giant connected activated component. In the model
of Refs [2, 3], on the other hand, dependency links only
exist if they connect nodes that belong to the largest con-
nected activated component in their own module. Hence,
it is impossible to construct the NoN from below pc
(or above qc) using dependency links in the model of
Refs [2, 3]. In the robust model, we can construct the
links even if the nodes are not in G, allowing us to build
the NoN from below pc using dependency connections.
Thus, the transition is well-defined from above and be-
low the percolation threshold.

V. MULTIPLEX NETWORKS.

In this section we show that our model of interde-
pendencies as well as the presented approach to derive
analytical expressions for the percolation phase diagram
can straightforwardly be applied also to multiplex net-
works, aka multilayer networks or multigraphs [1, 4]. A
multiplex network consists of N nodes interconnected by
different kinds of links, sometimes portrayed as a multi-
layer structure in which each layer is formed by a different
type of links (connecting the same set of N nodes). Here
we consider a multiplex network composed of two types
of connections: connectivity and control links. More
specifically, we consider Erdös-Rényi multiplex networks,
where both layers are ER random graphs with Poisson
degree distribution. Starting from a single ER random
network with average degree 〈k〉, we randomly choose
a fraction f of the edges and replace them with con-
trol links. We thus obtain an ER multiplex with average
control-degree w = f〈k〉 and average connectivity-degree
z = (1 − f)〈k〉, where the Poisson degree distributions
are given by Eqs. (9)& (10).

The activation state σi of a node i in the multiplex
is given by Eqs. (1)&(2) and the self-consistent system
of message passing equations, specifying for each node
whether it belongs to the giant connected activated com-
ponent G, can readily be seen to be given by Eqs. (5)-(7).
Thus, the entire approach to derive the percolation phase
diagram carries over and indeed all of the above equations
(1)-(25) are valid for ER multiplex networks as well.

The analytical and numerical results for the percola-
tion phase transition qc(〈k〉, f) in ER multiplex networks
are shown in Fig. 5. The remarkable robustness of the
network with respect to random node failures is again
evident. Moreover, the phase diagram displays the same
qualitative behaviour with respect to the dip in qc(〈k〉, f)
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FIG. 5: (Color online) Percolation phase diagram for ER
multiplex networks. Blue curves show the analytical per-
colation thresholds, qanalyticc , as a function of the fraction of
control links f for different values of 〈k〉 = 〈kconn〉+ 〈kctr〉 =
2, 4, 6, 8, calculated from Eq. (23). Black dots show the mea-
sured numerical percolation thresholds, qnumc , from direct sim-
ulation of the random percolation process, obtained at the
peak of the second largest connected activated component.
The green dashed line indicates the maximal vulnerability
qmin
c of the multiplex. Errors are s.e.m. over 10 realizations

of system size N = 106.

FIG. 6: (Color online) Maximal vulnerability of ER mul-
tiplex. Critical fraction of control links f∗(〈k〉) for which the
ER multiplex is most vulnerable, obtained from the solution
of Eq. (24), for given average degree 〈k〉 = 〈kconn〉 + 〈kctr〉.
f∗(〈k〉) minimizes the percolation threshold qc(〈k〉, f ) of ran-
domly removed nodes for which the giant connected activated
component collapses G(qc) = 0, thus marking the boundary
above which an increase in the fraction of control dependen-
cies results in a more robust network. The corresponding
curve for qmin

c is shown in Fig. 5.

as for the interdependent NoN, which can again be un-
derstood to occur from the competition between depen-
dency and redundancy effects in the network. The critical
fraction of control dependencies f∗(〈k〉) for which the ER

multiplex is most vulnerable and above which an increase
in the fraction of control links results in a more robust
network is shown in Fig. 6.

The percolation phase diagram for ER multiplex net-
works further illustrates the behaviour of our model in
the limit f = 1 (corresponding to the limit z = 0 dis-
cussed above), where the network is formed entirely from
control links. The limit f = 1 can readily be seen to co-
incide with the usual single network limit f = 0, where
the network is formed entirely from connectivity links.

VI. CONCLUSION

In conclusion, we have seen that the robustness in NoN
can be understood to emerge if dependency/control links
do not need to be part of the giant connected activated
component G for their proper functioning. In contrast
to previously existing models of interdependent networks
[2, 3], dependencies in the robust NoN do not lead to cas-
cades of failures. The key point in our model is that a
node can be activated even if it does not belong to G.
An example of the structure of NoN where the model ap-
plies is that of the brain [6–10]. While in Ref. [6] we have
shown that the model of [2] becomes robust when corre-
lations in the dependencies are considered, here we show
that a local activation rule Eq. (1) akin to brain control
between modules defines a novel model of NoN which
is robust even without correlations. We have seen that
the maximal vulnerability of the NoN occurs as a conse-
quence of the competition between dependency and re-
dundancy effects, where the critical fraction of dependen-
cies marks the boundary above which the robustness of
the system improves with increasing control/dependency
connections. We have shown that our model of interde-
pendencies can readily be applied also to multiplex net-
works. The presented framework allows to derive analyti-
cal expressions for the percolation phase diagram of inter-
dependent networks with arbitrary degree distributions,
for which theoretical predictions similar to the ones pre-
sented can be obtained. Our model is straightforwardly
generalizable also to directed links.
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