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In the present work motivated by generalized forms of the Hertzian dynamics associated with granular crys-

tals, we consider the possibility of such models to give rise to both dispersive shock and rarefaction waves.

Depending on the value p of the nonlinearity exponent, we find that both of these possibilities are realizable. We

use a quasi-continuum approximation of a generalized inviscid Burgers model in order to predict the solution

profile up to times near the formation of the dispersive shock, as well as to estimate when it will occur. Beyond

that time threshold, oscillations associated with the highly dispersive nature of the underlying model emerge,

which cannot be captured by the quasi-continuum approximation. Our analytical characterization of the above

features is complemented by systematic numerical computations.

PACS numbers: 45.70.-n 05.45.-a 46.40.Cd

I. INTRODUCTION

Over the last two decades, the examination of granular crys-

tals has received considerable attention, as is now summa-

rized in a wide range of reviews [1–4] and popular articles [5].

Granular crystals consist of closely packed arrays of particles

typically modeled as interacting with each other elastically via

so-called Hertzian contacts. The resulting force depends on

the geometry of the particles, the contact angle, and elastic

properties of the particles [6]. Part of the reason for the wide

appeal of these systems is associated with their remarkable

tunability, which permits to access weakly or strongly non-

linear regimes. At the same time, it is possible to easily ac-

cess and arrange the media in homogeneous or heterogeneous

configurations. Notable examples of the later include period-

ically arranged chains or those involving disorder. It is, thus,

not surprising that granular crystals have been explored as a

prototypical playground for a variety of applications includ-

ing, among others, shock and energy absorbing layers [7–10],

actuating devices [11], acoustic lenses [12], acoustic diodes

[13, 14] and switches [15], and sound scramblers [13, 16].

Much attention has been paid to special nonlinear solu-

tions of the granular chain. Perhaps the most prototypical

example explored in the context of granular crystals is the

traveling solitary wave [1, 2]. More recently, both theo-

retical/computational and experimental interest has been ex-

panded to another broad class of solutions, so-called bright

and dark discrete breathers, which are exponentially localized

in space and periodic in time [3, 5].

Our aim in the present work is to revisit a far less ex-

plored family of waveforms, namely shock waves. The term

shock wave can be interpreted in different ways, depending on

the context (and the potential presence or absence of dissipa-

tion). In this manuscript and for the energy-conserving case

examples considered herein, we characterize shock waves

as states with an abrupt, nearly discontinuous change in the

wave [17, 18]. In the context of partial differential equations

(PDEs), such as the inviscid Burgers equations, this defini-

tion can be made more precise to be a solution that develops

infinite derivatives in finite time [19]. In dispersive media,

the change in the medium occurs via a modulated wave train

[17, 18]. Such structures are called dispersive shocks. In ex-

perimental systems, dissipation can dominate the dispersion,

and the oscillations of the shock wave can be absent, as ex-

plored in [1, 20]. Shock waves were studied experimentally in

[21] by imparting velocity continuously to the end of a chain.

More generally, in the context of the celebrated Fermi-Pasta-

Ulam (FPU) lattices [22] (which bear significant similarities

in their phenomenology with granular crystals in the presence

of strong precompression), dispersive shock waves were ex-

amined numerically for the case of general convex FPU po-

tentials for arbitrary Riemann (i.e., jump) initial data [23].

In this study, we generalize the approach taken in the work

of [24], see also [25–27]. There, it was recognized that the

quasi-continuum form of the Hertzian model directly relates

to a second-order PDE; for a rigorous justification, see [28].

Considering then the first-order nonlinear transport PDEs that

represent the right and left moving waves, one retrieves effec-

tive models of the generalized family of the inviscid Burgers

type [29]. This enables the use of characteristics in order to

predict the evolution of initial data, as well as the potential

formation of shock waves. We demonstrate that the formation

of a dispersive shock in the granular chain without damping

(highly dispersive medium) essentially coincides with the for-

mation of a shock wave in the derived continuum model of the

inviscid Burgers type.

The most commonly studied granular crystals are those

consisting of strain-hardening materials. This implies that

the nonlinear exponent satisfies p > 1 in F ∝ δp, where

F and δ are compressive force and displacement. For exam-

ple, in the Hertzian case of spherical particles, the nonlinear

exponent is p = 3/2 [30]. More recently, generalizations

of the Hertzian contact law have been explored in the con-

text of mechanical metamaterials, including those with strain-

softening behavior (where 0 < p < 1) [31]. Examples of

this include tensegrity structures [32] and origami metamate-

rial lattices [33, 34]. Motivated by those recent works, we will

examine the formation of dispersive shock waves for general

values of p. We find a fundamentally different dynamical be-

havior for the two cases of p > 1 and p < 1. For p > 1
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where, for monotonically decreasing initial data, a dispersive

shock forms due to the larger amplitudes traveling faster from

the smaller ones. In the case of p < 1, the same initial data

lead to a rarefaction waveform, where parts of the wave with

small amplitude travel faster than larger amplitude parts of

the wave [35]. On time scales where the quasi-continuum ap-

proximation remains valid, we are able to analytically follow

the solutions for both strain-hardening (p > 1) and strain-

softening materials (p < 1). In the vicinity of the shock time

(which we predict in reasonable agreement with the numerics

from the quasi-continuum approximation), the discrete nature

of the underlying lattice emerges and significantly affects the

dynamics. Our systematic simulations illustrate – by varying

quantities like the precompression or the nonlinearity power –

how these predictions become progressively less accurate as

the model deviates from its linear analogue.

Our presentation of the above results will be structured as

follows. In section II, we will provide the theoretical back-

ground and analytical findings associated with the generalized

model. In section III, we will compare theoretical predictions

to direct numerical simulations of the particle model. Finally,

in section IV, we summarize our findings and present some

possible directions for future work.

II. THEORETICAL ANALYSIS

Let un be the relative displacement from equilibrium of the

n-th particle in the lattice. As discussed in the introduction,

we are motivated by the generalization of the Hertzian contact

model to arbitrary powers not only due to applications [32–

34], but also due to significant theoretical developments (e.g.,

regarding traveling waves) [24, 36, 37]. In that light, we con-

sider the following equations of motion:

ün = [δ0 + un−1 − un]
p

+ − [δ0 + un − un+1]
p

+ , (1)

where δ0 is the precompression (static load) applied to the

system and the overdot represents differentiation with respect

to normalized time. Defining the strain as yn = un−1 − un,

we rewrite Eq. (1) as

ÿn = (δ0 + yn−1)
p
+ (δ0 + yn+1)

p − 2(δ0 + yn)
p
. (2)

Following [25] towards the derivation of a long-wavelength

approximation characterized by smallness parameter (ε) and

associated spatial and temporal scales, respectively, X = εn
and T = εt, we express the strain as yn(t) = Y (X,T ) and

obtain:

ε2∂2
TY = {δ0 + Y (X + ε)}p + {δ0 + Y (X − ε)}p

−2{δ0 + Y (X)}p.

Hence, the continuum model follows:

∂2
TY = ∂2

X {(δ0 + Y )p}+ ε2

12
∂4
X {(δ0 + Y )p}+ h.o.t.

If one considers long wavelength solutions, then ε ≪ 1, and

thus the higher order correction terms are ignored, resulting in

the model,

∂2
TY = ∂2

X {(δ0 + Y )
p} . (3)

Now, in the spirit of [29], consider the first order (nonlinear

transport) PDEs that would be compatible with Eq. (3),

∂TY ± α∂X {(δ0 + Y )
c} = 0, (4)

where ± indicates the two propagation directions. The param-

eters α and c will be chosen such that solutions of Eq. (4) are

solutions of Eq. (3). From this we infer:

∂2
TY = ∂T [∓α∂X {(δ0 + Y )

c}] = ∓ α2c2

2c− 1
∂2
X

{

(δ0 + Y )
2c−1

}

.

(5)

Comparing Eq. (3) and the right hand side of the last equality

of Eq. (5), we obtain c = (p + 1)/2 and α2 = 2c−1
c2

. Using

these definitions of c and α, we re-write Eq. (4) as

∂TY ±√
p(δ0 + Y )

p−1

2 ∂XY = 0. (6)

Using then the standard technique of characteristics (see,

e.g., [35] for an elementary discussion) in order to solve

Eq. (6), we obtain the equation along characteristic lines

(along which the solution is constant) of the form:

dX

dT
= φ (Y (X,T )) (7)

where

φ (Y (X,T )) =
√
p (δ0 + Y (X,T ))

p−1

2 . (8)

Since solutions of Eq. (6) are constant along characteristic

lines, Eq. (7) becomes

dX

dT
=

X −X0

T
= φ (Y (X,T )) = φ (Y (X0, 0)) . (9)

In this study, we choose

Y0 (X0) = asech (bX0) (10)

as the initial function, motivated by the interest in localized

initial data.

As is well known in this broad class of generalized invis-

cid Burgers models, despite the smooth initial distribution of

the strain (yn), a shock wave (a wave breaking effect) can be

observed to form in a finite time; i.e., the solution develops in-

finite derivatives in a finite time in the continuum limit of the

problem [19]. This shock wave is created (due to the resulting

multi-valuedness) when the characteristic lines intersect. To

predict when the shock wave is formed, i.e., the shock wave

time (Ts), we consider the following two (arbitrary) charac-

teristic lines.

X(T ) = φ (X1)T +X1 (11)

X(T ) = φ (X2)T +X2 (12)

where X1, X2 ∈ R and X2 = X1 + h. When these two lines

intersect, we obtain

T = − X2 −X1

φ (X2)− φ (X1)
= − h

φ (X1 + h)− φ (X1)
. (13)
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The shock wave is formed at the time at which the characteris-

tic lines intersect for the first time. Therefore, the shock time

is calculated as follows:

Ts = min

[

− h

φ (X1 + h)− φ (X1)

]

=
1

min
[

−φ(X1+h)−φ(X1)
h

] .

Then, considering h → 0, we obtain

Ts = − 1

min
[

dφ(X)
dX

] . (14)

In this study, our semi-analytical prediction based on the

above considerations consists of evaluating
dφ(X)
dX

and (nu-

merically) identifying the relevant minimuum, which leads via

Eq. (14) to a concrete estimate of Ts to be compared with di-

rect numerical simulations. It is also worth noting that as the

time Ts of the shock formation is approached, the continuum

approximation of Eq. (14) breaks down. Thus, in what fol-

lows, we will use the latter as a numerical diagnostic for the

identification of Ts.

III. NUMERICAL COMPUTATIONS AND COMPARISON

Armed with the above theoretical considerations, we now

turn to a comparison of the discrete model and the continuum

model in terms of the formation of dispersive shock waves (as

a way of quantifying the accuracy of our prediction). While

true shock waves cannot form in the discrete system, it is rea-

sonable to assume that the formation of a shock in the contin-

uos model Eq. (3) coincides with the formation of a disper-

sive shock in the discrete model. This assumption is checked

through the numerical simulations. In order to initialize the

direct simulation of the discrete model, the initial velocity of

each particle is needed. Based on the initial strain Y0(X), the

initial velocity that is consistent with the derivation of Eq. (3)

can be computed as

[

dyn
dt

]

t=0

=
d

dt
[Y (X,T )]t=0

= ±ε
[√

p(δ0 + Y0)
p−1

2 ∂XY0

]

.

The initial strain is given by Eq. (10) with the numerical con-

stants a = 0.01 and b = 0.3. These simulations will be com-

pared to the continuum model approximations. The spatial

profile of the continuum approximation at a given time t can

be computed by solving the following implicit equation,

Y (εn, εt) = Y0(εn− φεt), (15)

where the wave velocity φ = ±
√

p(δ0 + Y (εn, εt))p−1 fol-

lows directly from Eq. (6).

Figure 1 shows the strain wave propagation for the stan-

dard case of spherical Hertzian contacts p = 1.5 [1, 2], while

Fig. 2 motivated by the works of [32–34] shows the case of

p = 0.5. In these two figures, the left panels show the wave

shape at four different time instances, and the right panels

show the space-time contour plots of strain wave propaga-

tion. In each case the top row represents the case of no-

precompression (fully nonlinear case), while progressively the

middle and bottom row introduce higher precompression ren-

dering the problem progressively more linear. For p = 1.5,

the wave breaks from its front part (see Fig. 1), whereas the

p = 0.5 case shows the wave breaking from the tail part as

shown in Fig. 2. This can be understood since the speed of

propagation φ(Y (X,T )) in the system depends on the ampli-

tude of the wave, see Eq. (8). For p > 1, points along the ini-

tial condition with larger amplitudes travel faster than points

with smaller amplitudes. Thus, the large amplitude part of the

wave overtakes the smaller amplitude part, leading to a disper-

sive shock formation in the front (monotonically decreasing

part of the data), and a rarefaction in the back (monotonically

increasing part of the data). On the contrary, for p < 1, the

situation gets reversed as is natural to infer from the speed ex-

pression φ(Y (X,T )): the rarefaction forms in the front, while

the wave breaking emerges in the back.

In Figs. 1 and 2, in addition to showing the dynamics of

the original underlying lattice of Eq. (1), the prediction based

on the theoretical analysis of the nonlinear transport PDE is

shown, see Eq. (15). It can be inferred that the two closely

match until the time where a discontinuity is about to form

at which time the discrete model starts to feature oscillatory

dynamics, a dispersive feature absent in the continuum, long

wavelength model. A specific diagnostic in that connection

that we use in order to compare the discrete and continuum

cases is the shock formation time Ts. To obtain this time from

the simulations, we examine the slope of the wave shape by

calculating the sign of the differences of the strains between

adjacent particles, and we define the shock wave time (TS)

when the sign changes multiple times, i.e., when the discrete

character of the model prevents (the continuum) shock wave

formation. The resulting comparison of Ts is a principal quan-

titative finding of the present work.

Figure 3 shows the comparison between numerical and ana-

lytical shock wave time for different exponent values (p). The

difference increases if p approaches unity because p = 1 in-

dicates that the system becomes a linear advection equation

which does not support shock waves. It is for that reason that

the shock formation time diverges as the limit p → 1 is ap-

proached. Nevertheless, the quantitative trend between the

two cases (p > 1 and p < 1) is well captured in both pan-

els of the figure, i.e., for different values of the nonlinearity.

In addition, we analyze the effect of pre-compression (δ0) on

the shock wave time as shown in Fig. 4. As we increase the

pre-compression (i.e., the system enters the weakly nonlin-

ear regime and progressively approaches linear regime), the

difference between numerical and analytical results increases.

One can argue that this disparity may be partially related to the

way we quantify Ts. In particular, as the system approaches

p = 1 or δ0 large, linear modes become progressively more

accessible to it (a situation to be contrasted with the sonic

vacuum where no such modes exist). As a result, while in the
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(b)

tS = 471 [s]

Oscillations
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FIG. 1: Strain wave propagation for p = 1.5 and temporal plots of

strain waves for (a) δ0 = 0, (b) 0.001, and (c) 0.01. The black solid

line is obtained from the direct simulation of the discrete model, and

the red dashed line is the prediction based on Eq. (15) (i.e., the con-

tinuum model). Strain curves are offset to ease visualization (ticks in

the vertical axis indicate 1.0). The insets (i) and (ii) show the mag-

nified view of the leading part at and after the predicted shock time,

respectively. Space-time contour plots of strain wave propagation for

(d) δ0 = 0, (e) 0.001, and (f) 0.01. The gray solid line indicates the

predicted analytical shock wave time.

sonic vacuum – in the effective absence of linear modes – the

time of the shock nearly coincides with the emergence of non-

monotonicity near the wave front, in the progressively nearer

linear case, the non-monotonicity emerges earlier. Hence the

numerical evaluation of Ts (based on the emergence of dis-

creteness induced oscillations) suggests that Ts is calculated

to be well before the wave breaking event predicted by the an-

alytics. Despite this distinction, it is fair to say that the quasi-

continuum theory provides a very good tool for predicting the

pre-shock wavefront evolution and for estimating the shock

time, except in the vicinity of linear dynamical evolution.

IV. CONCLUSIONS & FUTURE CHALLENGES

In the present work, we investigated the emergence of dis-

persive shock and rarefaction wave formation in generalized

granular crystal systems with Hertzian contacts. Motivated

by recent developments in origami metamaterials [33, 34] and

FIG. 2: Strain wave propagation for p = 0.5 and temporal plots of

strain waves for (a) δ0 = 0, (b) 0.001, and (c) 0.01. The black solid

line is obtained from the direct simulation of the discrete model, and

the red dashed line is the prediction based on Eq. (15) (i.e., the con-

tinuum model). Strain curves are offset to ease visualization (ticks

in the vertical axis indicate 1.0). The insets (i) and (ii) show the

magnified view of the tail part at and after the predicted shock time,

respectively. Space-time contour plots of strain wave propagation for

(d) δ0 = 0, (e) 0.001, and (f) 0.01. The black solid line indicates the

predicted analytical shock wave time.

tensegrity structures [32], we explored both the scenario of

p > 1 (including p = 3/2 of spherical contacts), and that

of p < 1 of strain-softening media. We identified the emer-

gence of both dispersive shock waves and rarefaction waves

and found a complementarity between the two cases. In the

strain-hardening case, shock waves arise out of monotonically

decreasing initial conditions while rarefactions out of mono-

tonically increasing ones. The reverse occurs in the case of

strain-softening p < 1 media. The generalization of the quasi-

continuum formulation of [28] in the spirit of the nonlinear

transport equations proposed by [29] provided us with an an-

alytical handle in order to characterize the evolution of pulse-

like data in the strain variables. A key quantitative prediction

concerned the time of formation of the discontinuity as char-

acterized at the quasi-continuum level. We discussed how the

discreteness of the system, once visiting scales comparable to

the lattice spacing, intervenes by generating oscillations and

departing in this way from the quasi-continuum description.

This work suggests a number of exciting possibilities for
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(a) (b)

FIG. 3: Effect of the exponent value (p) on the shock wave time for

(a) δ0 = 0.001 and (b) δ0 = 0.01. The black square indicates the

shock wave time from numerical simulations (TS), and the red circle

is the analytical prediction (Ts).

(a) (b)

FIG. 4: Effect of the pre-compression (δ0) on the shock wave time

for (a) p = 0.5 and (b) p = 1.5. The black square indicates the

shock wave time from numerical simulations (TS), and the red circle

is the analytical prediction (Ts). Data is plotted on log-log scale.

the future. One interesting avenue is that of obtaining infor-

mation about dispersive shock waves either at the level of the

KdV model, or at that of the Toda lattice and then. Then, in

the spirit of [38], we can use these to characterize the forma-

tion of dispersive shock waves that emerge in the presence of

precompression. That being said, it is unclear what becomes

of such dispersive shock waves when precompression is weak

or absent, as especially in the latter case there is no defini-

tive characterization of dispersive shock waves. However, the

direction of the first order equations could be an especially

profitable one in that context. The work of [39] (see also nu-

merous important references therein) suggests that for the in-

viscid Burgers problem shock waves have been extensively

studied both analytically and numerically. It is conceivable

that a (judiciously selected) discretization of the first order

PDEs considered herein could offer considerable insight in

the formation of shock waves, both in the weak and even in

the case of vanishing precompression limit. As demonstrated

in [1, 20] the presence of damping can change the dynamics

significantly (where e.g. the oscillatory nature of the shock is

not observed), and thus extensions of this work that consider

damping is also relevant. These are important directions that

are under current consideration and will be reported in future

publications.
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