
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Predicting mixing via resonances: Application to spherical
piecewise isometries

Lachlan D. Smith, Paul P. Park, Paul B. Umbanhowar, Julio M. Ottino, and Richard M.
Lueptow

Phys. Rev. E 95, 062210 — Published 13 June 2017
DOI: 10.1103/PhysRevE.95.062210

http://dx.doi.org/10.1103/PhysRevE.95.062210


Predicting mixing via resonances: Application to spherical1

piecewise isometries2

Lachlan D. Smith,1, ∗ Paul P. Park,2 Paul B. Umbanhowar,33

Julio M. Ottino,1, 3, 4 and Richard M. Lueptow3, 4, †
4

1Department of Chemical and Biological Engineering,5

Northwestern University, Evanston, IL 60208, USA6

2Department of Engineering Sciences and Applied Mathematics,7

Northwestern University, Evanston, IL 60208, USA8

3Department of Mechanical Engineering,9

Northwestern University, Evanston, IL 60208, USA10

4The Northwestern Institute on Complex Systems (NICO),11

Northwestern University, Evanston, IL 60208, USA12

(Dated: May 12, 2017)13

Abstract14

We present an analytic method to find the areas of non-mixing regions in orientation-preserving15

spherical piecewise isometries (PWIs), and apply it to determine the mixing efficacy of a class of16

spherical PWIs derived from granular flow in a biaxial tumbler. We show that mixing efficacy17

has a complex distribution across the protocol space, with local minima in mixing efficacy, termed18

resonances, that can be determined analytically. These resonances are caused by the interaction19

of two mode-locking-like phenomena.20
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I. INTRODUCTION21

Mixing is central to a wide range of industries. While fluid mixing by “stretching-and-22

folding” in time-periodic flows has been studied extensively and is relatively well understood23

[1–3], mixing of granular materials has received less attention. Granular materials are per-24

vasive, spanning, for example, the pharmaceutical and food processing industries where25

achieving homogeneous mixtures of granular ingredients is critical. However, most studies26

on granular mixing consider two-dimensional (2D) flows, and those that consider three-27

dimensional (3D) granular mixing primarily consider the effectiveness of industrial mixing28

devices rather than the underlying mechanics and mathematics of the fundamental mixing29

processes [4–6].30

In practice, mixing in granular flows can result from collision driven diffusion, chaotic31

advection (stretching-and-folding), and spatial rearrangement of entire sections of material32

(“cutting-and-shuffling”) [7] depending on the geometry and driving of the flow. The combi-33

nation of and competition between these mechanisms results in complex motion of individ-34

ual particles and significant challenges in understanding and predicting the overall mixing35

efficacy. For a class of mixing protocols in a spherical tumbler, isolating the cutting-and-36

shuffling motions yields a “skeleton” for the kinematics that captures the most significant37

mixing features observed in the corresponding experiments [8]. These cutting-and-shuffling38

transformations are termed piecewise isometries (PWIs) [9–11], which have found use in39

several applications [12–17]. In a PWI, an object is cut into several pieces, and the pieces40

are rearranged to reconstruct the original object. The theory of PWIs provides a frame-41

work to study the cutting-and-shuffling motions that drive granular mixing. However, this42

theory is still under development, and much remains to be understood. For instance, much43

of the theory has been developed for PWIs in planar geometry, and less is understood for44

PWIs in curved geometries such as a sphere [14, 15, 18, 19], which is considered here. For45

planar PWIs generated by a single rotation angle θ the general nature of particle motion46

can be predicted based on whether θ/π is rational or irrational [13]. When θ/π is rational47

the non-mixing regions form a polygonal tiling of the domain, and the mixing region has48

zero area. In contrast, when θ/π is irrational, the non-mixing regions are circular, and the49

mixing region has positive area.50

For spherical PWIs generated by rotation like those considered here, similar predictions51

2



cannot be made because the composition of rotations in 3D is not as simple as summing the52

angles. Another feature of spherical PWIs is that translations are also rotations, meaning53

spherical PWIs consist of only rotations and reflections. Therefore, all spherical PWIs54

can be written piecewise as the composition of rotations and reflections. If no reflections55

occur, i.e. the PWI consists purely of rotation transformations, then the PWI is described56

as orientation-preserving; otherwise it is orientation-reversing. Here orientation-preserving57

PWIs are primarily considered, though the results are generic to orientation-reversing PWIs58

as well.59

Linking the inherent geometric properties of PWIs with their mixing efficacy, Park et al.60

[18, 19] demonstrated positive correlation between the area of the exceptional set (where61

the cuts occur) and the long-term mixing efficacy a spherical PWI produces. Essentially,62

portions of the domain covered by the exceptional set are eventually cut into arbitrarily small63

pieces that are rearranged, resulting in mixing. Therefore, if a large portion of the domain is64

covered by the exceptional set, then the mixing efficacy is high. Regions that are not covered65

by the exceptional set, called cells in PWI theory, remain intact for all time, and prevent66

mixing. These cells are analogous to non-mixing “islands” associated with elliptic periodic67

points of area-preserving dynamical systems. For mixing applications, it is desired to find68

protocols that maximize the area of the exceptional set and avoid protocols that minimize69

this area. We use the term resonance to denote a local minimum of exceptional set area in the70

protocol space, because the total area occupied by cells is large, and so a large portion of the71

domain is periodic, i.e. resonating with itself. One method to find resonances is to compute72

the area of the exceptional set across the entire protocol space, which is computationally73

expensive. The question we address here is whether resonances, and hence mixing efficacy74

can be predicted a priori based only on properties such as symmetry and limiting behaviour75

of the PWI. By finding the areas of cells analytically, we identify resonances in the two-76

dimensional protocol space of an orientation-preserving spherical PWI. In doing so, we77

rationalize the complex distribution of mixing efficacy across the protocol space that was78

found by Juarez et al. [20].79

We begin by introducing the Biaxial Spherical Tumbler (BST) PWI and the relevant80

terminology from PWI theory in §IIA. Then the complex distribution of mixing efficacy81

across the protocol is discussed and resonances demonstrated in §II B. Finally, in §III a82

method to find these resonances analytically is introduced and used to determine mixing83
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(a) Initial condition (d) Rotation and cut: x axis (e) After step 4(c) After step 2

FIG. 1. The BST PWI for θz = θx = π/4. The solid blue, black and red curves show where cutting

occurs, and the dashed lines show the rotation axes. Adapted with permission from Park et al.

[18], Chaos 26, 073115. c©2016 AIP Publishing.

efficacy across the protocol space.84

II. RESONANCES IN A HEMISPHERICAL PWI85

A. The Biaxial Spherical Tumbler PWI86

Here we consider the half-full Biaxial Spherical Tumbler (BST) PWI [7, 18, 20–22], which87

maps the hemispherical shell (HS) S = {(x, y, z) : x2+ y2+ z2 = 1, y ≤ 0} to itself [23]. The88

map Mθz ,θx : S → S originates from the vanishing flowing layer limit of a granular flow in89

a half-full spherical tumbler [7] and is given by the following sequence of transformations,90

referring to Fig. 1 and Park et al. [18]:91

1. Rotate the entire HS clockwise about the z-axis by θz and make a cut through the HS in92

the y = 0 plane.93

2. Rotate the cut portion above y = 0 by π about the z-axis to recover the HS.94

3. Repeat step 1, except perform the rotation anti-clockwise about the x-axis by θx.95

4. Repeat step 2, except perform the rotation about the x-axis.96

Here θz , θx are the control parameters, and the ordered pair (θz, θx) is referred to as a97

protocol.98

While the 4-step description of the map uses two separate rotations and cuts, corre-99

sponding to the action of experimental granular tumblers [8], the map is identical to a single100

cut and shuffle transformation: cut the HS into four partial lunes P1−4, termed atoms in101
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PWI theory, as shown in Fig. 2(a), and rearrange them as shown in Fig. 2(b) to recon-102

struct the HS. Note that the atoms are labelled from right-to-left and top-to-bottom to103

reflect the general direction of tracer particle transport; particles move from right to left104

under the z-axis rotation, then from top to bottom under the x-axis rotation. We call105

the three curves D1−3 that separate the atoms “cutting lines,” together they form the set106

D =
⋃3

i=1Di =
⋃

i,j,i 6=j(Pi ∩ Pj). For the BST PWI, D1−3 are generated as rotations of107

the domain boundary ∂S : x2 + z2 = 1, y = 0 about the x- and z-axes, and hence are108

sections of great circles, i.e. intersections of the sphere with a plane that passes through109

the origin. Tracking D forward and backward in time reveals all possible cut locations. For110

example, the cutting lines D separate regions that are cut and shuffled after one iteration,111

as demonstrated in Fig. 2. Combining D with its first preimage, M−1
θz ,θx

(D) ∪ D, separates112

regions that are cut and shuffled after two iterations, and so on. The entire set of images113

and preimages,114

E =
+∞
⋃

n=−∞

Mn
θz ,θx (D) , (1)115

is known as the exceptional set associated with the protocol (θz, θx). Due to the infinite116

union, it is impossible, in most cases, to find every point in the exceptional set. We numer-117

ically approximate E by seeding points along the cutting lines D and iterating them under118

the inverse map M−1
θz ,θx

to approximate each preimage. Combining a sufficient number of119

preimages [24] results in an approximation of E, examples of which are shown in Fig. 3 for120

different protocols (θz , θx).121

Even though E always has zero Lebesgue measure (i.e. area), as it is the countable union122

of measure-zero sets, Park et al. have demonstrated that the closure Ē = E ∪ ∂E is a “fat123

fractal” for most protocols [19], meaning it has positive Lebesgue measure and a fractal124

boundary. Furthermore, the area that Ē occupies correlates strongly with the long-term125

mixing achieved by the BST PWI [19], and this is expected to be a generic property of126

all PWIs. In essence, any region covered by Ē will eventually be cut into infinitely small127

pieces and rearranged, producing a high degree of mixing. While theoretically possible,128

the exceptional set generally does not cover the entire HS, but rather has “holes” termed129

cells, which are demonstrated by the white and colored regions in Fig. 3. Like non-mixing130

islands associated with elliptic periodic points in dynamical systems, these cells correspond131

to regions that are periodic, i.e. they return to their initial position after some number of132
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(a) (b)

FIG. 2. Bottom view of the action of the BST PWI. The HS is cut along the curves D1−3 shown

in (a) and recombined as shown in (b).

iterations. The order in which each cell visits the atoms P1−4 before returning to its original133

position defines a unique periodic itinerary, e.g. in Fig. 3 the dark red cell in P4 has itinerary134

P4 → P1 → P1, or 411 = 412 in short. Due to this uniqueness, each cell can be identified by135

its periodic itinerary. Note, however, that there may exist itineraries that do not correspond136

to a cell. A cell’s periodic itinerary determines the sequence of isometries that a tracer137

particle inside the cell experiences. For instance, in P4 particles are rotated by θz + π about138

the z-axis, denoted Rz
θz+π, then by θx + π about the x-axis, denoted Rx

θx+π, whereas in P1139

particles are rotated by Rz
θz

then Rx
θx
. Therefore, all particles in the cell with itinerary 412140

experience the same sequence of isometries:141

(

Rx
θxR

z
θz

) (

Rx
θxR

z
θz

) (

Rx
θx+πR

z
θz+π

)

, (2)142

which will have important consequences in §III where cell locations and sizes are found from143

the sequence of isometries associated with their itineraries.144

By definition cells are periodic regions, and the iterates of a cell are also cells, with145

itineraries given by the rotation permutations of the original itinerary, e.g. the dark red cells146

in Fig. 3(a–c) have itineraries 411, 141 and 114 and are iterates of each other. Therefore,147

we can refer to the entire set of iterates of a cell by specifying a single “base itinerary.”148

Since all cells with the same base itinerary are solid body transformations of the base cell,149
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(a) (b) (c)

FIG. 3. Exceptional sets (gray) for the BST PWI with the cutting lines D1−3 shown red, green

and blue, respectively. Cells with base periodic itinerary P4 → P1 → P1 (411 = 412) are shown

in dark red, and the conjugate pair with base periodic itinerary P3 → P2 → P1 (321) is shown

in light blue. (a) For θz = θx = 4π/15 cells are circular and Ē has positive area. (b) For

θz = θx = arccos[(−1 +
√
5)/2] the union of the regular pentagonal cells (dark red, light blue),

the irregular quadrilateral cells (orange with itinerary 21312) and the irregular triangular cells

(white with itineraries 312412213 and 32131421) perfectly tile the HS, which means Ē has zero

area. (c) For (θz, θx) = (0.9960, 0.5748), both circular and polygonal cells exist, and Ē has finite

area. Irregular quadrilateral cells are shown orange, cells with base itinerary 412212 are shown

light red and their conjugate with base itinerary 321221 is shown in dark blue.

they all have the same radius and share the same internal rotation angle α, i.e. the angle150

of rotation produced within the cell after it returns to its initial position, demonstrated by151

the white square in Fig. 3(b) that is rotated by α = 4π/5 about the center of the cell after152

three iterations.153

Furthermore, each chain of cells with a cell in P4 is conjugate to another chain with the154

same period and size (Appendix B). This relationship is demonstrated by the two period-3155

cell chains (dark red and light blue) in Fig. 3(a–c) and the two period-6 cell chains (dark156

blue and light red) in Fig. 3(c). This conjugacy means that the characteristic information157

(radius, area, internal rotation angle) for one chain of cells is identical to that for a conjugate158

chain of cells.159

Cells can manifest either as circles, regular polygons or irregular polygons. The shape of160

the cell is determined by the rotation α produced within the cell after it returns to its initial161
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position as follows [13, 14]:162

• Circles: internal rotation is incommensurate with π, i.e. α/π is irrational. These are163

demonstrated by the dark red, light blue and white cells in Fig. 3(a). While the cells as164

a whole return to their initial location, they never return to their initial orientation, i.e.165

points inside the cells (other than the center) never return to their initial position.166

• Regular polygons: internal rotation is commensurate with π, i.e. α/π = 2p/q for some167

integers p, q 6= 0. In this case the cell is a regular q-gon, for example the dark red and168

light blue pentagons in Fig. 3(b) have α/π = 4/5. Since each pentagon is period-3, after169

3q = 15 iterations they will return to their initial location with their initial orientation.170

• Irregular polygons: internal rotation α = 0. These are demonstrated by the orange171

quadrilaterals and white triangles in Fig. 3(b). These irregular polygons do not rotate172

when they return to their initial positions.173

Resonances occur when the combined size of all the cells is a local maximum in the protocol174

space, or equivalently, when the area of Ē is a local minimum. Therefore, resonances corre-175

spond to local minima in mixing efficacy. An extreme case occurs when the entire domain is176

periodic and the cells form a polygonal tiling of the HS. In this case no mixing occurs, as the177

domain periodically reassembles itself. For instance, in Fig. 3(b) the HS is tiled by regular178

pentagons (dark red and light blue), irregular quadrilaterals (orange) and irregular triangles179

(white). While polygonal tilings and fractal polygonal tilings are common in planar PWIs180

[11, 13, 14] due to the fact that composition of rotations is equivalent to the summation of181

angles, and isolated polygonal cells are relatively easy to find in spherical PWIs [14], this182

is the first time such a polygonal tiling has been observed for a PWI in spherical geometry.183

We show in §III B that the BST PWI produces an infinite family of polygonal tilings.184

B. Mixing across the protocol space185

Using the method described by Park et al. [19] to characterize mixing based on coverage186

of the exceptional set, Ē, the fraction of the HS covered by Ē is approximated by dividing187

the HS into N = 12×2n×2n equal area boxes [shown in Fig. 4(b) for n = 3] and calculating188

the fraction of boxes, Φn(θz, θx), containing a portion of the exceptional set. For example,189
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(a) (b) (c) (d)

FIG. 4. Characterization of the area of the exceptional set by domain discretization. (a) The

exceptional set for (θz, θx) = (π/2, π/4). (b) Unfolded isocube half and isocube half mapped onto

the HS, with N = 12×23×23 boxes. (c) Isocube half with grid shown in gray and boxes containing

a point in the exceptional set colored black. (d) The same as (c) except N = 12 × 26 × 26 boxes

are used, the isocube grid is not shown. Adapted with permission from Park et al. [19]. c©2017

American Physical Society.

for the exceptional set corresponding to the protocol (θz, θx) = (π/2, π/4) [Fig. 4(a)], Φ3 is190

the number of black boxes in Fig. 4(c) divided by N . In this study we use the fixed resolution191

n = 6, as demonstrated in Fig. 4(d). While higher resolutions yield better approximations,192

their computational cost is prohibitive when Φn is sampled across a 2D parameter space.193

Since n is kept fixed, for the remainder of this paper, we drop the subscript, i.e. Φ = Φ6. A194

value of Φ close to 1 represents high coverage of the HS by Ē and, hence, a high degree of195

mixing. Conversely, a value of Φ close to 0 represents a low degree of mixing.196

Sampling Φ in increments of π/1800 (0.1◦) across the protocol space (θz, θx), Fig. 5 shows197

a complex distribution with many pronounced resonances (local minima, close to white) [25].198

The most obvious structure is the symmetry across the line θx = θz . This is the result of199

the symmetry (A3) in Appendix A, which means that aside from a reflection, the protocol200

(θz, θx) with forward time and the protocol (θx, θz) with reverse time are identical. Therefore,201

invariant structures such as the exceptional set and cells are the same (up to symmetry)202

when the protocol order is reversed, and, hence, Φ is also unchanged. In contrast, Juarez et203

al. [20] performed a similar quantitative analysis of mixing for the same PWI, measuring the204

degree of mixing by finding the center of mass of tracer particles initially evenly distributed205

in the x < 0, y < 0 quarter-sphere as a function of the number of iterations, called the206

segregation index. Unlike Φ, the segregation index is not symmetric across the line θx = θz207

because the forward time iterates of the protocols (θz, θx) and (θx, θz) are not connected via208

a symmetric relation, and the rotations of the HS about the z and x-axes that comprise the209
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1

(a)

(d)

FIG. 5. (a) Distribution of Φ across the protocol space, sampled at increments of π/1800 in θz, θx. Φ

is normalized such that zero coverage (white) corresponds to Φ = 0, and complete coverage (black)

corresponds to Φ = 1. Lines of constant θx/θz = tan β are shown dashed white for β = π/(2m),

m = 3, 4, 5. (b–e) Example exceptional sets corresponding to protocols indicated by blue arrows.

(b,e) Resonant protocols, i.e. local minima of Φ, where θz, θx are as in Fig. 3(b,c). (c,d) Protocols

with Φ ∼ 1: (c) (θz, θx) = (1.25, 0.93); (d) (θz, θx) = (0.8, 0.64).

BST PWI do not commute.210

The corollary to the symmetry (A3) is that along the line θz = θx the BST PWI possesses211

the reflection-reversal symmetry (A5) [see Appendix A], which means Lagrangian structures,212

e.g. cells and the exceptional set, must be symmetric about the plane z = −x. This213

additional constraint results in generally lower mixing efficacy compared to the rest of the214

protocol space; the median of Φ along θz = θx is 0.528 which is much less than the median215

0.952 across the entire protocol space.216

We observe that the resonances with the least coverage of the exceptional set (closest217

to white) occur at intersections between lines of constant ratio θx/θz = tan β, where β =218
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π/(2m), m = 2, 3, . . . (white dashed lines in Fig. 5), and Arnold tongues that extend from219

values of θz commensurate with π (i.e. θz/π is rational) along the θz-axis. To understand220

why these tongues exist, consider the limit as θx → 0. In this limit the PWI becomes a221

rotation about the z-axis only, with exceptional set222

E =
⋃

k∈Z

Rz
(kθz modπ)C, (3)223

where Z denotes the set of integers, Rz
γ denotes rotation by γ about the z-axis, and C is224

the semicircle x2 + y2 + z2 = 1, y = 0, x < 0. Even though there is an exceptional set and225

cutting occurs, no mixing occurs in this limit since cuts are always reconnected in the next226

iteration. When θz/π is rational the union eq. (3) consists of a finite number of disjoint arcs,227

e.g. Fig. 6(a) for θz = π/3, and hence Φ = 0. On the other hand, when θz/π is irrational,228

the curves Rz
(kθzmodπ)C for k ∈ Z are all disjoint and densely fill the HS, e.g. Fig. 6(b) for229

θz = π/π, so that Ē covers the entire HS and Φ = 1. Therefore, in the limit as θx → 0,230

Φ(θz ; θx → 0) =











0, θz/π ∈ Q

1, θz/π ∈ R\Q,
(4)231

where Q denotes the set of rational numbers, and R\Q denotes the set of real numbers232

excluding the rational numbers, i.e. the set of irrational numbers. Now, for small positive233

values of θx mode-locking-like phenomena occur, such that around each rational multiple234

of π, i.e. θz = πp/q, there is a finite width interval with Φ(θz ; θx) ∼ 0. This phenomenon235

is characterized by the existence of cells whose periods are multiples of q, and are robust236

under perturbations in θz. Understanding this mode-locking-like phenomenon allows us to237

rationalize the tongues observed in the distribution of the segregation index in a previous238

study [20]. However, a difference is that at small values of θx (and θz) the segregation index239

is generally large (indicating a low degree of mixing), and the tongues appear “fatter”. This240

is because the segregation index in [20] was only computed over small numbers of iterations241

(10 and 25), and the mixing rate is generally slow at small values of θz, θx. On the other242

hand, Φ measures only the long-term mixing quality, and does not take into account the243

rate of mixing. Many thousands of iterations of the cutting lines D are required to produce244

good approximations of the exceptional set when θx is small, and it is expected that an245

almost identical tongue structure would be observed if the segregation index in [20] were246

computed using a similar number of iterations to that used here. Of course, for practical247
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(a)

FIG. 6. Exceptional sets (gray) in the limit as θx → 0. (a) θz = π/3. (b) θz = π/π.

mixing applications, rapid mixing is desired, and short-term mixing quality is often a useful248

metric.249

Similar mode-locking-like phenomena occur based on the ratio of θz and θx. In Ap-250

pendix C we consider the discrete BST PWI as the composition of continuous z- and x-axis251

rotations, prescribing the rotations an arbitrary fixed rotation rate ω. In other words, the z-252

and x-axis rotation maps are described as the integrals of rotational velocity fields for time253

periods Tz = θz/ω and Tx = θx/ω. This enables us to consider the limit as θz, θx → 0 with254

constant ratio θx/θz as the limit of infinitely fast switching between z- and x-axis rotation255

phases, i.e. Tz, Tx → 0. In this limit tracer particle trajectories are governed by a steady ve-256

locity field equivalent to rotation about the axis (− sin β, 0, cosβ), where β = arctan(θx/θz).257

While particle motion in the interior of the HS is simple in the limit as θz, θx → 0, the258

curves D1−3 and the atoms P2−4 all collapse onto the domain boundary ∂S, with multiple259

atoms collapsing onto some segments of ∂S. This means that multivalued periodic boundary260

conditions are produced, as described in Appendix C. When β/π is rational, particle trajec-261

tories are periodic, e.g. Fig. 14(a1,b1), whereas when β/π is irrational, particle trajectories262

densely fill the HS, e.g. Fig. 14(c1).263

Away from the limit θz, θx → 0, at small positive values of θz, θx, tracer particles loosely264

adhere to the streamlines of the steady velocity field in the limit θz, θx → 0 [Fig. 14(a1,b1,c1)265
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compared to Fig. 13(a2,b2,c2)]. At small positive values of θz , θx, cells form chains that266

wrap around the HS, and the number of times they wrap around before returning to their267

initial position, termed the “wrapping multiplicity”, is equal to the wrapping multiplicity268

of nearby orbits in the limit θz, θx → 0. Hence irrational values of β/π produce large269

wrapping multiplicities and small cells, whereas rational values of β/π, especially those with270

even denominators, produce small wrapping multiplicities and large cells (Appendix C).271

This behaviour is not limited to small values of θz , θx, and is also evident at large values272

[Fig. 13(a3,b3,c3)], resulting in more prominent resonances along the white dashed lines273

β = π/(2m), m = 2, 3, . . . , in Fig. 5.274

Therefore, resonances result from a combination of two mode-locking-like phenomena. In275

§III these phenomena are discussed in more detail, and an analytic method for finding the276

resonances is introduced.277

III. ANALYTIC MIXING PREDICTION278

One approach to finding resonances is to compute the exceptional set and its coverage279

across the entire protocol space, like Fig. 5. However, this approach is computationally280

expensive and dependent on the resolution used to approximate Φ. Here we devise an281

analytic method to find resonances in orientation-preserving PWIs based on finding the282

locations and sizes of cells, which are non-mixing regions.283

The cells of interest here are those with maximum area that exist at the intersections284

of the mode-locking tongues that extend from the θz-axis (characterized by the rational285

multiple of π from which the tongue extends, denoted p/q) and the lines of constant ratio286

θx/θz that correspond to different wrapping multiplicities (characterized by the number of287

times the chain of cells wraps around the HS, denoted m). For a chain of cells with p = 1,288

there are q cells per wrapping, and hence the chain has period mq. Each of these chains289

has one cell in the P4 atom, with periodic itinerary I(m, q) = 41q−1(21q−1)m−1, and the290

other cells in the chain have itineraries given by rotation permutations of this itinerary. For291

example, the cells in the period-6 chain (light red) in Fig. 3(c) have itineraries given by292

rotation permutations of I(2, 3) = 412212. Based on eq. (B5), each itinerary I(m, q) has a293

conjugate given by Ī(m, q) = 321q−1(21q−1)m−221q−2. Therefore, finding the location and294

size of one chain of cells also gives the size of its conjugate. The combined area of the cells295
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with base itineraries I and Ī provides a lower bound for the total area of all the cells in the296

HS, and hence upper bounds for Φ and the degree of mixing.297

A. Cell location and size298

For an orientation-preserving spherical PWI and any given itinerary, the periodic point

at the center of the corresponding cell can be found by considering the net rotation over

the full itinerary, as described by Scott et al. [15]. In each atom, the map Mθz ,θx can be

expressed as the composition of two rotations:

P1 : R1 = Rx
θxR

z
θz (5)

P2 : R2 = Rx
θxR

z
θz+π (6)

P3 : R3 = Rx
θx+πR

z
θz (7)

P4 : R4 = Rx
θx+πR

z
θz+π. (8)

Over a full itinerary, the net rotation is the composition of these atomic rotations. For

example, for the itinerary 412 the net rotation is R412 = R1R1R4, noting that the rightmost

rotation is performed first. Finding the normalized axis of the net rotation gives two points

±v on the unit sphere, with at least one on the HS, that are invariant under the net

rotation, and hence periodic points. Whichever of ±v is on the HS is the center of the cell.

For instance, for the itinerary 412 the center is x = â where a = (a1, a2, a3) and

a1 = cos
θx
2
sin

θz
2
[2 + cos θz − cos θx(cos θz + 1)] ,

a2 = cos
θx
2
cos

θz
2
[cos(θx) + cos θz(cos θx − 1)] , (9)

a3 = sin
θx
2
cos

θz
2
[cos θz + cos θx(cos θz + 1)] .

Note that the axis of net rotation can be found for any itinerary, but if ±v are outside the299

first atom of the itinerary, then the center of the cell must be outside the atom in which300

the cell is assumed to exist, a contradiction. Hence the cell does not exist. For example,301

for some values of θz, θx the axis of rotation for the 412 itinerary is outside P4, which is a302

contradiction to the assumption that the itinerary starts in P4. Therefore, in addition to303

determining the center of cells when they do exist, this method also indicates when cells304

with a given itinerary do not exist.305
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Once the center v of a period-n cell has been found, its radius is determined as306

r = min
0≤i<n, C∈{D1−3,∂S}

d
(

M i
θz ,θx (v) , C

)

, (10)307

where d(x, C) is the shortest distance from the point x to the curve C. In other words, the

cell radius is the minimum of all the distances from the centers of the cells in the chain,

M i
θz ,θx

(v), to the nearest cutting line or domain boundary. For example, in Fig. 3(a) the radii

of the cells in the chain with base itinerary 412 (dark red) are all equal to the distance from

the center of the cell in P4 to D1, the red cutting line. Note that when the cell is a regular

polygon, e.g. the pentagons in Fig. 3(b), r is the inradius (apothem), i.e. the radius of the

largest circle that can be wholly contained within the polygon, rather than the circumradius

(distance from the center to a vertex). To find d(x, C), for C ∈ {D1−3, ∂S}, we note that

the cutting lines D1−3 and domain boundary ∂S are all segments of great circles (i.e. the

intersection of the unit sphere with planes P(C) that pass through the sphere origin). Each

great circle C is characterized by the vector n(C) normal to its plane P(C) (choosing an

orientation for C). For C ∈ {D1−3, ∂S}, these normals are given by

n(D1) = (sin θz,− cos θz, 0) (11)

n(D2) = (cos θx sin θz,− cos θx cos θz, sin θx) (12)

n(D3) = (cos θx sin θz,− cos θx cos θz,− sin θx) (13)

n(∂S) = (0, 1, 0). (14)

Since the geodesic distance along the unit sphere between a point x and the normal n(C)308

equals the angle between them, arccos[x ·n(C)], it follows that the distance from any point309

x on the HS to a great circle C with normal n(C) is310

d(x, C) = π

2
− arccos[x · n(C)]. (15)311

Furthermore, the sign of d determines which side of C the point is on, which can be used for312

the great circles D1−3 and ∂S to determine which atom x is in, and hence whether or not a313

cell with a given itinerary exists. For example, if d(x,D1) > 0, then x must be in P1 or P3314

[the atoms on the right of D1 in Fig. 2(a)]; if d(x,D1) < 0, then x must be in P2 or P4 [the315

atoms on the left of D1 in Fig. 2(a)]; and, if d(x,D1) = 0 then x must be on D1.316

Using the period-3 itinerary 412 as an example, demonstrated by the dark red cells in317

Fig. 3, we observe that the cell in P4 always forms the tangent intersection to D or ∂S, and318
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hence determines the size of all the cells in the chain. Letting x = â [eq. (9)] denote the319

center of the cell in P4, the cell’s radius equals the minimum of the distances of the center320

to the three boundaries of P4:321

r412(θz, θx) = min [d(x,D1), d(x,D2), d(x, ∂S)] . (16)322

This radius is shown as a contour plot in Fig. 7(a) across the protocol space θz, θx. The

dashed curves indicate protocols for which the cell center is equidistant to two of D1, D2 or

∂S, i.e.

d(x,D1) = d(x,D2) ⇐⇒ x · n(D1) = −x · n(D2)

⇐⇒ cos θz =
1

1 + cos θx
(17)

d(x,D1) = d(x, ∂S) ⇐⇒ x · n(D1) = x · n(∂S)

⇐⇒ cos θx =
1

1 + cos θz
(18)

d(x,D2) = d(x, ∂S) ⇐⇒ x · n(D2) = −x · n(∂S)

⇐⇒ θx = θz, (19)

where the negative signs result from the relative orientations of n(D1),n(D2),n(∂S). Ex-323

amples of exceptional sets along these curves are shown in Fig. 8(b–f,h), corresponding to324

the protocols marked by white-outlined black circles in Fig. 7. The cells with itinerary325

412 (dark red) are larger when the cell in P4 touches two boundaries [Fig. 8(c,d,h)] com-326

pared to one [Fig. 8(a,b,f,i)], and the cells are largest when the cell in P4 touches all327

three boundaries [Fig. 8(e)], which occurs when all three equidistance curves intersect:328

θz = θx = θ∗ = arccos((−1 +
√
5)/2) ≈ 0.9046 ≈ 51.83◦, corresponding to the maximum329

radius r412 ≈ 0.3309. At this maximal protocol the entire domain, including the exceptional330

set, is periodic, and the cells form a polygonal tiling of the HS. The 412 chain of cells and331

its conjugate 321 are regular spherical pentagons, with internal rotation equal to 4π/5, that332

form a band around the center of the HS. All other cells are irregular polygons, with zero333

internal rotation. Therefore, Φ = 0 for this maximal protocol, and hence it is a resonance.334

Moving away from the maximal protocol in any direction, the cell shrinks, and eventually335

annihilates when its center meets one of D1,2, ∂S, as in Fig. 8(g). The curves where the336

cell annihilates, called “annihilation boundaries”, are shown as solid red, green and white337
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in Fig. 7(a), corresponding to the curves338

[ d(x, C) = 0 ⇐⇒ x · n(C) = 0 ] for C = D1,2, ∂S. (20)339

For the 412 itinerary the equations for these boundaries can be simplified using eq. (9),

(11)–(14):

C = D1 : cos θx =
2− cos θz
1 + cos θz

(21)

C = D2 : cos θz =
cos θx

1 + cos θx
(22)

C = ∂S : cos θx =
cos θz

1 + cos θz
. (23)

Beyond these boundaries (in the gray regions) the center of the cell is outside P4 and hence340

the cell does not exist.341

Considering the link between the size of the 412 cell and the mode-locking-like phenom-342

ena, Fig. 7(b) shows that the shape of the annihilation boundaries captures the general shape343

of the tongue extending from θz = π/3, and also shows that the dashed equidistance curve344

eq. (17) passes through all the resonances along the tongue. Therefore, finding these rela-345

tively simple properties of the 412 cell reveals significant information about the system as a346

whole, including a resonant protocol such that the entire domain is periodic. In §III B more347

resonances are detected and protocols with high mixing efficacy are predicted by considering348

a range of itineraries, in particular those of the form I(m, q).349

B. An analytic picture of resonances350

Like the 412 itinerary, for all itineraries I(m, q) the cell that determines the size of all the351

cells in the chain is located in P4, and hence the radius is given by eq. (16). Therefore, the352

annihilation boundaries and equidistance curves also take the form eq. (17)–(20). These are353

shown in Fig. 9 for several m and q values. As for the 412 itinerary in Fig. 7(b), the anni-354

hilation boundaries capture the general shape of the tongues, and meet at cusps at rational355

multiples of π in the limit θx → 0. The resonances (local minima of Φ) coincide exactly356

with the protocols where cells are equidistant from three boundaries, i.e. the intersections357

of the dashed curves of the same color in Fig. 9. Therefore the resonances can be found358

by solving eq. (17)–(19) simultaneously. While this can be solved analytically for the 412359
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(a) (b)

0 1

0 0

FIG. 7. (a) Radius of cells with base itinerary 412, r412 , from eq. (16). The cell does not exist

in the gray region beyond the solid red, green and white annihilation boundaries, which satisfy

eqs. (21)–(23). The dashed red/green, red/white and green/white curves represent protocols where

the center of the cell is equidistant to two of the boundaries, given by eqs. (17)–(19), e.g. cell centers

for protocols along the red/green curve are equidistant to D1 and D2. The protocol where all three

dashed curves intersect, θz = θx = θ∗ = arccos((−1 +
√
5)/2) ≈ 0.9046 ≈ 51.83◦, has maximal cell

radius, see Fig. 3(b). Exceptional sets for the white-outlined black points on the blue-sided square

with side length π/9 centered on the maximal protocol are shown in Fig. 8. (b) The distribution of

Φ from Fig. 5 overlayed with the annihilation boundaries (solid) and equidistance curves (dashed)

for the 412 itinerary.

itinerary, for longer itineraries an analytic solution does not generally exist, and numeric360

root-finding is used instead. In any case, the protocols at local minima in mixing efficacy361

across the protocol space can be found without needing to compute the exceptional set and362

its fraction of coverage.363

Furthermore, the annihilation boundaries corresponding to D1,2 and the equidistance364

curve eq. (17) coincide for the itineraries 412, 412212, 412(212)2 (white, green, gray), i.e.365

I(m, q) for q = 3, m = 1, 2, 3. In Appendix D we show that this coincidence of curves366
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(a) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 8. Exceptional sets for the protocols marked by white-outlined black circles on the blue-

sided square in Fig. 7. Cells with base itinerary 412 are dark red; conjugate cells with base

itinerary 321 are light blue. The cell with itinerary 412 in P4 touches one boundary in (a,b,f,i); two

boundaries in (c,d,h); and all three boundaries in (e), corresponding to the resonance θz = θx =

θ∗ = arccos[(−1+
√
5)/2]. Note that the cell with itinerary 412 in P4 is difficult to see when viewing

the HS from below in (a) and (b), as it is close to the boundary ∂S and has small radius. In (g) no

cell with itinerary 412 exists, period-4 cells with base itinerary 413 are orange, and their conjugate

cells (itinerary 3212) are green; period-6 cells with base itineraries 212312 and 21313 are light red

and dark blue, respectively. Protocols (θz, θx) are: (a) (θ∗ − π/18, θ∗ + π/18), (b) (0.8243, θ∗ +

π/18) a, (c) (θ∗ + π/18, θ∗ + π/18), (d) (θ∗ − π/18, 0.9607), (e) (θ∗, θ∗), (f) (θ∗ + π/18, 0.8243),

(g) (θ∗ − π/18, θ∗ − π/18), (h) (0.9607, θ∗ − π/18), (i) (θ∗ + π/18, θ∗ − π/18).

a Approximate values correspond to intersections between equidistance curves and the the blue-sided

square in Fig. 7.
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0

FIG. 9. Distribution of Φ from Fig. 5 shown with annihilation boundaries (solid) and equidistance

curves (dashed) for ten low period itineraries (different colors). The resonances (local minima in

Φ) occur at protocols where all three equidistance curves of an itinerary meet, and are labelled for

each itinerary by dotted arrows.

occurs for all m at each value of q because the centers of cells corresponding to a fixed value367

of q lie on a great circle that also passes through the point where the cutting lines D1−3368

meet. Hence all the cells annihilate simultaneously and become equidistant to D1 and D2369

simultaneously.370

The corresponding exceptional sets for the low-period resonant protocols are shown in371

Fig. 10, arranged by the wrapping multiplicity m and the rational multiple (θ∗z/π = p/q)372

from which the corresponding tongue extends. For each single-wrap resonance (m = 1),373

the domain is entirely periodic, and the exceptional set forms a polygonal tiling of the HS374
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consisting of regular (2q−1)-gons, irregular triangles, and irregular quadrilaterals. Therefore,375

when m = 1, the domain as a whole will periodically disassemble and reassemble as the cells376

are shuffled around; with reassembly period given by the lowest common multiple of all377

the periodicities of the cells. At all other values of m the cells are circles, meaning the378

exceptional set is a fat fractal, and there are (small) positive area regions where mixing379

occurs. Furthermore, the disassembly and reassembly of cells is such that even the region380

consisting of all cells will never return to its initial configuration when m 6= 1. This is381

because each cell has an irrational internal rotation angle α, and there are arbitrarily small382

cells with arbitrarily long periods, meaning a lowest common multiple of periodicities does383

not exist. Therefore, when m 6= 1 some mixing can occur in the small mixing region and384

via cell disassembly, but the degree of mixing is relatively low compared to non-resonant385

protocols.386

In contrast to the resonances that occur on the tongues with θ∗z = π/q, the resonances387

at 2π/7 and 2π/5 produce significantly better mixing [third and fifth column in Fig. 10],388

and we expect similar phenomena for resonances corresponding to θ∗z = 2π/q with q =389

9, 11, . . . . Since resonant cells along each tongue have periodmπ/θ∗z wherem is the wrapping390

multiplicity (e.g. for θ∗z = π/4 the periods are 4m [second column in Fig. 10]) for θ∗z = 2π/q391

with q = 5, 7, . . . , the resonant cells only exist when m is even. For example, for θ∗z = 2π/5392

and wrapping multiplicity m = 2, the resonant cell is period 5 and wraps around the HS393

twice (fifth column of Fig. 10). It is impossible for a single wrapping (m = 1) to exist394

for θ∗z = 2π/5, as it would have period 5/2, and the same situation would occur for any395

odd wrapping multiplicity. By observing the resonant cells and their itineraries for cases396

with θ∗z = πp/q and p 6= 1, the family of itineraries I(m, q) can be extended, such that the397

itinerary of the resonant cell with wrapping multiplicity m and period mq/p is398

I(m, q/p) = 41a−1(21a−1)p−b−1(21a−2)b[(21a−1)p−b(21a−2)b]m/p−1, (24)399

where q = ap− b, a = ⌈q/p⌉ is the ceiling of q/p, i.e. the smallest integer greater than q/p,400

and −b ≡ qmod p, with b ∈ {0, 1, . . . , p − 1}. For example, I(2, 5/2) = 41221, and in this401

case the exceptional set almost entirely fills the HS excluding the resonant cells and their402

conjugate (dark red and light blue) [fifth column in Fig. 10]. The annihilation boundaries403

and equidistance curves for the itinerary I(2, 5/2) = 41221 are shown in pink in Fig. 9.404

Compared to the other resonant protocols with wrapping multiplicity m = 2, the resonance405
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FIG. 10. Exceptional sets of the BST PWI for resonant protocols. For each resonance the corre-

sponding itinerary that is tangent to three boundaries is indicated, its cells are colored dark red,

and the cells of the conjugate itinerary are colored light blue. The θ∗z axis represents the rational

multiple of π that the resonance is attached to via the tongues, and m is the wrapping multiplicity

of the resonant itinerary.

corresponding to the itinerary 41221 is relatively far from the line β = π/6 in Fig. 5, because406

the cell that forms the tangent intersection to one of the cutting boundaries is not always in407

P4. For some protocols the size-limiting cell is in P1. Therefore, the annihilation boundaries408

and equidistance curves are not given by eqs. (17)–(20), instead the cells in P4 and P1 that409

limit the size both need to be taken into account. The same is true for other itineraries410

of the form I(m, q/p) with p 6= 1 such as the period-7 itinerary I(2, 7/2) = 413212 on the411

line β = π/6 in Fig. 5, whose annihilation boundaries and equidistance curves are shown in412

orange in Fig. 9.413

22



C. Predicting mixing414

By finding resonances, i.e. protocols at local minima in mixing efficacy, we can eliminate415

regions of the protocol space known to yield low degrees of mixing, and hence predict regions416

where a high degree of mixing is likely. In the regions of the protocol space outside the417

annihilation boundaries [Fig. 11(a)] we can guarantee that no cells exist for the itineraries418

shown in Fig. 9. Furthermore, in the two regions indicated by arrows in Fig. 11(a), it can be419

shown that no cells with itinerary I(m, q/p) exist for any values of m, p and q. For protocols420

in these two regions, cells exist with itineraries not of the form I(m, q/p), and it is possible421

that these cells could be large and inhibit mixing, or many small cells could tightly pack422

the HS resulting in low coverage by the exceptional set. However, we observe that Φ is in423

general much lower within the annihilation boundaries of the itineraries I(m, q/p) than the424

two regions indicated in Fig. 11(a), confirming that mixing efficacy is generally higher in the425

region outside the annihilation boundaries. Considering the two specific protocols indicated426

by the arrows in Fig. 11(a), the corresponding exceptional sets [Fig. 11(b,c)] have some small427

high-period cells, but the exceptional set covers a large portion of the domain, indicating a428

high degree of mixing.429

Therefore, by finding the annihilation boundaries and equidistance curves of only a few430

low-period itineraries belonging to the family I(m, q/p), we are able to determine regions431

of the protocol space at local minima in mixing efficacy and even predict regions of high432

mixing efficacy. Of course, some regions of relatively low mixing efficacy are still evident433

in the remaining colored portions of Fig. 11. For instance, light regions along the lines434

m = 4, 5 (see Fig. 5) remain. However, a similar approach to that used so far could be used435

to eliminate these regions from Fig. 11. In any case, compared to numerical evaluation of436

Φ across the entire protocol space, this new method is less computationally expensive, and437

provides insight into the mechanisms that drive mixing and periodicity, including mode-438

locking-like phenomena.439

IV. CONCLUSIONS440

By finding the locations and radii of cells, resonances that correspond to protocols at441

local minima in mixing efficacy can be found analytically, and protocols that yield a high442
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(a) (b)

(c)

0

FIG. 11. (a) Distribution of Φ (Fig. 5) with regions containing cells corresponding to the itineraries

in Fig. 9 colored white (and their reflection across the line θz = θx). Annihilation boundaries for the

itineraries are shown in gray. (b,c) Exceptional sets outside the annihilation boundaries that are

predicted to produce a high degree of mixing. (b) (θz, θx) = (1.25, 0.93). (c) (θz, θx) = (0.8, 0.64).

degree of mixing can be predicted. In orientation-preserving spherical PWIs this can be443

achieved by considering the net rotation produced by the PWI map over the course of a444

periodic itinerary. Each cell has a unique periodic itinerary, which specifies the sequence of445

isometries that it undergoes, and hence determines its center and radius. By considering446

properties of the PWI, such as symmetries and the limits as parameters approach zero, a447

family of itineraries that control the resonances may be found. This is the case for the448

BST PWI, where the itineraries I(m, q/p) control the low-order resonances. However, more449

generally, such a family of itineraries may not exist. In those cases the resonances can still450

be predicted analytically by considering a larger number of itineraries, and combining the451

areas of cells to form a lower bound for the total area of all cells. It has been demonstrated452

for a different spherical PWI that high period cells generally have a smaller radius [15].453
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Hence, it appears best to consider the lowest period cells (with shortest itineraries) first.454

Since these mixing predictions are based on invariant structures such as cells and the455

exceptional set, only long-term mixing quality can be predicted. In practical applications456

the rate of mixing is often of equal, if not greater, importance to the ultimate effectiveness457

of a mixing protocol. Future work should focus on the links between resonances and the458

rate of mixing. It is anticipated that additional factors such as the relative magnitudes of459

θz and θx, or other metrics such as the amount of mixing per net rotation in the protocol460

(i.e. θz + θx), will also need to be considered to be able to predict good, rapid mixing.461

While the methods used here apply to orientation-preserving spherical PWIs, i.e. those462

only consisting of rotation transformations, the inclusion of orientation-reversing transfor-463

mations, i.e. reflections, does not significantly change dynamics, and the method can be464

adapted to these cases. If M is an orientation-reversing map, then S ◦ M is orientation-465

preserving, where S is any reflection transformation. Therefore, the method used here can466

be applied to find cell centers x for S ◦M , which can then be reflected, S−1(x), to produce467

cell centers for M .468

In experiments using the granular BST flow, Zaman et al. [8] have shown that the BST469

PWI forms a kinematic “skeleton”, and that sufficiently large cells can survive even when470

stretching in the flowing layer and collisional diffusion are present. These cells yield “sticky”471

regions where particles tend to spend long periods of time (and hence, do not mix). By472

finding a threshold cell radius, above which cells produce sticky regions in experiment, the473

analytic description of cell radius found here can be immediately applied to find all the474

regions of the protocol space where sticky regions will exist in experiment.475

The BST PWI admits a number of generalizations that could lead to new and interesting476

phenomena. Allowing non-perpendicular rotation axes breaks some symmetries and adds477

a third parameter to the system. Such a system is still an orientation-preserving spherical478

PWI. Hence, resonances, annihilation boundaries, and equidistance surfaces can be found in479

the 3D protocol space. Considering the PWI as the limit of granular tumbler flow [8], another480

generalization is to change the fill fraction of the sphere. When the sphere is not half-full the481

corresponding map is no longer a PWI, and particle motion is generated by a combination of482

stretching-and-folding, and cutting-and-shuffling actions. This simple change greatly adds to483

the complexity of the system. Understanding the interplay between stretching-and-folding484

and cutting-and-shuffling motions in the non-half-full cases could provide insights into the485
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mechanics and mathematics of mixing in more general and practical scenarios, for instance486

non-spherical geometries such as a V-blender [4–6].487

Future work should also focus on understanding and classifying the polygonal tilings that488

are produced by the BST PWI. The family of polygonal tilings produced by the BST PWI489

may be a novel class of polygonal tiling of the HS, and other spherical PWIs could produce490

new families of polygonal tilings. However, it is difficult to predict whether a given spherical491

PWI is even capable of producing polygonal tilings, let alone to predict what they would492

look like.493
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Appendix A: Symmetries497

Symmetries of time-periodic flows provide insights into their Lagrangian topologies, and498

have been exploited to better understand many 2D [26–29] and 3D [30–32] systems. The499

BST PWI possesses a number of symmetries that control its Lagrangian topology. The500

map can be written as the composition of z and x-axis rotations, i.e. Mα,β = M̃x
β M̃

z
α, where501

θz = α, θx = β and M̃ is used to denote rotation modulo π. Since the x-axis rotation can502

be written as the conjugation of the z-axis rotation with a rotation about the y-axis, i.e.503

M̃x
β = Ry

−π/2M̃
z
βR

y
π/2, the BST PWI can be written as Mα,β = Ry

−π/2M̃
z
βR

y
π/2M̃

z
α. By writing504

the map in this form, the symmetries of the z-axis rotation can be used to derive symmetries505

of the BST PWI.506

The z-axis rotation possesses two symmetries, first the reflection-reversal symmetry507

M̃z
θ = Syz

(

M̃z
θ

)−1

Syz, (A1)508

where Syz : (x, y, z) 7→ (−x, y, z) denotes reflection through the yz-plane. The z-axis rotation509

also has the reflection symmetry510

M̃z
θ = SxyM̃

z
θSxy, (A2)511

where Sxy denotes reflection through the xy-plane.512
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Deriving from eq. (A1), the BST PWI has the following symmetry that relates the pro-

tocols (α, β) and (β, α):

Mα,β = Ry
−π/2M̃

z
βR

y
π/2M̃

z
α

= Ry
−π/2

[

Syz

(

M̃z
β

)−1

Syz

]

Ry
π/2

[

Syz

(

M̃z
α

)−1

Syz

]

= S1

(

M̃z
β

)−1

S−1
1 Syz

(

M̃z
α

)−1

Syz

= S1

(

M̃z
β

)−1

Ry
−π/2

(

M̃z
α

)−1

Ry
π/2S1

= S1M
−1
β,αS1, (A3)

where S1 = Ry
−π/2Syz : (x, y, z) 7→ (−z, y,−x) denotes reflection through the plane z = −x.513

This means that the (α, β) protocol is the reflection through the z = −x plane of the reverse514

time (β, α) protocol. Therefore, when the order of the rotation angles is changed all invariant515

structures, such as cells and the exceptional set occur as reflections of one another through516

the plane z = −x. For instance, for a period-n point x of Mα,β it follows that517

x = Mn
α,β(x) =

(

S1M
−1
β,αS1

)n
(x) = S1M

−n
β,αS1(x), (A4)518

and hence S1(x) is a period-n point of Mβ,α.519

As a corollary to the symmetry (A3), when the rotation angles are equal (i.e. α = β) the520

flow possesses the reflection-reversal symmetry521

Mα,α = S1M
−1
α,αS1. (A5)522

This means that invariant structures (cells, periodic points, the exceptional set etc.) must523

occur symmetrically about the plane z = −x.524
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As a result of the reflection symmetry (A2) the BST PWI has the symmetry

Mα,β = Ry
−π/2M̃

z
βR

y
π/2M̃

z
α

= Ry
−π/2

[

SxyM̃
z
βSxy

]

Ry
π/2

[

SxyM̃
z
αSxy

]

= SxyR
y
π/2M̃

z
βR

y
−π/2SxySxyM̃

z
αSxy

= SxyR
y
π/2M̃

z
βR

y
−π/2M̃

z
αSxy

= SxyR
y
π/2

[

Syz

(

M̃z
β

)−1

Syz

]

Ry
−π/2M̃

z
αSxy

= SxyR
y
−π/2Sxy

(

M̃z
β

)−1

SxyR
y
π/2M̃

z
αSxy

= SxyR
y
−π/2

(

M̃z
β

)−1

Ry
π/2M̃

z
αSxy

= SxyMα,−βSxy, (A6)

which means that changing θx from β to −β results in a reflection of Lagrangian topology525

through the xy-plane. Therefore the cases θx = β and θx = π − β are the same up to526

symmetry, and it is only necessary to consider 0 ≤ θx ≤ π/2.527

Changing θz from α to −α results in a similar symmetry using both (A3) and (A6):

Mα,β = S1M
−1
β,αS1 by (A3)

= S1 (SxyMβ,−αSxy)
−1 S1 by (A6)

= S1SxyM
−1
β,−αSxyS1

= S1Sxy (S1M−α,βS1)SxyS1 by (A3)

= SyzM−α,βSyz. (A7)

Therefore, changing θz from α to −α results in a reflection of Lagrangian topology through528

the yz-plane, and it is only necessary to consider 0 ≤ θz ≤ π/2.529

Furthermore, the symmetries (A1) and (A2) also apply to the continuum model of the530

granular BST flow studied in [7, 21, 33], and hence the symmetries (A3)–(A7) also apply.531

These symmetries can also be readily adapted to more general rotation protocols such as532

non-orthogonal rotation axes and multiple (i.e. more than two) rotation axes.533

Appendix B: Conjugate itineraries534

As a result of a special property of the BST PWI, chains of cells with at least one cell in

the atom P4 have a conjugate with equal period and size. This means that finding one cell
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not only gives information about all the cells in its chain, but also the cells in its conjugate

chain. Cell conjugacy derives from the following relations:

(

R
(−α,−β)
1

)−1

= Rz
αR

x
β

= Rx
−βR

x
βR

z
αR

x
β

= Rx
−βR

(α,β)
1 Rx

β (B1)
(

R
(−α,−β)
2

)−1

= Rz
α+πR

x
β

= Rx
−βR

x
βR

z
α+πR

x
β

= Rx
−βR

(α,β)
2 Rx

β (B2)
(

R
(−α,−β)
41

)−1

= Rz
α+πR

x
β+πR

z
αR

x
β

= Rx
−β

(

Rx
βR

z
α+πR

x
β+πR

z
α

)

Rx
β

= Rx
−βR

(α,β)
32 Rx

β , (B3)

where R
(α,β)
1−4 are the rotations produced by the BST PWI in each of the atoms with (θz, θx) =

(α, β); and R41 = R1R4 and R32 = R2R3 are the net rotations produced by the 41 and 32

itineraries respectively. Therefore, for any itinerary of the form w41 where w = w0w1 . . . wM

is a word consisting of 1’s and 2’s, it follows that

(

R
(−α,−β)
w41

)−1

=
(

R
(−α,−β)
41

)−1
(

R(−α,−β)
w

)−1

=
(

R
(−α,−β)
41

)−1
M
∏

i=0

(

R(−α,−β)
wM−i

)−1

= Rx
−βR

(α,β)
32 Rx

β

M
∏

i=0

Rx
−βR

(α,β)
wM−i

Rx
β

= Rx
−βR

(α,β)
32rev(w)R

x
β , (B4)

where rev(w) = wMwM−1 . . . w0 is the reverse of w. Since each of R
(α,β)
1−4 is an instance of the

BST PWI Mα,β, from eq. (A6) and (A7) it follows that

(

R
(α,β)
w41

)−1

= Rx
βR

(−α,−β)
32rev(w)R

x
−β

= Rx
βSxySyzR

(α,β)
32rev(w)SyzSxyR

x
−β

= Rx
βR

y
πR

(α,β)
32rev(w)R

y
πR

x
−β . (B5)
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This means that if x is the center of the cell with itinerary w41, i.e. R
(α,β)
w41 (x) = x, then535

Rx
βR

y
πR

(α,β)
32rev(w)R

y
πR

x
−β(x) = x, and hence536

R
(α,β)
32rev(w)

(

Ry
πR

x
−β (x)

)

= Ry
πR

x
−β (x) . (B6)537

Therefore z = Ry
πR

x
−β (x) is the center of the cell with itinerary 32rev(w) - assuming it is538

in the atom P3 - and its chain of cells is referred to as the conjugate cells. Furthermore,539

the cell in P4 with itinerary 41w is in the same group of cells as x, with center y satisfying540

R41(y) = x, so541

z = Ry
πR

x
−βR41 (x) = Ru

β (x) , (B7)542

where u = Rz
α(−1, 0, 0) is the point where the cutting lines D1−3 meet. Since Ru

βP4 is543

contained in P3, demonstrated by the red region inside P3 (blue) in Fig. 12, this guarantees544

that z is in P3, and so the conjugate cells always exist. Fig. 12 suggests that every cell in P4545

has a conjugate in P3, meaning the cell structure in P3 captures that of P4. Particles must546

repeatedly visit either P3 or P4 throughout their itinerary, otherwise the x coordinate would547

approach infinity, it therefore follows that every chain of cells has at least one cell in either548

P3 or P4. Combining this with conjugacy, the complete set of cell types (size and shape)549

can be found entirely in P3.550

Furthermore, the reflection-reversal symmetry, eq. (A5), imposes additional constraint551

when θz = θx. The image Mα,βR
u

βP4 of the conjugate cells under the BST PWI [the red552

points in P2 (green) in Fig. 12] is contained in P2, and must be symmetric about the line553

z = −x. Hence the cells in P4 and their conjugates in P3 must also be symmetric, with554

symmetry lines shown in each atom in Fig. 12. This means that the cells that only occur555

once in P4, like those with itineraries I(m, q), must have their center on the symmetry line.556

Hence the center is equidistant to the cutting line D2 (green) and the domain boundary557

∂S, which is reflected in Fig. 9 by the equidistance curves that coincide with θx = θz. This558

constraint on Lagrangian topology leads to the generally lower mixing efficacy along the line559

θz = θx.560

Appendix C: Wrapping multiplicity561

To understand why resonances occur on and near the lines of constant ratio θx/θz = tan β562

for β = π/(2m), m = 2, 3, . . . , we consider the limit as θz, θx → 0, keeping their ratio fixed,563

30



FIG. 12. The exceptional set for the BST PWI with θz = θx = 4π/15. Points in P1–P4 are

colored gray, green, blue, and red respectively. The image of P4 under the rotation Ru

θx
, where

u = Rz
θz
(−1, 0, 0), is shown as the red points in P3 (blue), illustrating the conjugacy between P4

and P3. The image of P4 under Mθz ,θxR
u

θx
is shown as the red points contained in P2 (green). The

black dashed symmetry line z = −x corresponding to the reflection-reversal symmetry eq. (A5)

yields symmetries in the P3 and P4 atoms also.

e.g. the limit towards the origin along one of the dashed lines in Fig. 5. By considering564

this limit, the fundamental nature of particle trajectories at small positive values of θz, θx565

can be understood, since they shadow trajectories in the limit. For instance the wrapping566

multiplicity of particles in the limit can be used to predict the wrapping multiplicity slightly567

away from the limit. Furthermore, properties such as wrapping multiplicity are shared even568

at larger values of θz, θx.569
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By assigning a fixed arbitrary rotation rate ω to the z and x-axis rotation phases, the570

BST PWI can be written as the integral571

Mθz ,θx(x) =

∫ Tz+Tx

0

V (x, t) dt, (C1)572

where573

V (x, t) =











V z(x), for 0 ≤ t ≤ Tz

V x(x), for Tz < t ≤ Tz + Tx,
(C2)574

and V z, V x are velocity fields corresponding to z and x-axis rotations at a constant rate ω,575

and Tz = θz/ω, Tx = θx/ω. Periodic boundary conditions are enforced during the integration576

of eq. (C1), such that if a particle reaches the domain boundary ∂S, it is reflected across the577

plane spanned by the y-axis and the current rotation axis. For example, if a particle reaches578

∂S during the z-axis rotation, 0 ≤ t ≤ Tz, then it is reflected across the yz-plane. This579

is representative of a half-full spherical granular tumbler flow in the limit of an infinitely580

thin flowing layer [7]. Therefore, the limit as θz, θx → 0 with θx/θz = tan β is equivalent to581

the limit as Tz, Tx → 0 with Tx/Tz = tanβ, which is the limit of infinitely fast switching582

between the z and x-axis rotation velocity fields. Therefore, in the limit θz, θx → 0 particles583

are governed by the velocity field Vave, given by the weighted average of the velocity fields584

in each rotation phase, i.e.585

Vave =
TzV

z + TxV
x

Tz + Tx
, (C3)586

which is equal to the velocity field corresponding to rotation about the single axis (− sin β, 0, cosβ),587

shown as the dashed black line in Fig. 13, with rotation rate ω.588

While particle trajectories in the limit θz , θx → 0 are simple in the interior of the domain,589

the periodic boundary conditions, inherited from the atoms P2−4, introduce complexity. At590

positive values of θz, θx, particles only experience the periodic boundary conditions in the591

atoms P2−4, when they cross the infinitely thin flowing layer during the z-axis rotation (P2),592

the x-axis rotation (P3), or both (P4). In the limit θz , θx → 0 it is natural that particles593

should experience the same reflections when they reach ∂S, yielding periodic boundary594

conditions. However, it is not always clear which atom’s boundary conditions should be595

used because multiple atoms collapse onto some segments of ∂S in the limit θz , θx → 0.596

Letting θ = arg(x + iz) be the polar angle on ∂S, only the atom P2 collapses onto the597

segment π/2+ β ≤ θ ≤ π (red) in Fig. 13, and so all particles that meet this segment of ∂S598

experience the same periodic boundary conditions as those in P2 for positive values of θz, θx,599
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i.e. they are reflected across the yz-plane. This is demonstrated by the trajectory of the600

orange particle. Similarly, only the atom P3 collapses onto the segment 3π/2 < θ ≤ 3π/2+β601

(dark blue) in Fig. 13, so particles that meet this segment of ∂S experience the same periodic602

boundary conditions as P3 for positive θz, θx, i.e. they are reflected across the xy-plane. The603

atoms P2−4 all collapse onto the segment π < θ ≤ 3π/2 − β (green) in Fig. 13, so it604

is unclear which periodic boundary condition should be used. For positive values of θz, θx,605

particles in P2 are reflected through the yz-plane when they meet ∂S, like in the red segment;606

particles in P3 are reflected through the xy-plane when they meet ∂S, like the dark blue607

segment; and particles in P4 are reflected through the yz-plane during the z-axis rotation,608

then reflected through the xy-plane during the x-axis rotation, a net reflection through609

the origin if they occur sequentially. These three possibilities lead to two possible periodic610

boundary conditions for the green segment of ∂S in the limit θz, θx → 0, demonstrated by611

the light blue particle trajectory in Fig. 13, where it is noted that since the xy-reflection612

is on the red segment it is also reflected across the yz-plane. Similarly, the atoms P2−4613

all collapse onto the segment 3π/2 − β < θ ≤ 3π/2 (magenta) in Fig. 13, again yielding614

multivalued periodic boundary conditions: reflection through the xy-plane, and reflection615

through the origin. These periodic boundary conditions can be summarised:616

F (θ) =







































−θ + π, for π/2 + β ≤ θ ≤ π

(−θ + π, θ + π), for π < θ ≤ 3π/2− β

(−θ, θ + π), for 3π/2− β < θ ≤ 3π/2

−θ, for 3π/2 < θ ≤ 3π/2 + β.

(C4)617

Starting from a position −π/2+β < θ < π/2+β on the black segment of ∂S, denoted ∂S1,618

the rotational flow takes the particle to the pointG(θ) = −θ−π+2β on the opposite (colored)619

boundary segment, denoted ∂S2, i.e. the reflection across the plane z = tan(β − π/2)x (the620

black dashed line in Fig. 13). Therefore, the map from ∂S2 to itself is given by621

G (F (θ)) =







































θ + 2β, π
2
+ β ≤ θ ≤ π

(θ + 2β,−θ + 2β), π < θ ≤ 3π
2
− β

(θ − π + 2β,−θ + 2β), 3π
2
− β < θ ≤ 3π

2

θ − π + 2β, 3π
2
< θ ≤ 3π

2
+ β.

(C5)622
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In every case the map is ±θ + 2β mod π, hence the set of all iterates of θ is contained in623

∂S2 ∩{±θ+2kβ, k ∈ Z}. Considering particle trajectories where only horizontal reflections624

through the yz-plane are taken into account in the green segment, and only vertical reflec-625

tions through the xy-plane are taken into account in the purple segment, the map is given626

by627

G (F (θ)) =











θ + 2β, π
2
+ β ≤ θ ≤ 3π

2
− β

θ − π + 2β, 3π
2
− β < θ ≤ 3π

2
+ β.

(C6)628

Therefore, every point in ∂S2 ∩ {θ + 2kβ, k ∈ Z} can be found as an iterate of θ. Likewise,629

considering one diagonal periodic boundary crossing, θ 7→ −θ + 2β, in the green or purple630

segments, followed by all horizontal and vertical crossings, eq. (C6), it follows that ∂S2 ∩631

{−θ + 2kβ, k ∈ Z} is also contained in the set of all iterates of θ. We have therefore shown632

that the set of all iterates of θ under G◦F is equal to ∂S2∩{±θ+2kβ, k ∈ Z}. Hence, when633

β/π is rational, the set of all iterates of θ is finite, and particle trajectories throughout the634

domain are periodic, demonstrated by Fig. 14(a1,b1). Conversely, when β/π is irrational,635

the set of all iterates is infinite, densely filling ∂S2, meaning particle trajectories never return636

to their initial position, and densely fill the entire HS, as demonstrated by Fig. 14(c1).637

The rational cases are worthy of consideration in more detail. When β = mπ/n and n638

is odd, the set of boundary images, ∂S2 ∩ {±θ + 2kβ, k ∈ Z}, generally has 2n elements,639

indicating that particles wrap around the HS 2n times before returning to their initial640

position [demonstrated by the green trajectory in Fig. 14(a1)]. However, when θ = jβ or641

jβ/2, the set of boundary images has n elements, as θ ≡ −θ mod 2β [the blue and orange642

trajectories in Fig. 14(a1)]. Similarly, when β = mπ/n and n is even, the set of boundary643

images generally has n elements [as the denominator of 2β is n/2, demonstrated by the644

green and orange trajectories in Fig. 14(b1)], and, when θ = jβ, the set of boundary images645

has n/2 elements [the red and blue trajectories in Fig. 14(b1)].646

At small values of θz, θx, particles shadow the trajectories in the limit, demonstrated by647

Fig. 14. Therefore the number of times particles wrap around the HS is determined by the648

wrapping multiplicity of nearby trajectories in the limit, which is equal to the size of the set649

of boundary images, ∂S2∩{±θ+2kβ, k ∈ Z}. The angle β therefore has a significant impact650

on the possible wrapping multiplicities, and hence the size of cells and resonances. Cells with651

a high wrapping multiplicity must pass through the atoms P1−4 in the “skinny” sections,652

and hence are generally smaller than those with lower wrapping multiplicity that occupy653
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FIG. 13. The BST PWI in the limit as θz, θx → 0 with constant ratio θx/θz = tan β. The rotation

axis z = tan(π/2 + β)x is indicated by the dashed black line. The segments of ∂S where particles

experience the different periodic boundary conditions described in eq. (C4) are colored red, green,

purple and blue, respectively. Example particle trajectories that meet the red and green segments

of ∂S are shown in orange and light blue, starting from the points marked with circles. Note that

when the light blue point meets the green segment of ∂S, it has two images due to the multi-valued

periodic boundary conditions.

the “fat” sections of P1−4. Therefore, the lowest wrapping multiplicites, corresponding to654

protocols of the form θx/θz = tan(mπ/n) with n even, give rise to the largest cells. Note655

that further from the limit, cells are robust under perturbation in β, explaining why period-656

11 cells with the same itinerary exist for θz = π/6 with β = π/6 and β = 1/2 ≈ π/6.28657

[Fig. 14(b4,c4)]. These period-11 cells have wrapping multiplicity equal to 2, which derives658
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(a1) (a2) (a3)

FIG. 14. Particle trajectories in the limit as θz, θx → 0 and at small values of θz, θx, for constant

ratios θx/θz = tan β. The first column shows the trajectories of four particles with streamlines

that meet the boundary at θ = β, 3β/4, β/2, 0 colored blue, green, orange and red, respectively.

In the other columns the same particles are tracked for θz as shown and θx = tan(β)θz, combined

with the exceptional set shown in gray.

from the trajectory of the red particle in Fig. 14(b1).659

Appendix D: Tongue overlap660

In this section we uncover the reason for the coincidence of two of the annihilation bound-661

aries, corresponding to D1,2, and the equidistance curve662

d(x,D1) = d(x,D2) (D1)663

for itineraries of the form I(m, q) = 41q−1(21q−1)m−1, with q fixed and m = 1, 2, . . . . We664

show that the cells’ centers all lie on a great circle C∗ that passes through the point u =665

Rz
θz
(−1, 0, 0) where the three cutting lines meet, as demonstrated in Fig. 15. Hence all the666
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FIG. 15. The exceptional set (gray) for the BST PWI with (θz, θx) = (1.012, 0.3796). The cells

with base itineraries 412, 412212, 412(212)2 and their conjugates are colored. The great circle C∗

that passes through the centers of all the cells in P4 and the point u where D1−3 meet is shown in

orange.

cells annihilate when C∗ coincides with D1 or D2, and all the cells are equidistant to D1,2667

when C∗ bisects D1,2.668

Letting R1 denote the net rotation associated with the itinerary I(1, q) = 41q−1 and R2669

denote the net rotation associated with the itinerary 21q−1, it follows that the net rotation670

for the itinerary I(m, q) is R(m, q) = Rm−1
2 R1. The rotation R2 can be represented via its671

angle and axis (θ, v), or equivalently as the quaternion672

{q1, q2, q3, q4} = {cos (θ/2) , sin (θ/2)v} . (D2)673
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Hence the rotation Rm
2 has angle-axis form (mθ, v) and quaternion form674

Rm
2 = {cos (mθ/2) , sin (mθ/2) v} . (D3)675

Therefore, the net rotation R(m+ 1, q) has quaternion representation

R(m+ 1, q) = Rm
2 R1

= {cos (mθ/2) , sin (mθ/2) v}R1

= (cos (mθ/2) I + sin (mθ/2) {0, v})R1

= cos (mθ/2)R1 + sin (mθ/2) {0, v}R1

= cos (mθ/2)A+ sin (mθ/2)B, (D4)

where I is the identity quaternion and A = R1, B = {0, v}R1 are quaternions that are676

independent of m. This means the (non-normalized) axes of rotation corresponding to the677

itineraries I(m, q) form = 1, 2, . . . , given by the vector parts [34] of the quaternionsR(m, q),678

are all linear combinations of the vector parts a = A[2, 3, 4] and b = B[2, 3, 4]. Hence the679

centers of the corresponding cells are all coplanar, lying in the plane spanned by a and b,680

and therefore all lie on the same great circle C∗.681

It remains to show that C∗ passes through the point u where D1−3 meet. By directly682

computing the expressions for u, a and b, it can be shown that u · (a× b) = 0, and hence683

u, a and b are all coplanar, as desired.684

[1] S. Wiggins and J. M. Ottino, Phil. Trans. R. Soc. Lond. A 362, 937 (2004).685

[2] D. V. Khakhar, H. Rising, and J. M. Ottino, Journal of Fluid Mechanics 172, 419451 (1986).686

[3] J. M. Ottino, The Kinematics of Mixing: Stretching, Chaos, and Transport (Cambridge Uni-687

versity Press, 1989).688

[4] M. Lemieux, F. Bertrand, J. Chaouki, and P. Gosselin, Chemical Engineering Science 62,689

1783 (2007).690

[5] J. Doucet, F. Bertrand, and J. Chaouki, Granular Matter 10, 133 (2008).691

[6] E. Alizadeh, H. Hajhashemi, F. Bertrand, and J. Chaouki, Chemical Engineering Science 97,692

354 (2013).693

[7] R. Sturman, S. W. Meier, J. M. Ottino, and S. Wiggins, Journal of Fluid Mechanics 602,694

129174 (2008).695

38



[8] Z. Zaman, M. Yu, P. P. Park, P. B. Umbanhowar, J. M. Ottino, and R. M. Lueptow, “Persis-696

tent structures in a 3D dynamical system with solid and fluid regions,” submitted to PNAS.697

[9] M. Keane, Mathematische Zeitschrift 141, 25 (1975).698

[10] A. Goetz, Discrete and Continuous Dynamical Systems 4, 593 (1998).699

[11] A. Goetz, Piecewise isometries–an emerging area of dynamical systems (Birkhäuser Basel,700
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