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We study work extraction (defined as the difference between the initial and the final energy) in
noninteracting and (effectively) weakly interacting isolated fermionic quantum lattice systems in one
dimension, which undergo a sequence of quenches and equilibration. The systems are divided in two
parts, which we identify as the subsystem of interest and the bath. We extract work by quenching
the on-site potentials in the subsystem, letting the entire system equilibrate, and returning to the
initial parameters in the subsystem using a quasi-static process (the bath is never acted upon).
We select initial states that are direct products of thermal states of the subsystem and the bath,
and consider equilibration to the generalized Gibbs ensemble (GGE, noninteracting case) and to
the Gibbs ensemble (GE, weakly interacting case). We identify the class of quenches that, in the
thermodynamic limit, results in GE and GGE entropies after the quench that are identical to the
one in the initial state (quenches that do not produce entropy). Those quenches guarantee maximal
work extraction when thermalization occurs. We show that the same remains true in the presence
of integrable dynamics that results in equilibration to the GGE.

I. INTRODUCTION

Work is a familiar concept in the context of classical
thermodynamics, which deals with systems with a large
number of particles. A goal of classical thermodynamics
is to identify protocols that provide an efficient way of
converting heat into work. In recent years, there has been
a lot of interest in developing a thermodynamic frame-
work to deal with small systems that can be far from
equilibrium [1, 2]. In particular, following seminal work
by Jarzynski [3], fluctuation theorems have become an
area of intense activity. Fluctuation theorems have been
generalized to understand the stochastic fluctuations of
work done on non-equilibrium quantum systems [4–7].
Another recent development comes from the so-called
single-shot information theory, which was initially pos-
tulated to study finite-size effects in quantum cryptogra-
phy. Single-shot information theory has become a useful
tool in understanding work extraction in the context of
quantum thermodynamics [8, 9].

In parallel, extraordinary advances in experiments
with ultracold atomic gases [10, 11] have motivated
much research on the far-from-equilibrium dynamics and
the description after equilibration of isolated many-body
quantum systems [12–14]. Of particular interest has been
the dynamics following the so-called quantum quenches
[15], in which the system is initially in a stationary state
of some time-independent Hamiltonian and that Hamil-
tonian is suddenly changed into a new one that is also
time-independent. If the Hamiltonian after the quench
is quantum chaotic, i.e., if its distribution of many-body
energy level spacings is of the Wigner-Dyson type, one
expects thermalization to occur [12, 16]. Namely, one
expects that after equilibration observables are described
by traditional statistical mechanics [12, 17, 18]. This can
be understood to be a consequence of eigenstate thermal-
ization [17, 19–21]. On the other hand, if the Hamilto-
nian after the quench is integrable, one expects general-

ized thermalization to occur. Namely, one expects that
after equilibration observables are described by a gener-
alized Gibbs ensemble (GGE), which takes into account
the presence of an extensive set of nontrivial conserved
quantities [22–24] (see Refs. [25–28] for recent reviews).
This can be understood to be a consequence of general-
ized eigenstate thermalization [25, 29, 30].

Here, we explore work extraction in isolated (inte-
grable) noninteracting and (effectively) weakly interact-
ing fermionic quantum lattice systems in one dimension
(1D) as described by a quadratic Hamiltonian. The iso-
lated systems are divided in two parts, which we identify
as the subsystem of interest and the bath. The specific
protocol we consider is motivated by a possible straight-
forward implementation in experiments, and consists of:
(i) Quenches of on-site potentials in the subsystem, (ii)
Equilibration to the GGE (noninteracting case) or the
grand canonical ensemble (GE, weakly interacting case),
and (iii) Return to the initial values of the on-site poten-
tials in the subsystem by means of quasi-static process
with equilibration to the GGE and the GE (the bath is
never acted upon). The work extracted is computed as
the difference between the initial and the final energy of
the entire system. Since the average energy of a thermal
state (with nonnegative temperature) can only increase
due to unitary operations (quantum quenches), because
of passivity [31, 32], the initial states cannot be thermal
equilibrium states of the entire system (we would like to
be able to extract work). Instead, they are selected to
be direct products of grand-canonical states of the sub-
system and the bath at the same temperature but at
different chemical potentials (different site occupations).

In a recent study, Perarnau-Llobet et al. [33] discussed
upper bounds for the work that can be extracted in pro-
cesses involving equilibration to the GE or the GGE in
isolated quantum systems. In the context of our proto-
col, we identify a class of quenches that do not produce
entropy when equilibration occurs to the GE or the GGE,
which automatically ensure maximal work extraction for
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equilibration to the GE. We show that those quenches
saturate the bound for work extraction under equilibra-
tion to the GGE.

The exposition is organized as follows. In Sec. II, we in-
troduce the model, quench protocol, and the initial states
considered. We discuss the results for equilibration to
the GE in Sec. III, and for equilibration to the GGE in
Sec. IV. In Sec. V, we present a comparison between the
results obtained for the GE and for the GGE. A summary
of our results is presented in Sec. VI.

II. MODEL, QUENCH PROTOCOL, AND
INITIAL STATES

We study noninteracting (and, effectively, weakly in-
teracting) fermions in 1D lattices with open boundary
conditions. The system is divided in two parts, which we
identify as the subsystem of interest and the bath. They
are described by the tight-binding quadratic Hamiltoni-
ans Ĥs and Ĥb, respectively

Ĥs(Vs) = −
Ls−1∑
i=1

(ĉ†i ĉi+1 + H.c.) + Vs

Ls∑
i=1

n̂i, (1)

Ĥb(Vb) = −
L−1∑

i=Ls+1

(ĉ†i ĉi+1 + H.c.) + Vb

L∑
i=Ls+1

n̂i,

where ĉ†i (ĉi) is the fermionic creation (annihilation) op-

erator at site i, n̂i = ĉ†i ĉi is the number operator, and
Ls (L) is the size of the subsystem (entire system). We
have set the hopping amplitudes in the subsystem and
bath to unity, and Vs (Vb) is the on-site potential of the
subsystem (bath). Dynamics are studied under the total
Hamiltonian

Ĥ(Vs, Vb) = Ĥs(Vs) + Ĥb(Vb)− (ĉ†Ls ĉLs+1 + H.c.). (2)

We prepare the initial state to be a direct product of
GE density matrices of the subsystem and bath with
Ĥs(V Is ) and Ĥb(Vb), respectively (see Sec. II A). [This
can be done by (weakly) connecting the subsystem and
the bath to two reservoirs (see Fig. 1).] Next, we connect
the subsystem and the bath, and at the same time quench
the on-site potentials of the subsystem from V Is to V Fs
(see Fig. 1). The entire system is then let equilibrate to

the GE and the GGE under Ĥ(V Fs , Vb). After equilibra-
tion, which is ensured by taking the density matrix of the
entire system to be the appropriate GE or GGE density
matrix, we apply a large number N of weak quenches
followed by equilibration to the GE or the GGE. In each
of those N weak quenches, the on-site potential in the
subsystem is changed by (V Is − V Fs )/N , so that at the
end we have the subsystem at the initial value V Is . In a
final (N + 1) quench, we turn off the hopping between
the subsystem and the bath and let the system equili-
brate to the GE or the GGE. Note that the latter is a
local quench, i.e., it does not produce extensive changes
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FIG. 1. (Color online) Sketch of the cyclic process studied in
this work (see text for the description).

in thermodynamic quantities. This completes our cyclic
process (see Fig. 1). (One can prepare again the initial
direct product of GE density matrices by connecting the
subsystem and the bath to the two reservoirs.)

Relaxation to the GGE is assumed in order to de-
scribe what happens under the dynamics dictated by the
quadratic Hamiltonian Ĥ(Vs, Vb). It is actually straight-
forward to prove that the infinite-time average of the en-
tire one-body density matrix of a noninteracting system
(from which all observables in our noninteracting sys-
tem can be computed) is, in the absence of degeneracies
in the single-particle spectrum, identical of that of the
GGE [34, 35]. However, the density matrix of the en-
tire system, at any time after a quench, is never that of
the GGE (the dynamics is unitary). This is also true for
the one-body density matrix, because the fermions are
noninteracting [36]. Hence, one may be wary about re-
placing the density matrix “after equilibration” by that
of the GGE. We report numerical results that support
the appropriateness of this procedure (see also Ref. [33]),
as the exact time evolution in which one waits random
times after equilibration and the GGE replacement pro-
duced nearly identical results for the work extraction.

Relaxation to the GE is assumed in order to de-
scribe what happens under the dynamics dictated by the
quadratic Hamiltonian Ĥ(Vs, Vb) plus very weak integra-
bility breaking interactions. We imagine the weak inte-
grability breaking interactions as allowing the systems to
thermalize at long times [18, 37–40], while being weak
enough not to significantly change the thermal expecta-
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tion value of macroscopic observables (such as the energy,
which is needed to compute the work extracted) from the
result in the noninteracting limit. The fact that one can
replace the density matrix of the time-evolving state of
a quantum chaotic system after equilibration, without
needing to wait random times as in the integrable case,
by that of the GE has been discussed in Refs. [12, 41, 42].

The work extracted due to our cyclic process, W , is
defined as

W = Tr
[
(ρ̂I − ρ̂F ) [Ĥs(V Is ) + Ĥb(Vb)]

]
, (3)

which is the difference between the energy in the initial
and final states [12, 43], where ρ̂I (ρ̂F ) is the density
matrix of the initial (final) state. For all calculations
reported here, we take V Is = Vb = 0 and V Fs = V > 0.

A. Initial States

We consider initial states that are product states of the
subsystem and the bath, i.e., whose density matrix can
be written as

ρ̂I = ρ̂Is ⊗ ρ̂Ib . (4)

We take the density matrices of the subsystem and the
bath to be grand canonical,

ρ̂Is = exp(−βIs [Ĥs(0)− µIsN̂s])/ZIs ,
ρ̂Ib = exp(−βIb [Ĥb(0)− µIbN̂b])/ZIb , (5)

respectively. N̂s (N̂b) is the total number of particles
operator of the subsystem (bath), βIs (βIb ) and µIs (µIb)
are the inverse temperature and chemical potential of
the subsystem (bath), respectively, and ZIs (ZIb ) is the
grand-canonical partition of the subsystem (bath) [44]:

ZIs(b) =

Ls(b)∏
i=1

[
1 + e−β

I
s(b)

(
εis(b)−µ

I
s(b)

)]
, (6)

where εis(b) are the single-particle eigenenergies of the

subsystem (bath). The total energy and particle num-
ber of the subsystem (bath) are

EIs(b) = Tr [ρ̂Is(b)Ĥ
I
s(b)] and N I

s(b) = Tr [ρ̂Is(b)N̂s(b)], (7)

respectively. The occupation per site in the subsystem is
then nIs = N I

s /Ls.
If the chemical potential and the inverse temperature

of the subsystem and the bath were chosen to be same,
then ρ̂I is the thermal equilibrium state of

ĤI ≡ Ĥs(0) + Ĥb(0), (8)

which is the initial and final Hamiltonian of our cyclic
process. Since thermal equilibrium states are passive,
one would not be able to extract work in a cyclic pro-
cess starting from such an initial state [12]. Hence, we

need to choose µIs 6= µIb and/or βIs 6= βIb . Next we show
that, in order to be able to extract work with our quench
protocol, we need µIs < µIb .

Since the initial state is a product of two thermal
states, its entropy can be written as

SI = SIs + SIb , (9)

where SIs(b) is the GE entropy of the subsystem

(bath) [44]:

SIs(b) = lnZIs(b) + βIs(b)[E
I
s(b) − µ

I
s(b)N

I
s(b)]. (10)

Given the total initial energy and the total initial number
of particles

EI = EIs + EIb and N I ≡ N I
s +N I

b , (11)

respectively, one can construct the density matrix ρ̂GE
I

of a thermal state of the entire system that matches the
initial total energy and number of particles. Namely,
ρ̂GE
I = exp[−β′I(ĤI − µ′IN̂ )]/Tr [exp(−β′I [ĤI − µ′IN̂ ])],

such that EI = Tr [ρ̂GE
I ĤI ] and N I = Tr [ρ̂GE

I N̂ ]. Since
V Is = Vb = 0, that state has a uniform occupation of the
sites, nI = N I/L. We call the entropy corresponding to
such a thermal state SGE

I .
Now we can consider the strong quench of the on-site

potential (V Is = 0→ V Fs = V ) starting from ρ̂I and ρ̂GE
I .

They result in energies after the quench

EQ = EI + V nIsLs and E′Q = EI + V nILs, (12)

respectively. (nIs and nI are the site occupations in the
subsystem for ρ̂I and ρ̂GE

I , respectively.) For V > 0 and
nIs ≥ nI , EQ ≥ E′Q. Since the entropy in the GE is a
monotonic function of the energy, we immediately realize
that equilibration to the GE results in entropies SGE

Q and

S
′GE
Q , corresponding to EQ and E′Q, respectively, which

satisfy SGE
Q ≥ S

′GE
Q . We also know that, as a result

of the quench, S
′GE
Q ≥ SGE

I , from which it follows that

SGE
Q ≥ SGE

I .
Finally, let us consider the quasi-static process that

brings the system back to the initial Hamiltonian. In the
limit N →∞, when equilibration to the grand-canonical
ensemble is assumed in every weak quench, the entropy
of the thermal state at the end of the quasi-static process
SGE
F is SGE

F ' SGE
Q [45]. And we see that, for V > 0 and

nIs ≥ nI , S
GE
F ≥ SGE

I . Again, since the entropy in the
GE is a monotonic function of the energy, we conclude
that the final energy of the system after the cyclic process
is larger than the initial energy. As a result, no work can
be extracted [W in Eq. (3) is negative]. Hence, in order
to be able to extract work, we need nIs < nI . This can be
ensured by choosing µIs < µIb . Note that our analysis and
conclusion are completely independent of the values of βIs
and βIb . In what follows, we take βIs = βIb = βI for all
our calculations. This choice plays an important role in
devising the protocol that maximizes the work extracted.
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III. GRAND CANONICAL ENSEMBLE (GE)

For isolated integrable quantum systems, like those de-
scribed by quadratic Hamiltonians, the expectation val-
ues of observables after equilibration following a quench
are not described by traditional ensembles of statistical
mechanics. (This is true even if the initial state before
the quench is a thermal equilibrium state of a quantum
chaotic Hamiltonian [39].) The reason for this lack of
thermalization is the presence of an extensive set of non-
trivial conserved quantities. However, very weak integra-
bility breaking interactions are expected to ensure that
the system thermalizes at long times [18, 37–40], even if
they do not significantly change the energy of the system
from their noninteracting values.

With this in mind (see also Sec. II), in this section
we replace the density matrix of the entire system af-
ter a quench with that of a GE whose energy and total
number of particles match those of the noninteracting
system after the quench. That GE density matrix is as-
sumed to describe observables of interest here, such as
site occupations, after equilibration in the presence of
weak integrability breaking interactions. What happens
in the absence of interactions is the subject of the next
section. Studying quadratic Hamiltonians allows us to
gain analytic insights about the specific quench protocol
that saturates theoretical bounds in the thermodynamic
limit. It also allows us to study numerically finite systems
that can be small or as large as desired.

A. Quasi-static process in the thermodynamic limit

Given our definition of work extracted [see Eq. (3)],
maximal work is associated with minimal energy after
completing the cyclic process. Assuming the system ther-
malizes, this corresponds to the case in which the system
has minimal GE entropy at the end of the cyclic pro-
cess. Therefore, our goal in order to maximize work is to
design a cyclic process that keeps the entropy constant
after every quench (the entropy cannot decrease). If this
is achieved, we saturate the upper bound for the work
that can be extracted in a cyclic process [33]

WGE
max = Tr

[
(ρ̂I − ρ̂GE

max) [Ĥs(0) + Ĥb(0)]
]
, (13)

where ρ̂GE
max is the density matrix of a GE that has the

same entropy as the initial state, SGE
max = SI . (It also

must have the same number of particles, but this is en-
forced no matter the protocol implemented.) In the limit
N → ∞ (quasi-static protocol), and for large systems
(we note that equilibration times increase with increasing
system size), the entropy at the end of the cyclic process
equals that after the strong quench, i.e., SGE

F ' SGE
Q .

Hence, all we need to do is to find a protocol by means
of which the GE entropy after the strong quench is that
of the initial state, SGE

Q = SI .

In the thermodynamic limit, when Ls →∞ and Lb →
∞ for η = Ls/L finite, the initial site occupations of the
subsystem and the bath can be obtained as

nIs =

∫ 2t

−2t
g(ε)

1

exp[βI(ε− µIs)] + 1
dε,

nIb =

∫ 2t

−2t
g(ε)

1

exp[βI(ε− µIb)] + 1
dε, (14)

where g(ε) = (π
√

4t2 − ε2)−1 is the density of states.
Similarly, the initial energies of the subsystem and the
bath read

EIs = Ls

∫ 2t

−2t
ε g(ε)

1

exp[βI(ε− µIs)] + 1
dε,

EIb = Lb

∫ 2t

−2t
ε g(ε)

1

exp[βI(ε− µIb)] + 1
dε. (15)

After the quench V Is = 0 → V Fs = V , the GE density
matrix of the entire system is

ρ̂GE
Q = exp(−βQ[Ĥ(V, 0)− µQN̂ ])/ZQ, (16)

where ZQ = Tr [exp(−βQ[Ĥ(V, 0)− µQN̂ ])]. βQ and µQ
are computed such that the GE energy and number of
particles match the results after the quench, namely, EQ
[see Eq. (12)] and N I [see Eq. (11)], respectively.

Within the local density approximation, the GE energy
of the subsystem and the bath after the quench can be
obtained as

EGE
s = Ls

∫ 2t+V

−2t+V
ε g(ε− V )

1

exp[βQ(ε− µQ)] + 1
dε,

EGE
b = Lb

∫ 2t

−2t
ε g(ε)

1

exp[βQ(ε− µQ)] + 1
dε, (17)

respectively. We can rewrite the energy of the subsystem
as

EGE
s = Ls

∫ 2t

−2t
εg(ε)

1

exp[βQ(ε− µQ + V )] + 1
dε (18)

+V Ls

∫ 2t

−2t
g(ε)

1

exp[βQ(ε− µQ + V )] + 1
dε,

Neglecting the O(1) contribution of the hopping be-
tween the subsystem and the bath, the total energy

EGE
s + EGE

b = EIs + EIb + V nIsLs (19)

[see Eqs. (11) and (12)], where EIs and EIb can be com-
puted using Eq. (15), and nIs can be computed using
Eq. (14). A trivial solution to Eq. (19) is obtained for
EGE
s = EIs + V nIsLs and EGE

b = EIb , which require
βQ = βI , µQ = µIb , as well as V = µIb − µIs.

This solution trivially satisfies that the total number
of fermions after the quench remains the same as before
the quench, and that the entropy of the initial state

SI = Ls

∫ 2t

−2t
g(ε) Π

(
1

exp[βI(ε− µIs)] + 1

)
dε (20)

+Lb

∫ 2t

−2t
g(ε) Π

(
1

exp[βI(ε− µIb)] + 1

)
dε,
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and of the GE describing the system after the quench

SGE
Q = Ls

∫ 2t

−2t
g(ε) Π

(
1

exp[βQ(ε− µQ + V )] + 1

)
dε

+ Lb

∫ 2t

−2t
g(ε) Π

(
1

exp[βQ(ε− µQ)] + 1

)
dε, (21)

where Π(x) = −x lnx − (1 − x) ln(1 − x), are the same.
This is possible because the initial state of our quench,
which is not a thermal equilibrium state of the initial
Hamiltonian, is very close to a thermal equilibrium state
of the Hamiltonian after the quench. Such quenches can
be implemented in a wide range of settings, including
interacting systems.

A straightforward example in the context of the
quadratic Hamiltonian (8) is the case in which initially
the subsystem and the bath have the same chemical po-
tential µIb = µIs = 0 but different inverse temperature (βIs
and βIb , respectively). In this case, one can extract work
by quenching the hopping amplitudes in the subsystem
(no quench of the onsite potentials). Maximal work can
be extracted for a strong quench of the hopping ampli-
tude in the subsystem from t → tQ with tQ/t = βIs/β

I
b ,

and then returning to t using a quasi-static process (N
weak quenches in the subsystem).

B. Work extraction and entropy differences vs the
number of quenches

Next, we would like to gain an understanding of what
happens in finite systems and for a finite number of
quenches. For this, we use numerical calculations. Since
the the Hamiltonian of interest here is quadratic, all ob-
servables in thermal equilibrium can be computed from

the one-body density matrix, ρGE
ij = Tr [ρ̂GEĉ†i ĉj ], which

can be obtained as

ρGE
ij = δij −

[
I + e−β(H−µ)

]−1
ji

, (22)

where I is the identity matrix, and H is the matrix
representing our Hamiltonian in the single-particle basis

Ĥ =
∑
ij ĉ
†
iHij ĉj [46–48].

Given the total energy EQ [see Eq. (12)], and the GE
site occupancy in the subsystem nGE

s,Q, after the quench

V Is = 0 → V Fs = V , it is straightforward to see that the
energy of the entire system after the N weak quenches in
which thermalization occurs, EGE

F,N , depends on N [in this

analysis we ignore the final (N+1) local quench in which
the subsystem and the bath are disconnected]. Denoting
the site occupation in the subsystem after thermalization

0
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FIG. 2. (Color online) (a) Chemical potential of the entire
“thermalized” system after the mth weak quench, µqm , vs m.
(b) Average site occupation in the subsystem following ther-
malization after the mth weak quench, nGE

s,qm , vs m. Results

are reported for V = µI
b − µI

s = 1.0, 1.5, 2.0, and 4.0, where
µI
b = −µI

s, βI = 1.0, and L = 1000. The lines depict lin-
ear interpolations between the results after the strong quench
(m = 0) and the N th weak quench (m = N).

following the mth weak quench as nGE
s,qm , one can write

EGE
F,1 = EQ − V LsnGE

s,Q

EGE
F,2 = EQ −

V

2
Ls(n

GE
s,Q + nGE

s,q1)

. . . (23)

. . .

EGE
F,N = EQ −

V

N
Ls(n

GE
s,Q + nGE

s,q1 + ...+ nGE
s,qN−1

).

Since the on-site potential of the subsystem is reduced
the same amount after each weak quench, the chem-
ical potential in the GE after the mth weak quench
(µqm) exhibits a linear decrease with m (the tempera-
ture decreases slightly after every weak quench): µqm '
µQ + [(µF − µQ)m]/N [see Fig. 2(a)], where µQ and µF
are the chemical potentials after the strong quench and
at the end of the cyclic process, respectively. Given µqm ,
the site occupations in the subsystem nGE

s,qm can be ob-
tained computing an integral like the one in Eq. (14).
The relation between µqm and nGE

s,qm is, in general, not
a linear one. However, when |µQ| and |µF | are much
smaller than the bandwidth, the relation is linear and

nGE
s,qm ' n

GE
s,Q +

(nGE
s,F − nGE

s,Q)m

N
, (24)

where nGE
s,F is the site occupation in the subsystem at the

end of the cyclic process. This relation works remarkably
well when V . 2 for µIb = −µIs [see Fig. 2(b)]. We choose
µIb = −µIs so that the system is at half-filling for Ls = Lb.

Using Eq. (24), it is straightforward to compute the
work extracted when ignoring the final local quench in
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b = 0.5,
βI = 1, and for quenches with V = 1.0. Results are presented
when the final local quench is ignored (bottom curve with 1/N
behavior highlighted by a dashed line, Ls = Lb = 500), and
for two system sizes (Ls = Lb = 500 and Ls = Lb = 2000) in
the cyclic process in Fig. 1.

which the subsystem and the bath are disconnected

WGE(N) = EI − EGE
F,N (25)

' V Ls

(
nGE
s,F + nGE

s,Q

2
− nIs

)
− V Ls

2N

(
nGE
s,F − nGE

s,Q

)
.

As shown in Fig. 3(a), this expression is in excellent
agreement with the exact numerical results for L = 1000,
V = 1.0 and 1.2, and µIb = −µIs = 0.5, when the fi-
nal local quench in which the subsystem and the bath
are disconnected is taken into account. The top curve
(V = 1.0) shows results when the strong quench fulfills
the condition for maximal work extraction. The vertical
dashed-dotted lines depict the predictions of Eq. (25) for
N →∞.

The entropy in the GE can be written as [44]

SGE = −
L∑
α=1

[IGE
α ln IGE

α + (1− IGE
α ) ln(1− IGE

α )] , (26)

where Iα = (exp[β(εα − µ)] + 1)−1 is the occupation of
the single-particle states in the GE, and εα are the single-
particle eigenenergies. It follows from Eq. (26) that the
derivative of the GE entropy at the end of the cyclic
process SGE

F , with respect to the total number of weak

quenches N , is dSGE
F /dN = βF

∑
α(εα − µF ) dIα/dN ,

where the final inverse temperature βF and chemical po-
tential µF depend on N . Since

∑
α Iα equals the to-

tal number of particles, which is conserved during our
cyclic process,

∑
α µF dIα/dN = 0. Hence, as expected,

dSGE
F /dN = βF

∑
α εα dIα/dN = βF dE

GE
F,N/dN .

Using Eq. (25), we see that

dSGE
F

dN
= −βF

dWGE(N)

dN
' −V LsβF

2N2

(
nGE
s,F − nGE

s,Q

)
.

(27)
For N sufficiently large, βF and nGE

s,F are independent of

N [see the inset in Fig. 3(a) for the behavior of βF vs N ],
and SGE

F ∝ 1/N .
In Fig. 3(b), we show the difference between the GE en-

tropy per site at the end of the cyclic process SGE
F /L and

the GE entropy per site after the strong quench SGE
Q /L.

Figure 3(b) shows that, when the final local quench is
ignored, the entropy difference vanishes with 1/N as pre-
dicted. When the last local quench is taken into account,
the entropy difference can be seen to saturate with in-
creasing N . As expected, with increasing system size,
the effect of the local quench becomes negligible and the
difference approaches the prediction in Eq. (27).

C. Work Extraction and entropy differences vs the
quench parameter

Here we study the effect of changing the strong quench
strength (set by the value of V ) in the work extracted in
the limit N → ∞, as well as on the GE entropy after
the strong quench, for finite system sizes. The energy at
the end of the cyclic process for N →∞ is computed as
follows: (i) We determine the entropy of the GE that has
the same energy and number of particles than our system
after the strong quench, (ii) We determine the GE that
has the same entropy and number of particles determined
in (i) but for the Hamiltonian Ĥ(0, 0) [see Eq. (2)], i.e.,
the Hamiltonian of the system after the N → ∞ weak
quenches, and (iii) We compute the energy of the GE in
(ii) after the local quench in which the subsystem and
the bath are disconnected. The difference between the
initial energy and the energy determined in (iii) is the
work extracted in the limit N →∞.

In Fig. 4(a), we plot results for the work extracted per
site vs V/(µIb −µIs) for three values of µIb = −µIs, for L =
1000. The dashed lines are the maximal work bounds
predicted by Eq. (13). The numerical results show that,
as advanced for V = µIb − µIs, the work extracted for
each value of µIb = −µIs nearly saturates the maximal
work bound. The inset in Fig. 4(a) shows that the small
difference between the numerical result and the bound,
for µIb = −µIs = 0.5, vanishes as 1/L with increasing
system size. Figure 4(a) also shows that increasing the
difference between µIb and µIs increases the maximal work
one can extract when the system thermalizes.

Figure 4(b) shows the difference between the GE en-
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FIG. 4. (Color online) (a) Work extracted per site in the
limit N → ∞ in the cyclic process in Fig. 1, WGE/L (see
text), as a function of V/(µI

b − µI
s), for Ls = Lb = 500, µI

b =
−µI

s = 0.5, 0.65 and 0.75, and βI = 1.0. The horizontal
dashed lines show the maximal work bounds predicted by
Eq. (13). (Inset) Difference between the maximal work bound
and the numerical result for WGE at V = µI

b − µI
s, ∆W/L =

|WGE
max −WGE|/L, vs L for µI

b = −µI
s = 0.5. The solid line

depicts a power law fit ∆W/L = a/L with a = 0.23. (b)
Difference between the GE entropy after the strong quench
and the initial entropy, (SGE

Q −SI)/L vs V/(µI
b −µI

s), for the

same parameters as in (a). (Inset) (SGE
Q − SI)/L vs L, at

V = µI
b − µI

s for µI
b = −µI

s = 0.5. The solid line depicts a
power law fit (SGE

Q − SI)/L = b/L with b = 0.21.

tropy after the strong quench and the initial entropy, per
site, vs V/(µIb − µIs). Results are shown for the same
three values of µIb = −µIs and system size as in Fig. 4(a).
The entropy difference per site can be seen to be minimal
when V = µIb − µIs, and the inset shows that it vanishes
as 1/L with increasing system size.

IV. GENERALIZED GIBBS ENSEMBLE

In this section, we study what happens when the sys-
tems are truly noninteracting. While this might appear
to be a theoretical exercise of no relevance to experimen-
tal systems (or microscopic quantum devices), one should
bear in mind that if interactions are very weak there exist
the possibility that the dynamics for experimentally rel-
evant time scales (operation times) is well described by a
noninteracting Hamiltonian. The same can be said about
systems that are interacting but close to some integrable
point [10]. For experimentally relevant time scales, their
dynamics can be described by an integrable Hamiltonian
and they do not thermalize, even if at very long times
(not accessible in experiments) one expects that integra-
bility breaking effects result in thermalization. Beautiful
experiments with ultracold atoms in 1D geometries have

shown such a lack of thermalization [49–51], while oth-
ers have demonstrated that thermalization does occur in
(nearly) isolated quantum systems if they are not close
to integrable regimes [52–54].

As mentioned before, the breakdown of thermalization
in integrable systems is due to the existence of an ex-
tensive number of nontrivial conserved quantities. In
the noninteracting system of interest here, the conserved
quantities Îj are the occupations of the single-particle
eigenstates of the Hamiltonian after the quench (they
are conserved because the particles do not interact with
each other). There are as many of those as lattice sites,
i.e., there is an extensive number of them. In integrable
systems in general, and in our noninteracting system in
particular, observables after equilibration are expected
to be described by the GGE [22] (see Refs. [25–28] for
recent reviews).

The GGE density matrix [22], which was obtained
maximizing the entropy under the constraints imposed by
the conserved quantities (à la Jaynes [55]) and has been
justified microscopically in terms of generalized eigen-
state thermalization [25, 29, 30], can be written as

ρ̂GGE =
1

ZGGE
e−

∑
α λαÎα , (28)

where ZGGE = Tr [exp(−
∑
α λαÎα)] is the partition func-

tion of the GGE. The Lagrange multipliers λα are deter-
mined by the condition Tr [ρ̂GGEÎα] = IIα ≡ Tr [ρ̂I Îα], in
which ρ̂I is the density matrix of the initial (nonstation-
ary) state. In the fermionic system of interest here [22]

λα = ln

(
1− IIα
IIα

)
, (29)

Similarly to the GE, the GGE entropy is

SGGE = −
L∑
α=1

[IIα ln IIα + (1− IIα) ln(1− IIα)] . (30)

Unlike for systems that thermalize and hence can be
described by the GE, there is no simple way to determine
the occupation of the single-particle eigenstates of the
Hamiltonian after a quench. In addition, contrary to the
GE, those occupations are not a monotonic function of
the single-particle eigenenergies. As a result, within the
GGE, the entropy is not necessarily a monotonic function
of the energy. Therefore, the analytical arguments used
in the context of the GE are not valid within the GGE.

In what follows, we report and discuss numerical re-
sults for the cyclic protocol in Fig. 1 when we replace the
exact density matrix of the system after equilibration by
the GGE density matrix. As shown in Fig. 5, within our
protocol, numerical results for work extraction using ex-
act dynamics (waiting random times after equilibration)
and the GGE density matrix are in excellent agreement.
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A. Work Extraction

Given our initial state, which is a product of GE den-
sity matrices, the first question we address is the effect
that the number of weak quenches N has on the work
extracted in the cyclic process. As mentioned before,
within the GGE, the entropy is not necessarily a mono-
tonic function of the energy. This means that there is
no a priori reason to expect that a quasi-static return
to the initial Hamiltonian, following the strong quench,
allows us to extract the most work. Actually, for a spe-
cific non-passive initial state, in Ref. [33] a quasi-static
process was shown not to be optimal for extracting work
in a noninteracting fermionic system.

In Fig. 5, we show the work extracted per site within
the GGE description, WGGE/L, for the same two cyclic
processes as in Fig. 2. Figure 5 shows that WGGE/L
increases with N , and that, as N → ∞, the work ex-
tracted for V = 1.0 is greater than for V = 1.2, as when
thermalization occurs. The inset in Fig. 5 shows that
the difference between the GGE entropy per site at the
end of the cyclic process and after the strong quench,
(SGGE
F −SGGE

Q )/L, decreases with increasing N . Also, for
any given N , the entropy difference is smaller for V = 1.0
than for V = 1.2.

Next, we study how changing the strength of the strong
quench changes the work extracted within the GGE
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FIG. 5. (Color online) Work extracted per site within the ex-
act dynamics (waiting random times after equilibration) and
the GGE description, WGGE/L, vs the total number of small
quenches N . For the exact dynamics calculations, the random
times selected are uniformly distributed between 200 and 500
(in units of inverse hopping) after each quench in 40 real-
izations of our cyclic process. (Inset) Difference between the
GGE entropy per site at the end of the cyclic process and after
the strong quench, (SGGE

Q −SGGE
F )/L, vs the total number of

small quenches N . The final (local) quench is included in all
calculations. The systems have Ls = Lb = 500 (L = 1000),
are at half-filling (µI

b = −µI
s = 0.5), and βI = 1.0. We report

results for V = 1.0 and 1.2, as in Fig. 2.

description for a large, but finite, number N of weak
quenches. We report results for N = 1000. (Unlike for
the GE, to determine the work extracted in the limit
N → ∞ within the GGE, one needs to do numerical
calculations for finite N and extrapolate the results to
N → ∞.) Figure 6 shows that, similarly to the results
obtained for the GE, maximal work is extracted when
V = µIb −µIs. This is understandable in terms of entropy
production (or the lack thereof) as, for V = µIb − µIs,
the strong quench in our protocol does not produce en-
tropy within the GGE description. This follows from the
inequalities SGE

Q ≥ SGGE
Q ≥ SI . Since SGE

Q ' SI for

V = µIb − µIs, it then follows that SGGE
Q ' SI . It also

follows that SGE
Q ' SGGE

Q , which together with the fact
that the energy of the GE and the GGE must match af-
ter the strong quench, hints that the GGE density matrix
after the strong quench is very close to that of the GE (as
both occupations of single-particle eigenstates and their
ordering must match). Hence, the GGE density matrix
after the strong quench is (almost) passive.

Given a density matrix ρ̂I , the work that can be ex-
tracted within a GGE description of equilibration during
a cyclic process has an upper bound [33]

WGGE
max = Tr [ρ̂IĤI ]−

∑
α

εαI
′
α, (31)

where εα are the single-particle energy eigenvalues of ĤI
(in ascending order), and I ′α are the occupations of single-
particle eigenstates in ρ̂I reordered in descending order
so that

∑
α εαI

′
α is the minimal energy given that set

of occupations. Since the occupations of single-particle
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FIG. 6. (Color online) (a) Work extracted per site, WGGE/L,
in the cyclic process in Fig. 1 as a function of V/(µI

b − µI
s),

for N = 1000, Ls = Lb = 500, µI
b = −µI

s = 0.5, 0.65 and
0.75, and βI = 1.0. The horizontal dashed lines show the
maximal work bounds predicted by Eq. (31). (b) Difference
between the GGE entropy after the strong quench and the
initial entropy, (SGGE

Q − SI)/L, vs V/(µI
b − µI

s) for the same
parameters as in (a).
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FIG. 7. (Color online) Difference ∆WGGE/L = (WGGE
max −

WGGE)/L, at V = µI
b−µI

s, vs L (Ls = Lb). We present results
for different number of weak quenches (N = 500, 1000, 1500,
2000, and 2500), for systems at half filling (µI

b = −µI
s = 0.5),

and βI = 1.0. The dashed line depicts a 1/L scaling.

energy eigenstates are the same in the initial state and
in the hypothetical final state with minimal energy, both
states have identical entropies.

Figure 6 shows that the maximal work extracted in our
cyclic process is very close to that bound. As mentioned
before, for V = µIb − µIs and N → ∞, our protocol en-
sures that SGGE

F ' SI , i.e., the initial and final sets of

occupations of the single-particle eigenstates of ĤI are
expected to be the same. In addition, since the density
matrix of the GGE after the strong quench is (almost)
passive, N → ∞ ensures that the density matrix of the
GGE at the end of the cyclic process is (almost) passive,
i.e., our final state must (almost) be the hypothetical fi-
nal state in Eq. (31).

We have studied what happens with the small dif-
ferences seen in Fig. 6 between the numerical calcula-
tions using the GGE and the predictions of Eq. (31),
∆WGGE/L = (WGGE

max − WGGE)/L at V = µIb − µIs,
when one changes the system size L and the total num-
ber of small quenches N . In Fig. 7, we show results for
V = µIb − µIs = 1.0. As expected, ∆WGGE/L decreases
with increasing N and L. With increasing N , the re-
sults approach a power law decay ∝ 1/L. This confirms
our expectation that as N → ∞ and then L → ∞, our
protocol for V = µIb−µIs saturates the bound in Eq. (31).

V. COMPARISON BETWEEN GE AND GGE
DESCRIPTIONS

In this section, we discuss the differences between the
GE and the GGE descriptions of our cyclic process. We
should stress that, after a quench starting from the same
initial state, the energy and number of particles within
the GE and GGE descriptions are identical. What is
different are the density matrices describing the system.
This is what leads to different results after subsequent
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FIG. 8. (Color online) Average site occupation in the subsys-
tem after the strong quench as a function of V for equilibra-
tion to the GE and GGE descriptions. Results are shown for
µI
b = −µI

s=0.5, 0.65 and 0.75, Ls = Lb = 500, and βI = 1.0.
The horizontal lines following the GGE results for V ≥ 4
make apparent that the site occupations in the subsystem are
independent of V in that regime.

quenches and, ultimately, to different work extracted af-
ter completing cyclic processes.

As we discussed in Secs. III and IV, the protocols de-
vised to extract maximal work within the GE and GGE
descriptions do not increase the entropy of the system.
Since in the GE the energy is a monotonically increas-
ing function of the entropy, and for any given energy the
entropy is maximal, whenever the GGE has the same
entropy as the GE it must have a higher energy. As a
result, WGE

max ≥WGGE
max . This can be seen if one compares

the results in Fig. 4(a) and in Fig. 6(a). A recent work
has proposed a protocol to extract WGE

max −WGGE
max in a

noninteracting setting [56].

A quantity that exhibits a qualitatively different be-
havior in the GE and GGE with increasing the quench
strength is the average site occupation in the subsystem
ns,Q (and, consequently, in the bath). In Fig. 8, we plot
ns,Q as a function of V for three values of µIb = −µIs (i.e.,
at half filling). While one can see that in the GE, for
V ≤ 4, ns,Q decreases smoothly as V increases, ns,Q ex-
hibits a nonmonotonic behavior in the GGE with a sort
of kink at V = 4. For V ≥ 4, ns,Q does not change in
the GGE with increasing V . This is because for V ≥ 4
all fermions that are in the subsystem (bath) before the
quench remain in the subsystem (bath) after the quench,
which is the result of the subsystem and the bath hav-
ing a local on-site potential difference that is larger than
the band-width, i.e., because of energy conservation the
fermions cannot hop between the subsystem to the bath
in the absence of interactions.

In order to be more quantitative in the comparison of
the GE and the GGE, we calculate the relative differences

in the site (n
GE/GGE
i,Q ) and single-particle energy eigen-
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FIG. 9. (Color online) (a) Relative difference between the
GE and GGE predictions for the site occupations in the sys-
tem after equilibration following the strong quench, ∆n [see
Eq. (32)], vs V/(µI

b − µI
s) for µI

b = −µI
s = 0.5, 0.65, and

0.75, Ls = Lb = 500, and βI = 1.0. (Inset) ∆n vs L for
V = µI

b − µI
s = 1.0 and βI = 1.0. The dashed line depicts a

power-law decay ∝ 1/L. (b) Relative difference between the
occupation of the single-particle energy eigenstates in the GE
and GGE following the strong quench, ∆I [see Eq. (32)], vs
V/(µI

b − µI
s) for the same parameters as in (a). (Inset) ∆n

vs L for V = µI
b − µI

s = 1.0 and βI = 1.0. The dashed line
depicts a power-law decay ∝ 1/L1.1.

state (I
GE/GGE
α,Q ) occupations after the strong quench:

∆n =

∑
i |nGE

i,Q − nGGE
i,Q |∑

i n
GGE
i,Q

,

∆I =

∑
α |IGE

α,Q − IGGE
α,Q |∑

α I
GGE
α,Q

, (32)

Results for those two quantities are reported in Fig. 9.
One can see there that ∆n [Fig. 9(a)] and ∆I [Fig. 9(b)]
have deep minima (note the logarithmic scale) at V =
µIb−µIs, which correspond to the quenches for which max-
imal work is extracted within both ensemble descriptions.
As discussed in Sec. IV A, for such strong quenches the
GE and GGE density matrices are expected to be very
close to each other. The insets in Fig. 9 show that, as
expected, ∆n and ∆I for V = µIb − µIs vanish with in-
creasing system size (almost linearly with 1/L).

In all numerical results reported so far, we considered
the case in which the subsystem and the bath have the
same size, Ls = Lb. In Fig. 10, we report results ob-
tained when changing the ratio between the size of the
subsystem and the size of the entire system, η = Ls/L.
We focus on the protocol for which maximal work can
be extracted, V = µIb − µIs. Figure 10 shows that, both
for the GE and GGE descriptions, the work extracted
per site in the entire system is maximal when Ls = Lb
(η = 1/2). On the other hand, the inset in Fig. 10 shows
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FIG. 10. (Color online) (Main panel) Work extracted divided
by the system size, W/L, vs η, and (inset) work extracted
divided by the subsystem size, W/Ls, vs η for the descriptions
within the GE (N →∞) and the GGE (N = 1000). Results
are shown for L = 1000, βI = 1.0, and V = µI

b − µI
s =

1.2, where µI
b = −µI

s = 0.6. Dashed lines are the analytical
prediction from Eq. (33), while the continuous lines are a
guide to the eye.

that the work extracted per site in the subsystem is a
monotonically decreasing function of η. Again, this is
true both for the GE and GGE descriptions. Depending
on whether one wants to extract the most work or the
most work per site of the subsystem, one needs to select
the subsystem size to be equal to that of the bath or
much smaller than that of the bath, respectively.

The GE results in Fig. 10 can be understood in the
context of the theoretical framework discussed in Sec. III
for the thermodynamic limit. The strong quench with
V = µIb − µIs does not produce entropy, and is used to
extract maximal work. For this quench, the chemical
potential and temperature of the entire system in the GE
that describes the thermalized observables are µQ = µIb
and βQ = βI , respectively. The site occupations in the
subsystem remain unchanged from their initial values.
Hence, substituting nGE

s,Q = nIs, V = µIb−µIs, and N →∞
in Eq. (25), one obtains WGE ' Ls(µIb −µIs)(nsF −nIs)/2.
The average site occupation in the final state is nGE

s,F =

η nIs +(1−η)nIb , where η = Ls/L, so the (maximal) work
extracted in our cyclic process is

WGE

L
' (µIb − µIs)(nIb − nIs)η(1− η)/2,

WGE

Ls
' (µIb − µIs)(nIb − nIs)(1− η)/2. (33)

The dashed lines in the main panel in Fig. 10 and its
inset depict the results from Eq. (33), and can be seen to
be in excellent agreement with the numerical results for
N →∞ and L = 1000.

In Fig. 11, we plot W/[L(µIb − µIs)] vs nIb − nIs for
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FIG. 11. (Color online)W/[L(µI
b−µI

s)] vs (nI
b−nI

s) within (a)
the GE (N →∞) and (b) the GGE (N = 1000). Results are
reported for L = 1000, for two initial temperatures (T I = 1.0
and 1.5), and two subsystem sizes (η = 0.5 and 0.2). The
dashed lines in (a) are results from Eq. (33) for the GE, while
the continuous lines in (a) are a guide to the eye. All results
were obtained for V = µI

b − µI
s and µI

b = −µI
s.

two values of η and for two initial temperatures T I =
(βI)−1. Results within the GE description are shown
in Fig. 11(a), while results within the GGE description
are shown in Fig. 11(b). The results in Fig. 11(a) are
in excellent agreement with the predictions of Eq. (33)
whenever the difference in site occupations in the subsys-
tem and the bath, as well as the initial temperature, are
not too large. They allow one to also gain a qualitative
understanding of what happens within the GGE descrip-
tion because, as seen in Fig. 11(b), the GGE results are
qualitatively similar to those obtained within the GE. We
note that, both in the GE and GGE, W/[L(µIb −µIs)] for
a given value of nIb − nIs decreases with increasing T I .

VI. SUMMARY

We studied work extraction within a fermionic
quadratic model in an isolated (unitarily evolving) 1D

lattice system, and considered equilibration both to the
GE, to describe what happens in a weakly interacting
quantum chaotic system, as well as to the GGE, to de-
scribe what happens in the noninteracting limit. We
considered initial states that are products of thermal
states of the subsystem and the bath (in which we di-
vided the isolated system). We devised a cyclic protocol
that begins by connecting the subsystem and the bath,
and quenching the local on-site potentials in the subsys-
tem (we called that quench the “strong” quench in our
protocol). After equilibration, we applied a quasi-static
process in which the local on-site potentials in the subsys-
tem are brought to the values before the strong quench
by means of N weak quenches, after which the subsystem
and the bath are disconnected (a local quench).

We calculated the work extracted when changing the
strength V of the strong quench, and the number N of
weak quenches, both within the GE and the GGE. We
found the value of V for which maximal work can be ex-
tracted both in the GE and the GGE, and discussed why
for that value of V our cyclic protocols saturate the the-
oretical bounds. We studied the effect of changing the
ratio between the sizes of the subsystem and the bath,
but focused in the case in which they are the same. This
might be of interest to understand microscopic devises,
and is different from the subsystem-much-larger-than-
bath approach in traditional thermodynamics. Within
our cyclic protocol, and in the parameter regime stud-
ied, no qualitative differences were found in the work ex-
tracted when considering equilibration to the GE and the
GGE. In the future, we plan to explore initial states for
which systems described by the GGE can be used to ex-
tract work without involving quasi-static processes [33].
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