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Current models for opinion dynamics typically utilize a Poisson process for speaker selection,
making the waiting time between events exponentially distributed. Human interaction tends to be
bursty, though, having higher probabilities of either extremely short waiting times or long periods
of silence. To quantify the burstiness effects on the dynamics of social models, we place in com-
petition two groups exhibiting different speakers’ waiting-time distributions. These competitions
are implemented in the binary Naming Game, and show that the relevant aspect of the waiting-
time distribution is the density of the head rather than that of the tail. We show that even with
identical mean waiting times, a group with a higher density of short waiting times is favored in
competition over the other group. This effect remains in the presence of nodes holding a single
opinion that never changes, as the fraction of such committed individuals necessary for achieving
consensus decreases dramatically when they have a higher head density than the holders of the
competing opinion. Finally, to quantify differences in burstiness, we introduce the expected number
of small-time activations and use it to characterize the early-time regime of the system.

PACS numbers: 87.23.Ge, 89.75.Fb, 02.50.Ey

I. INTRODUCTION

Over the years many different models for social dy-
namics [1] have been studied on various networks in an
attempt to capture different aspects of human behavior
[2–8]. Some specific models, like the Naming Game (NG)
[4, 5], have become quite common in the fields of statisti-
cal physics and applied mathematics due to their simple
rules while keeping some essential features of social dy-
namics. Unfortunately, the need for simplicity limits the
accuracy of these models as they try to balance realism
and efficiency. A deeper understanding of the various
sources of inaccuracies present is obviously needed, but
in the case of social systems gaining this understanding
can be quite complex. In many cases, though, alterations
of the underlying assumptions and rules within the mod-
els can not only help to create a more accurate process,
but may allow researchers to draw inferences about the
dynamics of social interactions they are attempting to
model.

For instance, in the binary Naming Game [9–11] (a
two-word variant of the Naming Game [4–8]), the net-
work is made up of many interconnected nodes that each
have a list containing one or both of the possible words.
A single time step begins with the selection of a speaker
followed by a listener. Conventionally, the speaker is cho-
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sen randomly, then the listener is chosen again randomly
but only from the speaker’s neighbors. The speaker then
draws a random word within its list and shares that word
with the listener. If the listener has that word in its list
already, both the speaker and listener delete all other
words from their lists. Otherwise, the listener simply
adds the speaker’s word to its list. The random selection
of speakers means that nodes are selected for events via
a Poisson process, leading to an exponential distribution
of the waiting times they experience between speaking
events [12]. The Poisson communication pattern, how-
ever, lacks the richness of realistic communication dy-
namics [13–15]. In fact, recent works show that human
interaction occurs in a far more bursty manner [16, 17];
humans tend to speak very frequently for short bursts
then go silent for long periods of time, while the expo-
nential distribution leads to fairly regular waiting times
(each node will speak on average once every N micro time
steps). A recent study considered the impact of bursty
communications on the time to reaching the absorbing
state in the voter and in the SI models, where all agents
exhibit the same non-Poisson communication characteris-
tics [18]. In the present work, after introducing the mod-
els and methods (Sec. II), we focus on three scenarios: (i)
Opinion dynamics with competing populations (one with
Poisson, the other with bursty communication features)
in the binary Naming Game (Sec. III.A) [and for com-
parison, in the voter model (Appendix A)]; (ii) The im-
pact of committed individuals [8–10, 19–31] with bursty
communication features in the binary NG (Sec. III.B);
(iii) The impact of committed agents in the base-line
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scenario where all agents exhibit the same type of bursty
communication features (Appendix B). To gain some in-
sight into the impact of burstiness, we carried out an an-
alytic approximation for the expected small-time activa-
tions of the waiting-time distribution (Sec. IV). Further,
to broaden the applicability of our work, we demonstrate
that our main findings hold for real social networks by
studying opinion competition and the impact of commit-
ted agents in sparse random graphs (Appendix C).

The effects of using more bursty communication pat-
terns have been shown to cause great changes in the prop-
erties of models meant to capture the spread of informa-
tion and diseases, sometimes fascillitating and sometimes
slowing spreading depending on the base system and type
of network used [18, 32–37]. In addition, related studies
have shown that increasing the propensity for commit-
ted nodes to speak lowers the number of them needed
to achieve consensus [38]. In social dynamics, however,
there is little understanding of how the specifics of the
waiting-time distributions may affect the spreading pro-
cess or what the critical features of the distributions are.
In contrast to prior works [18, 32–37], we investigate this
by focusing on studying the effects and impact of agents
exhibiting bursty communication delivery competing with
those with Poisson characteristics within the same net-
work. While all individuals have identical speaker-event
frequency in the long-time limit, the difference in their
burstiness can have profound impact on the opinion com-
petition and consensus formation.

Using this method to study direct competition between
two different inter-event time distributions, we can bet-
ter see exactly what features of the distributions have
the greatest impact on the outcome. Additionally, by
combining this competition with the committed agent
variant of the naming game we can begin to understand
what conditions are most favorable to real world spread-
ing phenomenon. For instance, our results help to in-
form on what inter-activity time distribution a group of
activists should choose to influence a campaign to the
largest extent assuming that the rest of the population
uses the exponential distribution by default.

II. METHODS

A. Models

In order to create competition between nodes following
the standard Poisson selection process and those that do
not, a set of non-exponential waiting-time distributions
can be designed so that each has a mean of one (the
same as the exponential distribution generated from the
Poisson selection process). Doing so makes the groups
identical in frequency of speaking over long times, but
different in when they speak. A mean waiting time of
one between speaking events also allows for the definition
of a single system time step to be such that, on average,
there will be N speaking events per unit time. First for

the binary NG (Sec. III.A) [and for comparison, in the
voter model (Appendix B)], we perform simulations on
complete graphs (fully-connected networks) with the ini-
tial condition that half of the nodes have one opinion
(B) and the standard Poisson speaker selection, while
the other half hold another opinion (A) and use one of
the non-exponential waiting-time distributions. To sim-
ulate certain communication patterns as a property spe-
cific to individuals, the nodes keep their communication
patterns as the system evolves, but their opinions still
change in accordance with the binary NG or voter rules,
respectively. (I.e., in our models, speaker’s inter-event
time distribution is a characteristic of a the nodes, not
that of the opinion.) Further, to capture some of the ef-
fects of sparse social networks, we repeated our analysis
of the binary NG on Erdős-Rényi Random Graphs [39]
(Appendix C).

B. Non-Exponential Speakers’ Waiting-Time
Distributions

The specific non-exponential distributions chosen for
study here can be seen in Table I. The distributions were
chosen largely to reflect the power law nature observed in
human communication patterns [15, 17], with the Weibull
[40, 41] and the uniform distributions used as a controls.

In Fig. 1, the different probability density functions
(PDFs) for each of the distributions can be seen along
with the PDF of the exponential distribution. These
plots provide the basis for a qualitative understanding
of why each distribution is used, as well as providing an
intuition for how each distribution behaves as both are
needed to explain results going forward. First, Fig. 1(a)
shows the power law with a lower cutoff at a = (γ−1)/γ.
This distribution was chosen for its propensity towards
burstiness, but also the regularity caused by the short
time dead period. The cutoff means that there is a mini-
mum time each node must wait between speaking events,
and as the system gets burstier (small values of γ) the
cutoff grows. Then, to test the behavior of a system
with an unrestricted bursty nature, Fig. 1(b) shows the
behavior of a power law translated to the left by the
value a = γ − 1. This system always maintains a higher
head density and is thus always burstier than the ex-
ponential distribution (though it becomes similar to the
system with exponential distribution for large values of
γ). Then, Fig. 1(c) displays the Weibull function. This
function has some behavior derived from both the power
law and exponential distributions, and in the special case
of α = 1, it is exactly the exponential function [37]. For
α < 1 it is always more bursty and for α > 1 it is always
less bursty than the exponential distribution. Lastly,
Fig. 1(d) is a uniform distribution centered around x = 1
with a range of b, a function that is always clearly less
bursty than the exponential one.
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Name PDF Definitions Restrictions

Lower cutoff power law p(x) = γaγx−(γ+1) a =
γ − 1

γ
γ > 1, x > a

Shifted power law p(x) = γaγ(x+ a)−(γ+1) a = γ − 1 γ > 1, x > 0

Weibull p(x) =
α

β
(
x

β
)α−1 exp(−(

x

β
)α) β = (Γ(1 + 1/α))−1 x > 0

Uniform p(x) = 1/b 1− b/2 < x < 1 + b/2, b < 2

TABLE I. Description of the probability density functions for the different non-exponential speakers’ waiting-time distributions.
The parameters γ, α, b are used to control the burstiness of the distributions.

FIG. 1. PDFs for the non-exponential speakers’ waiting-time distributions with various chosen parameters compared to the
exponential one. (a) the power law with lower cutoff, (b) the shifted power law, (c) the Weibull distribution, and (d) the
uniform distribution.

III. SIMULATION RESULTS

A. Opinion Competition in the Binary Naming
Game

In this section we study simulations of the competi-
tion outlined above by running the system to consensus
and comparing the fraction of wins for the non-Poisson
nodes with initial opinion (A) for a given system size
and set of control parameters. Here we limit the study
to simulations on a complete graph, but we show in Ap-
pendix C that the results found do not change when the
system is run on a sparse random network instead. As

seen in Fig. 2, opinions corresponding to the burstier
waiting-time distribution are favored, an effect that be-
comes more pronounced with increasing system size. In
fact, in the case of the power law with lower cutoff and the
Weibull distributions, there is a fairly clear transition at
large system sizes at γ ≈ 1.7 and α = 1 respectively due
to those parameters allowing these distributions to have
either a higher or lower head density than the exponen-
tial distribution. This is particularly interesting for the
power law with a lower cutoff. In this case, the transition
is the result of the regularity of the forced waiting period
between speaking events and the inherent burstiness of
the power law head balancing out around γ = 1.7. In
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both cases, though, the dominance of the burstier distri-
bution becomes more pronounced at large system sizes,
causing the side with the higher head density to win with
near certainty in large systems. This is further supported
by the results of the simulations with the shifted power
law and uniform distributions. Since there is no tran-
sition of head density in these cases (the shifted power
law is always burstier than exponential while the uni-
form is always less bursty), they are always more and
less likely to win, respectively. These results imply that
despite the efforts to preserve the symmetry of the sys-
tem by keeping the mean waiting times the same across
all distributions, simply changing the way these waiting
times are distributed carries sufficient impact to entirely
break the symmetry (in the limit of infinite system size
[Fig. 2]). This is in contrast to the voter model, stud-
ied in Appendix A, where the bias towards the burstier
opinion remains constant with increasing system size. In
that case, the randomness inherent in the voter model
works to mitigate the effect of the early time dominance
of the burstier opinion and allows the system to revert to
an even competition more easily.

The question of why these distributions behave this
way (and why the head of the distributions matters more
in this context than the tail) can be answered by study-
ing the different time regimes of the system. By looking
at the average time to consensus for the systems condi-
tioned on which opinion eventually won (as seen in Figs.
3 and 4), the time scales on which the distributions op-
erate can be seen more clearly. Specifically, the system
takes a much longer time to reach consensus for the less
bursty opinion than for the more bursty one. This can
be explained by dividing the simulations into two time
regimes: early time and late time. In the early time
regime, the burstier nodes dominate since they are likely
to activate (often multiple times) before the less bursty
nodes activate at all. They are then likely to go dormant
for some extended amount of time, beginning the later
time regime where the less bursty nodes become far more
active. In most cases, however, the early time dominance
of the burstier side switches the opinon for a sufficient
number of the less bursty nodes to create a heavy ma-
jority for the burstier side before the later time regime is
entered. When this happens, the system quickly reaches
consensus before many of the nodes even have their op-
portunity to speak, leading to the heavily unbalanced
average activations per time step seen in Fig. 5. This
result indicates that a high head density (correlating to
a strong initial push of opinions) is critical to achieving
consensus, even if the nodes that initially caused the push
go silent for long periods afterwards. Even so, occasion-
ally the less bursty opinion still has enough of a presence
to push back during the later time regime to allow for the
long time victories of the less bursty opinion. We have
also found that the consensus time increases logarithmi-
cally, tc ∼ ln(N), in the asymptotic large system-size
limit [Figs. 3 and 4]. This logarithmic scaling holds for all
cases of competing non-Poisson communication dynam-

ics, and regardless of the outcome of the competition.
The rate of the logarithmic increase (i.e., the slope of the
lines in the log-normal plots in Figs. 3 and 4), however,
is sensitive to the details of the non-exponential waiting-
time distributions and to the condition of the outcome of
the competition. One should also note that the standard
binary NG with only Poisson communication dynamics
also exhibits logarithmic scaling of the consensus times
with the system size [7, 11, 20].

B. Consensus Formation and Tipping Points with
Committed Agents in the Binary NG

In prior works, models with committed agents (or
zealots) have often been employed to simulate opinion
spread driven by individuals who never change their opin-
ion [8–10, 19–31]. The general model with committed
agents takes a small minority population in the network
and removes their ability to change opinion, but still al-
lows them to communicate and share their opinion with
others. In most cases, simulations with committed agents
are set up so that a small population of nodes (p) within
the system are designated committed agents and given
a single opinion (A). All other nodes in the system fol-
low the rules of the binary NG as usual and are initial-
ized with the other opinion (B). Because the committed
agents will never change their opinion, the only possible
stable state is the consensus on the minority opinion. In
the binary NG, however, there exists a critical fraction
of committed individuals (pc) (the tipping point) that
causes a sharp phase change in the system such that
below pc the system reaches consensus on the order of
Tc ∼ exp(N) while above pc the system reaches fast con-
sensus on the order of Tc ∼ ln(N) [9].

The value of pc is somewhat sensitive to small alter-
ations within the system rules or the average node de-
gree [24], and heterogeneous waiting-time distributions
are able to lower pc considerably (as seen in Fig. 6(a)).
Here, pc is defined as the committed population at which
half of 1000 simulations reaches consensus before t = 150,
shown in Fig. 6(b). The system size in Fig. 6(a) is 1000,
but as Fig. 6(c) shows, there is no shift in pc at higher
values of N . In these simulations, only the committed
agents are designated as being non-Poisson nodes, while
all other nodes followed the standard Poisson selection
process. When the committed agents are burstier than
the surrounding population, they are able to work far
more efficiently and lower the critical fraction of the pop-
ulation considerably. Interestingly, the opposite is not
true. When the non-committed nodes are burstier, the
critical fraction remains steady at pc ≈ 0.098. This is due
to the same time regime dynamics discussed earlier; the
burstier nodes speak frequently in the early time regime
and give a heavy advantage to their side. If those burstier
nodes are the committed agents, they establish a strong
minority presence in the simulation and gain an advan-
tage. If they are not the committed nodes, however, no
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FIG. 2. The fraction of runs (out of 1000 trials) vs system size that the non-Poisson (A-opinion) nodes won the opinion
competition against the Poisson (B-opinion) nodes in the binary NG on a complete graph. As before, the speakers’ waiting-
time distribution for the non-Poisson nodes is (a) power law with lower cutoff, (b) shifted power law, (c) Weibull, and (d)
uniform distribution.

advantage is gained because the committed nodes cannot
change their opinion. Instead, the system enters the long
time regime where the identical mean waiting times take
over and the system reverts to the value of pc that occurs
in a simulation with all speakers being Poisson selected.

To gain further insight in the impact of bursty commu-
nication patterns on the tipping point pc, we also inves-
tigated the base-line scenario where all individuals in the
system exhibit the same type of non-exponential waiting-
time distribution. The results are shown in Appendix B.

IV. APPROXIMATION OF THE EXPECTED
SMALL-TIME ACTIVATIONS

Throughout the preceding section we demonstrate via
direct simulation that competition between two opinions
spread by groups with different levels of burstiness will
favor the opinion of the group with the higher burstiness.
Further, we demonstrate that the relevant quantity of the
waiting-time distribution is the head density rather than
the tail due to the importance of dominating the ini-
tial stages of the simulation. An analytic description of
this phenomenon proves difficult, however, because direct
comparisons of the head density via the CDF fail to accu-
rately describe the dynamics of this system. These simple
comparisons do not sufficiently account for the probabil-

ity that a bursty node can activate multiple times be-
fore a less bursty node activates once, and thus greatly
underestimate the effect that burstiness can have on a
system. To remedy this, we propose using the expected
small-time activations (D) to characterize the burstiness
of a given node. The expected small-time activations is
an approximation of how many times a node following
a given waiting-time distribution is expected to activate
before the mean activation time is reached. This value
allows for a direct comparison of the influence that dif-
ferent distributions have over the early time period of
a simulation by sampling the head of the distribution
multiple times within different ranges to account for a
node activating multiple times within this range. Using
the notation from before where p(x) is the PDF of the

waiting-time distribution, and P (t) =
∫ t

0
p(x)dx is the

CDF of the same function, we can begin to calculate the
expected small-time activations D. First, we can give
the probability that a node will activate exactly m times
before t as

Pm =

∫ t

0

p(x)Pm−1(t− x)dx (1)

with the special case of no activations before t being
P0(t) = 1 − P (t). From here, we can begin to approx-
imate D by summing the probabilities that a node will
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FIG. 3. The time to consensus conditioned on each side wining in the binary NG on a complete graph. Initially, half the
nodes have non-exponential speakers’ waiting-time distribution and hold opinion A, while another half follows an exponential
distribution and hold opinion B. Part (a) displays the results for the power law with a lower cutoff and γ = 1.7 in an attempt
to show results for a system with similar burstinesses. Parts (b) and (c) shows the case of a more bursty non-exponential
distribution (the shifted power law with γ = 2.9 and the Weibull distribution with α = 0.7 respectively) while part (d) shows
the less bursty case (uniform distribution with b = 1.9). All simulations were run 10000 times, then averaged based on their
final consensus.

speak m times before t multiplied by m. This is contin-
ued for all values of m up to a maximum value considered
(n) after which it is assumed that if a node has not acti-
vated n or less times then it must activate exactly n+ 1
times. Thus, we say that the order of the approxima-
tion is n and an approximation of order n will consider
a maximum number of activations n+ 1. The definition
of D of order n is given by

Dn(t) = (n+ 1)
(
P (t)−

n∑
m=1

Pm(t)
)

+

n∑
m=1

mPm(t) . (2)

Of course, as n goes to infinity this approximation be-
comes an exact description of the expected number of ac-
tivations before t. The probability of having n > 3 activa-
tions, however, drops very quickly with n, so the expected
value of D for a distribution comparable to the exponen-
tial (where D = 1) can be reasonable well-approximated
by D2. Hence, for simplicity we consider only this case
in this paper, and by following the procedure outlined
above the approximate values can be calculated via Eq.
(3)

D2(t) = 3P (t)− 2P1(t)− P2(t) . (3)

For the exponential and uniform distributions, D can be
solved exactly up to higher orders. In fact, the specific
values of Pn are well known for the exponential distribu-
tion as

P exp
n (t) =

tn

n!
e−t . (4)

Similarly, for the uniform distribution the values of P1

and P2 (and beyond) can be obtained analytically in a
closed form,

P uni
1 (t) = Θ(t− (1− b/2))

(
t− 1 + b/2

b

)
(5)

−Θ(t− 2(1− b/2))

(
(t− 2 + b)2

2b2

)
,
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FIG. 4. The time to consensus conditioned on each side winning in the binary NG on a complete graph, where half of the
nodes are in opinion A initially and follow a Weibull waiting-time distribution and the other half of the nodes initially are in
opinion B following an exponential waiting-time distribution. Part (a) shows the results of the conditioned simulations with
α = 0.7 for the Weibull distribution, (b) with α = 0.85, (c) with α = 1, (d) with α = 1.15, and (e) with α = 1.3.

P uni
2 (t) = Θ(t− 2(1− b/2))

(
(t− 2 + b)2

2b2

)
(6)

−Θ(t− 3(1− b/2))

(
27b3 + 54b2t

48b3

+
36bt2 + 8t3 − 162b2 − 216bt− 72t2

48b3

+
324b+ 216t− 216

48b3

)
,

where Θ(t) represents the Heaviside step function. It
should be noted that Eqs. (5) and (6) are only valid for
t ≤ 1 + b/2 (including the range of our interest t ≤ 1).

Unfortunately, for the other waiting-time distribution

functions, the complexity of the integrals limits to which
order the approximation can be taken analytically. For
instance, both P1 and P2 for the Weibull distribution
must be computed numerically, while the values of P2 for
both of the power laws also require numeric integration.
The first order (using just P1) approximation for each of
the power laws can be computed analytically as

P shifted
1 =− γ

(
a

2a+ t

)2γ
(
B

(
a

2a+ t
;−γ, 1− γ

)
(7)

−B
(
a+ t

2a+ t
;−γ, 1− γ

))
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FIG. 5. The average number of speaking events in the binary NG for each type of nodes per one system time-step over the
course of the entire simulation. Each simulation is averaged over 1000 runs with N = 1000 on a complete graph. As before,
(a) is the power law with lower cutoff, (b) is the shifted power law, (c) is the Weibull, and (d) is the uniform distribution.

and

P cutoff
1 = Θ(t− a)

(
1− (a/t)γ

)
(8)

−Θ(t− 2a)

[
1−

(
a

a− t

)γ
− γ
(
a

t

)2γ
(
B

(
t− a
t

;−γ, 1− γ
)

−B
(
a

t
;−γ, 1− γ

))]
,

where B(x; p, q) denotes the incomplete beta function
B(x; p, q) =

∫ x
0
tp−1(1 − t)q−1dt (see [46, Eq. (8.17.1)]).

The remaining cases of P2 for the power law distributions
and both P1 and P2 for the Weibull distribution require
numeric integration as mentioned above. Using these for-
mulas to find approximate values for the expected small-
time activations via Eq. (3) (and using t = 1) yields the
the results in Fig. 7, an accurate representation of the
approximate burstiness of each distribution with respect
to its controlling parameter. In the most simple cases of
the shifted power law and the uniform distribution, this
means accurately displaying that they are always more
or less bursty (respectively) than the exponential. Addi-
tionally, the approximation is able to easily predict the

point of equal burstiness in the trivial case of the Weibull
distribution, since the Weibull becomes exactly the ex-
ponential for the case of α = 1. Finally, and most impor-
tantly, the approximation predicts the transition point of
the power law with lower cutoff to be γ ≈ 1.64, a value
in close agreement with the prior simulated results. This
agreement with a value produced using only information
from the head of the waiting-time distributions further
strengthens the assertion that the dominant region of the
distribution with relation to the outcome of social simu-
lations is the head density rather than the tail, as contri-
butions from any other regions must be small and make
up at most the < 5% difference between the values.

V. CONCLUSION

Attempts to bring more human communication pat-
terns to social dynamics models are often difficult, but
understanding the effects of different changes helps to
bring the abstract models closer to reality. Using a
Poisson process to select speakers in pairwise interaction
models is popular and extremely attractive for its sim-
plicity, yet it is quite different from how people behave.
Not only do people tend to have a much burstier commu-
nication patterns, but they tend to act individually and
thus heterogeneously. Implementing such dynamics into
common pairwise interaction models shows a powerful
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FIG. 6. The effects committed agents with non-Poisson speakers’ communication patterns in the binary NG on a complete
graph. (a) The critical fraction of committed agents (tipping point) necessary to create consensus for the minority opinion with
respect to the various parameters that control the burstiness of the committed agents’ waiting-time distributions, averaged over
1000 runs on systems with N = 1000. It is important to note that the parameters γ, α, and b are specific to the distribution
in which they are used and their impact on the burstiness varies from one distribution to another. As such, they should not
be compared directly to each other. (b) Fraction of runs reaching consensus driven by committed minority by time t = 150.
Committed agents have power law with lower cutoff speakers’ waiting time distribution with parameter γ. The critical fractions
pc [shown in (a)] were defined as the population at which the system reaches consensus (of the initial minority opinion) in
over half of the runs. (c) Finite-size effects of the tipping point for power-law with the lower cutoff and γ = 1.5, indicating no
significant shift in the value of pc as N →∞.

advantage of the community with burstier communica-
tion pattern. In the binary NG, this effect is stronger as
the system size increases since the symmetry of the sys-
tem is broken. This allows even a very small difference
in the waiting-time distribution to have a large effect on
the outcome for a sufficiently large system. In the voter
model, however, this scaling effect is lost, but the overall
bias towards the burstier community remains (see Ap-
pendix A).

When committed agents are introduced to the models,
prior work indicates that the main factors impacting the
value of the tipping point were the number (or fraction)
of committed agents [9, 10, 20], the level of commitment
of those agents [19, 21], their eagerness to leave an in-
termediate opinion state [34], the average node degree
[35], and their rate of activation relative to other nodes
in the system [38]. The results presented here indicate
another factor: the waiting-time distribution of the com-
mitted agents relative to that of the surrounding nodes,
as the general bias towards a more bursty community re-

mains with the presence of committed agents. In fact,
the waiting-time distribution effect is particularly inter-
esting in situations where it is desirable to minimize the
size of the committed fraction because the heterogeneous
waiting-time distributions can have only a positive im-
pact on the efficiency of the committed agents. If the
committed agents are less bursty, the system simply en-
ters the long time regime and reverts to the critical frac-
tion for a system of homogeneous nodes all with exponen-
tially distributed waiting times. This effect is important
in the study of facilitating the growth of a single opinion
in a society, as it implies a new strategy consisting of
multiple strong pushes for the new opinion even if they
are separated by long periods of inactivity. Such a pat-
tern can heavily decrease the cost of spreading an opinion
throughout a society (assuming cost to be proportional
to the number of committed agents rather than to the
number of messages sent, otherwise the results indicate
that a high investment upfront is desirable) by increas-
ing the efficiency of any concerted effort by activists to
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FIG. 7. Comparison of the second order approximation of the small-time activation densities for each of the non-exponential
distributions vs the exponential. (a) shows the shifted power law, (b) shows the power law with lower cutoff, (c) shows the
uniform distribution, and (d) shows the Weibull distribution.

aid the spread spread. Unfortunately, analytic study of
this process is somewhat limited as the non-Markovian
nature of the various selection processes inhibits such en-
deavors. The phenomenon can, however, be accurately
approximated by calculating the expected number of ac-
tivations before the mean waiting time. This allows for
a relatively simple method for comparing the burstiness
of different distributions in terms of their impact on the
early time period of a simulation. Using this information
from only the head of the nodes’ waiting-time distribu-
tions, accurate predictions on the outcomes of simula-
tions can be obtained as it is clear that systems that are
otherwise entirely symmetric can be heavily biased to-
wards one opinion or another via changing the waiting
time distribution of a portion of the nodes.
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Appendix A: Opinion Competition in the Voter
Model

To broaden the scope of our investigations, analogous
simulations were run employing the voter model [1, 42]
on complete graphs. The voter model is very similar to
the binary NG, the only difference being that it has no
intermediate opinion state [19, 43–45]. Instead, at each
time step the listener automatically accepts the speaker’s
opinion as its own. As before, the system is set up so that
half of the nodes follow a non-Poisson update pattern and
are initialized to state A, while the other half follow the
standard Poisson pattern and are initialized to state B.
As shown in Fig. 8, the results are quite similar. The sys-
tem remains biased towards the burstier waiting-time dis-
tribution, and the critical values of the parameters that
switch the bias from the non-exponential distribution to
the exponential distribution remain approximately the
same. In this case, however, unlike in the binary NG,
there is no symmetry breaking in the infinite system-size
limit (Fig. 8). Instead, there is a flat (system-size in-
dependent) bias towards the burstier distribution that
remains the same as the system size approaches infinity.
It is not clear why the voter model behaves this way in
comparison to the binary NG, but it is likely the result of
the lack of history-sensitivity (i.e., the lack of bistability
and hysterisis) in the voter model. In the binary NG sim-
ulations, it is much harder for nodes to switch opinions.
This difficulty allows for opinion shifts within the system
to gain a sort of momentum as the system moves towards
a consensus. In the voter model, however, the ease with
which nodes change opinions means that random fluctua-
tions are much more likely to counter all progress towards
a single consensus. Thus, there is enough random noise
inherent in the system that the symmetry breaking ef-
fect of heterogeneous waiting-time distributions is not as
strong as in the binary NG.

Note that the voter model with committed agents (on a
fully-connected network) does not exhibit a tipping point
in that any non-zero fraction of zealots leads to fast (ex-
ponential) relaxation to consensus [26, 28]. Therefore,
we did not study it here.

Appendix B: Tipping points in system of individuals
with identical burstiness

Here, we consider the case where all agents, including
the committed ones, exhibit identical bursty communica-
tion characteristics [Fig. 9]. The critical fraction of the
total population (tipping points) required for fast consen-
sus on the system exhibit some drift with regards to the
waiting-time distributions used, as seen in Fig. 9(a). In
general, the critical fraction has very little dependence on
the burstiness except for cases of extreme burstiness, such
as a Weibull waiting-time distribution with α = 0.1. In
this case, however, the effect is extreme as a result of the
setup of the simulation. Each of these simulations with

committed agents is set up so that there is some small
fraction of individuals p that is committed and in state
A, while the rest of the network is uncommitted and in
state B. The simulation is then run either until consen-
sus, or until t = 150 is reached, at which point the system
is deemed as having not reached consensus. The critical
population is then chosen to be the one where half of
the simulations run reached consensus. This means that
the system is somewhat sensitive to the value chosen for
the long-time cutoff. For instance, a system left to run
until t = 1000 will return a lower value for pc because it
is far more likely that somewhere in that time frame a
large fluctuation will have pushed the system into con-
sensus. The same effect can be achieved by increasing
the number of speaking events per unit time t, yet again
increasing the number of chances for a large fluctuation
to occur. This is exactly what happens in this scenario,
as evidenced by Fig. 10.

Fig. 10(a) shows that the number of speaking events
per unit time in these simulations with committed agents
is extremely high for the very bursty case of a Weibull
waiting-time distribution with α = 0.1, but leveling out
quickly for more reasonable parameter values. This is in
line with what is seen in Fig. 9(a), where the only large
deviation based on burstiness is from the simulation using
α = 0.1. At first glance, it is not clear why the rate should
be so much higher in this case than others, considering
the construction of the waiting-time distribution to have
a mean of one, but Fig. 10(b) shows that for extreme
values of α, the rate does not begin to normalize down to
one until an extreme long time limit is reached. Similar
results were obtained for the two power law distributions,
however reaching such a ill-behaved parameter set for
those distributions required values of γ much close to the
limit of one than were present in the tests in Fig. 9. In
fact, most simulations with committed agents complete
in around t ≈ 50, and as mentioned above are capped at
t = 150. This is a reasonable window of study for nearly
all of the distributions used, but for the most extreme
cases creates an abnormally high activation rate that can
skew the results.

The high rates of activations in the short times ef-
fectively explain the single large deviation in Fig. 9(a),
but also explain some of the other irregularities con-
tained within. Upon close inspection, the distributions
all either monotonically increase or decrease a very small
amount, except for the Weibull and shifted power law
distributions. These are the two distributions with the
highest propensity for burstiness, and each has an inflec-
tion point where they change from concave to convex for
values of pc. This inflection point is in the same spot
in Fig. 10(a) that shows these two distribution’s speak-
ing events per unit system time normalized to the ex-
pected values. From this it can be gathered that outside
of the effects of an abnormally increased speaking rate,
increased burstiness works to increase the critical frac-
tion of the population in non-Poisson update systems by
a small amount (the same pattern can be seen in the
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FIG. 8. The fraction of runs (out of 1000 trials) vs network size that the non-Poisson (A-opinion) nodes won the opinion
competition against the Poisson (B-opinion) nodes in the voter model on a complete graph. As before, the speakers’ waiting-
time distribution for the non-Poisson nodes is (a) power law with lower cutoff, (b) shifted power law, (c) Weibull, and (d)
uniform distribution.

systems with uniform and power law with lower cutoff
distributions).

Appendix C: Opinion Competition and the Effects
of Committed Agents in the binary Naming Game

on Erdős-Rényi Random Graphs

In the main text all analysis is focused on the dynamics
of the competition on complete graphs, but qualitatively
similar effects hold in the binary NG on Erdős-Rényi
(ER) random graphs [39]. In the direct competition case
(seen in Fig. 11), where the simulations are initialized in
the same way as in Sections III A, the average degree can
be seen to have minimal effect on the outcome. Having a
higher average degree appears to make for a slightly more
well defined transition point, but the effect is extremely
small in all cases. In general, the relative burstiness at
which one group can dominate the simulation is unaf-
fected by the average degree of the network on which the
system is run.

Figure 12 shows, however, that the average degree
does affect the critical population of committed agents
required for fast consensus in the system. Prior works
have shown that lower average degree lowers the criti-
cal population necessary for a fast consensus of the sys-
tem [9, 10, 19, 21], a result that holds for systems where

the nodes with non-exponential wait times are not very
bursty and the system is similar to a normal naming game
simulation. When high levels of burstiness are present,
though, the consequent effect seems to dominate over the
average degree of the network, leading to similar critical
populations for many different values of 〈k〉. When taken
even further into the extreme cases of burstiness (such as
the Weibull distribution with α = 0.1), a lower average
degree in fact raises the critical population, mitigating
the effect of the extreme bursty nature of the nodes.
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FIG. 9. (a) Critical populations of committed nodes (tipping points) in the binary NG on a complete graph when each node
in the network has identical waiting-time distributions and the system size is N = 1000. (b) The Fraction of runs reaching
consensus in 1000 simulations (by time t = 150) vs the fraction of committed individuals for various system sizes. In this plot,
each node has the Weibull waiting-time distribution with α = 1.3.

FIG. 10. (a) Number of speaking events per unit system time relative to the type of waiting-time distribution used in the system
for the same simulations as in Fig. 9(a). As such, the simulations are still done on system of N = 1000, over 1000 runs on a
complete graph. (b) Average number of speakers’ events per time step for a single node updating with a Weibull distributed
waiting time over different time intervals. The values are for the updates of a single node averaged over 1000 simulations. The
inset shows the data for α = 0.1 on extended (logarithmic) time scales
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FIG. 11. The fraction of runs (out of 1000 trials) that reached consensus on opinion A in ER networks with N = 1000 nodes and
various values of the average degree 〈k〉. Half of the nodes follow a non-exponential waiting-time distribution and initially have
opinion A. The other half follow the exponential waiting-time distribution and initially have opinion B. The non-exponential
distributions in each figure are (a) the shifted power law, (b) the power law with lower cutoff, (c) the Weibull distribution, and
(d) the uniform distribution.
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FIG. 12. The critical population pc of committed nodes following a non-exponential wait time distribution that resulted in
half of 1000 trials reaching consensus on opinion A in ER networks with N = 1000 nodes and various values of the average
degree 〈k〉. In each simulation a minority fraction of the population p is committed to opinion A and follow a non-exponential
waiting time distribution. The rest of the nodes have opinion B and follow the exponential distribution. The non-exponential
distributions in each figure are (a) the shifted power law, (b) the power law with lower cutoff, (c) the Weibull distribution, and
(d) the uniform distribution.
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