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We analyze the thermodynamic costs of the three main approaches to generating random num-
bers via the recently introduced Information Processing Second Law. Given access to a specified
source of randomness, a random number generator (RNG) produces samples from a desired tar-
get probability distribution. This differs from pseudorandom number generators (PRNG) that use
wholly deterministic algorithms and from true random number generators (TRNG) in which the
randomness source is a physical system. For each class, we analyze the thermodynamics of genera-
tors based on algorithms implemented as finite-state machines, as these allow for direct bounds on
the required physical resources. This establishes bounds on heat dissipation and work consumption
during the operation of three main classes of RNG algorithms—including those of von Neumann,
Knuth and Yao, and Roche and Hoshi—and for PRNG methods. We introduce a general TRNG and
determine its thermodynamic costs exactly for arbitrary target distributions. The results highlight
the significant differences between the three main approaches to random number generation: One is
work producing, one is work consuming, and the other is potentially dissipation neutral. Notably,
TRNGs can both generate random numbers and convert thermal energy to stored work. These
thermodynamic costs on information creation complement Landauer’s limit on the irreducible costs
of information destruction.
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I. INTRODUCTION

Random number generation is an essential tool these

days in simulation and analysis. Applications range from

statistical sampling [1], numerical simulation [2], cryp-

tography [3], program validation [4], and numerical anal-

ysis [5] to machine learning [6] and decision making in

games [7] and in politics [8]. More practically, a signif-

icant fraction of all the simulations done in physics [9]

employ random numbers to greater or lesser extent.

Random number generation has a long history, full of

deep design challenges and littered with pitfalls. Initially,

printed tables of random digits were used for scientific

work, first documented in 1927 [10]. A number of analog

physical systems, such as reversed-biased Zener diodes

[11] or even Lava® Lamps [12], were also employed as

sources of randomness; the class of so-called noise gen-

erators. One of the first digital machines that generated

random numbers was built in 1939 [13]. With the advent

of digital computers, analog methods fell out of favor, dis-

placed by a growing concentration on arithmetical meth-

ods that, running on deterministic digital computers, of-

fered flexibility and reproducibility. An early popular

approach to digital generation was the linear congruen-

tial method introduced in 1950 [14]. Since then many

new arithmetical methods have been introduced [15–20].
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The recurrent problem in all of these strategies is

demonstrating that the numbers generated were, in fact,

random. This concern eventually lead to Chaitin’s and

Kolmogorov’s attempts to find an algorithmic foundation

for probability theory [21–26]. Their answer was that an

object is random if it cannot be compressed: random

objects are their own minimal description. The theory

exacts a heavy price, though: identifying randomness is

uncomputable [25].

Despite the formal challenges, many physical systems

appear to behave randomly. Unstable nuclear decay pro-

cesses obey Poisson statistics [27], thermal noise obeys

Gaussian statistics [28], cosmic background radiation ex-

hibits a probabilistically fluctuating temperature field

[29], quantum state measurement leads to stochastic out-

comes [30–32], and fluid turbulence is governed by an un-

derlying chaotic dynamic [33]. When such physical sys-

tems are used to generate random numbers one speaks

of true random number generation [34].

Generating random numbers without access to a source

of randomness—that is, using arithmetical methods on a

deterministic finite-state machine, whose logic is phys-

ically isolated—is referred to as pseudorandom number

generation, since the numbers must eventually repeat and

so, in principle, are not only not random, but are ex-

actly predictable [35, 36]. John von Neumann was rather

decided about the pseudo-random distinction: “Any one

who considers arithmetical methods of producing random

digits is, of course, in a state of sin” [37]. Nonetheless,
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these and related methods dominate today and perform

well in many applications.

Sidestepping this concern by assuming a given source

of randomness, random number generation (RNG) [38]

is a complementary problem about the transformation of

randomness: Given a specific randomness source, whose

statistics are inadequate somehow, how can we convert

it to a source that meets our needs? And, relatedly, how

efficiently can this be done?

Our interest is not algorithmic efficiency, but ther-

modynamic efficiency, since any practical generation of

random numbers must be physically embedded. What

are the energetic costs—energy dissipation and power

inputs—to harvest a given amount of information? This

is a question, at root, about a particular kind of infor-

mation processing—viz., information creation—and the

demands it makes on its physical substrate. In this light,

it should be seen as exactly complementary to Landauer’s

well known limit on the thermodynamic costs of informa-

tion destruction (or erasure) [39, 40].

Fortunately, there has been tremendous progress

bridging information processing and the nonequilibrium

thermodynamics required to support it [41, 42]. This

information thermodynamics addresses processes that

range from the very small scale, such as the operation

nanoscale devices and molecular dynamics [43], to the

cosmologically large, such the character and evolution

of black holes [44, 45]. Recent technological innovations

allowed many of the theoretical advances to be experi-

mentally verified [46, 47]. The current state of knowl-

edge in this rapidly evolving arena is reviewed in Refs.

[48–50]. Here, we use information thermodynamics to

describe the physical limits on random number genera-

tion. Though the latter is often only treated as a purely

abstract mathematical subject, practicing scientists and

engineers know how essential random number generation

is in their daily work. The following explores the under-

lying necessary thermodynamic resources.

First, Sec. II addresses random number generation,

analyzing the thermodynamics of three algorithms, and

discusses physical implementations. Second, removing

the requirement of an input randomness source, Sec. III

turns to analyze pseudorandom number generation and

its costs. Third, Sec. IV analyzes the thermodynamics

of true random number generation. Finally, the conclu-

sion compares the RNG strategies and their costs and

suggests future problems and energy use.

II. RANDOM NUMBER GENERATION

Take a fair coin as our source of randomness.1 Each flip

results in a Head or a Tail with 50%− 50% probabilities.

However, we need a coin that 1/4 of the time generates

Heads and 3/4 of the time Tails. Can the series of fair

coin flips be transformed? One strategy is to flip the coin

twice. If the result is Head-Head, we report Heads. Else,

we report Tails. The reported sequence is equivalent to

flipping a coin with a bias 1/4 for Heads and 3/4 for

Tails.

Each time we ask for a sample from the biased distri-

bution we must flip the fair coin twice. Can we do better?

The answer is yes. If the first flip results in a Tail, inde-

pendent of the second flip’s result, we should report Tail.

We can take advantage of this by slightly modifying the

original strategy. If the first flip results in a Tail, stop.

Do not flip a second time, simply report a Tail, and start

over. With this modification, 1/2 of the time we need a

single flip and 1/2 the time we need two flips. And so,

on average we need 1.5 flips to generate the distribution

of interest. This strategy reduces the use of the fair coin

“resource” by 25%.

Let’s generalize. Assume we have access to a source of

randomness that generates the distribution {pi : i ∈ A}
over discrete alphabet A. We want an algorithm that

generates another target distribution {qj : j ∈ B} from

samples of the given source. (Generally, the source of

randomness {pi} can be known or unknown to us.) In

this, we ask for a single correct sample from the target

distribution. This is the immediate random number gen-

eration problem: Find an algorithm that minimizes the

expected number of necessary samples of the given source

to generate one sample of the target.2

The goal in the following is to analyze the thermo-

dynamic costs when these algorithmically efficient algo-

rithms are implemented in a physical substrate. This

question parallels that posed by Landauer [39, 40]: What

is the minimum thermodynamic cost to erase a bit of in-

formation? That is, rather than destroying information,

we analyze the costs of creating information with desired

statistical properties given a source of randomness.

Bounding the Energetics: The machine implementing

the algorithm transforms symbols on an input string sam-

pled from an information reservoir to an output symbol

1 Experiments reveal this assumption is difficult if not impossible
to satisfy. Worse, if one takes the full dynamics into account, a
flipped physical coin is quite predictable [51].

2 A companion is the batch random number generation problem:
Instead of a single sample, generate a large number of inputs and
outputs. The challenge is to find an algorithm minimizing the
ratio of the number of inputs to outputs [52–54].
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FIG. 1. Thermodynamically embedded finite-state machine
implementing an algorithm that, from the source of random-
ness available on the input string, generates random numbers
on the output string obeying a desired target distribution and
an exhaust with zero entropy. Input string and output string
symbols can come from different alphabet sets. For example,
here the input symbols come from the set {A,B,C} and the
outputs from {D,E}. Exhaust line symbols all are the same
symbols γ.

string and an exhaust string, using a finite-state machine

that interacts with heat and work reservoirs; see Fig. 1.

The input Randomness Reservoir is the given, specified

source of randomness available to the RNG. The states

and transition structure of the finite-state machine im-

plement the RNG algorithm. The output string then

consists of samples of the distribution of interest. The

exhaust string is included to preserve state space.

Here, we assume inputs Xn are independent, iden-

tically distributed (IID) samples from the randomness

reservoir with discrete alphabet A. The output includes

two strings, one with samples from the target distribution

X ′m over alphabet B and another, the exhaust string. At

each step one symbol, associated with variable Xn, enters

the machine. After analyzing that symbol and, depend-

ing on its value and that of previous input symbols, the

machine either writes a symbol to the output string or

to the exhaust string. Yn denotes the machine’s state at

step n after reading input symbol Xn. The last symbol

in the output string after the input Xn is read is denoted

X ′m, where m ≤ n is not necessarily equal to n. The last

symbol in the exhaust string is X ′′n−m. As a result, the

number of input symbols read by the machine equals the

number of symbols written to either the output string or

the exhaust string. To guarantee that the exhaust makes

no thermodynamic contribution, all symbols written to

X ′′i s are the same—denoted γ. Without loss of general-

ity we assume both the input and output sample space

is A ∪ B ∪ {γ}. In the following we refer to the random-

variable input chain as Xn:∞ = XnXn+1 · · ·X∞, output

chain as X ′0:m = X ′0X
′
1 · · ·X ′m−1, and exhaust chain as

X ′′0:n−m = X ′′0X
′′
1 · · ·X ′′n−m−1.

The machine also interacts with an environment con-

sisting of a Thermal Reservoir at temperature T and a

Work Reservoir. The thermal reservoir is that part of

the environment which contributes or absorbs heat, ex-

changing thermodynamic entropy and changing its state

Zn. The work reservoir is that part which contributes

or absorbs energy by changing its state, but without an

exchange of entropy. All transformations are performed

isothermally at temperature T . As in Fig. 1, we denote

heat that flows to the thermal reservoir by Q. To empha-

size, Q is positive if heat flows into the thermal reservoir.

Similarly, W denotes the work done on the machine and

not the work done by the machine.3

After n steps the machine has read n input symbols

and generated m output symbols and n−m exhaust sym-

bols. The thermodynamic entropy change of the entire

system is [57, App. A]:

∆S ≡ kB ln 2
(

H[X ′′0:n−m, X
′
0:m, Xn:∞, Yn, Zn]

−H[X0:∞, Y0, Z0]
)
,

where H[·] is the Shannon entropy [58]. Recalling the

definition of mutual information I[· : ·] [58], we rewrite

the change in Shannon entropy on the righthand side as:

∆ H = (H[X ′′0:n−m, X
′
0:m, Xn:∞, Yn]−H[X0:∞, Y0])

+ (H[Zn]−H[Z0])

− (I[X ′′0:n−m, X
′
0:m, Xn:∞, Yn : Zn]− I[X0:∞, Y0 : Z0]) .

By definition, a heat bath is not correlated with other

subsystems, in particular, with portions of the environ-

ment. As a result, both mutual informations vanish. The

term H[Zn] − H[Z0] is the heat bath’s entropy change,

which can be written in terms of the dissipated heat Q:

H[Zn]−H[Z0] =
Q

kBT ln 2
.

Since by assumption the entire system is closed, the Sec-

ond Law of Thermodynamics says that ∆S ≥ 0. Using

these relations gives:

Q ≥ −kBT ln 2
(

H[X ′′0:n−m, X
′
0:m, Xn:∞, Yn]−H[X0:∞, Y0]

)
.

To use rates we divide both sides by n and decompose

3 Several recent works [55–57] use the same convention for Q, but
W is defined as the work done by the machine. This makes sense
in those settings, since the machine is intended to do work.
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the first joint entropy:

Q

n
≥− kBT ln 2

n

(
H[X ′′0:n−m, X

′
0:m, Xn:∞]−H[X0:∞]

+ H[Yn]−H[Y0]− I[X ′′0:n−m, X
′
0:m, Xn:∞ : Yn]

+ I[X0:∞ : Y0]
)
.

Appealing to basic information identities, several

terms on the right-hand side vanish, simplifying the over-

all bound. First, since the Shannon entropy of a random

variable Y is bounded by logarithm of the size |AY | of

its state space, we have for the machine’s states:

lim
n→∞

1

n
H[Yn] = lim

n→∞

1

n
H[Y0]

≤ lim
n→∞

1

n
log2 |AY |

= 0 ,

Second, recalling that the two-variable mutual informa-

tion is nonnegative and bounded above by the Shannon

entropy of the individual random variables, in the limit

n→∞ we can write:

lim
n→∞

1

n
I[X ′′0:n−m, X

′
0:m, Xn:∞ : Yn] ≤ lim

n→∞

1

n
H[Y0]

= 0 .

Similarly, lim
n→∞

1
n I[X0:∞ : Y0] = 0. As a result, we have:

lim
n→∞

Q

n
≥ −kBT ln 2

n

(
H[X ′′0:n−m, X

′
0:m, Xn:∞]−H[X0:∞]

)
.

We can also rewrite the joint entropy as:

H[X ′′0:n−m, X
′
0:m, Xn:∞] = H[X ′0:m, Xn:∞] + H[X ′′0:n−m]

− I[X ′0:m, Xn:∞ : X ′′0:n−m] .

Since the entropy of the exhaust vanishes, H[X ′′0:n−m] =

0. Also, since I[X ′0:m, Xn:∞ : X ′′0:n−m] is bounded above

by it, I[X ′0:m, Xn:∞ : X ′′0:n−m] also vanishes. This leads

to:

H[X ′′0:n−m, X
′
0:m, Xn:∞] = H[X ′0:m, Xn:∞] .

This simplifies the lower bound on the heat to:

lim
n→∞

Q

n
≥ −kBT ln 2

n

(
H[X ′0:m, Xn:∞]−H[X0:∞]

)
.

Rewriting the righthand terms, we have:

H[X0:∞] = H[X0:n] + H[Xn:∞]− I[X0:n : Xn:∞]

and

H[X ′0:m, Xn:∞] = H[X ′0:m] + H[Xn:∞]− I[X ′0:m : Xn:∞] .

These lead to:

lim
n→∞

Q

n
≥ −kBT ln 2

n

(
H[X ′0:m]−H[X0:n]

+ I[X0:n : Xn:∞]− I[X ′0:m : Xn:∞]
)
.

Since the inputs are IID, I[X0:n : Xn:∞] vanishes. Fi-

nally, I[X ′0:m : Xn:∞] is bounded above by I[X0:n : Xn:∞],

meaning that I[X ′0:m : Xn:∞] = 0. Using these we have:

lim
n→∞

Q

n
≥ kBT ln 2

n

(
H[X0:n]−H[X ′0:m]

)
.

This can be written as:

lim
n→∞

Q

n
≥ kBT ln 2

(
H[X0:n]

n
− H[X ′0:m]

m

(m
n

))
.

As n → ∞, H[X0:n]/n converges to the randomness

reservoir’s Shannon entropy rate h and H[X ′0:m]/m con-

verges to the output’s entropy rate h′. The tapes’ relative

velocity term m/n also converges and we denote the limit

as 1/L̂. As a result, we have the rate Q̇ ≡ lim
n→∞

(Q/n) of

heat flow from the RNG machine to the heat bath:

Q̇ ≥ kBT ln 2

(
h− h′

L̂

)
. (1)

Since the machine is finite state, its energy is bounded.

In turn, this means the average energy entering the ma-

chine, above and beyond the constant amount that can

be stored, is dissipated as heat. In other words, the av-

erage work rate Ẇ and average heat dissipation rate Q̇

per input are equal: Ẇ = Q̇.

This already says something interesting. To generate

one random number the average change ∆W in work

done on the machine and the average change ∆Q in

heat dissipation by the machine are directly related:

∆W = ∆Q = L̂Q̇. More to the point, denoting the

lower bound by QLB ≡ kBT ln 2
(
L̂h− h′

)
immediately

leads to a Second Law adapted to RNG thermodynamics:

∆Q ≥ QLB . (2)

It can be shown that L̂ is always larger or equal to h′/h

[58] and so QLB ≥ 0.4 This tells us that RNG algorithms

are always heat dissipative or, in other words, work con-

4 This is not generally true for the setup shown in Fig. 1 inter-
preted most broadly. For computational tasks more general than
RNG, QLB need not be positive.
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FIG. 2. Lower bound on heat dissipation during the process
of single fair sample generation by von Neumann algorithm
versus the input bias p.

suming processes. Random numbers generated by RNGs

cost energy. This new RNG Second Law allows the ma-

chine to take whatever time it needs to respond to and

process an input. The generalization moves the informa-

tion ratchet architecture [57] one step closer to that of

general Turing machines [59], which also take arbitrary

time to produce an output. We now apply this gener-

alized Second Law to various physically embedded RNG

algorithms.

von Neumann RNG: Consider the case where the

randomness resource is a biased coin with unknown prob-

ability p 6= 1/2 for Heads. How can we use this imperfect

source to generate fair (unbiased p = 1/2) coin tosses

using the minimum number of samples from the input?

This problem was first posed by von Neumann [37]. The

answer is simple but clever. What we need is a symmetry

to undo the source’s bias asymmetry. The strategy is to

flip the biased coin twice. If the result is Heads-Tails we

report a Head; if it is Tails-Heads we report Tails. If it is

one of the two other cases, we neglect the flips and sim-

ply repeat from the beginning. A moment’s reflection

reveals that using any source of randomness that gen-

erates independent, identically distributed (IID) samples

can be used in this way to produce a statistically uniform

sample, even if we do not know the source’s bias.

Note that we must flip the biased coin more than twice,

perhaps many more, to generate an output. More trou-

blesome, there is no bound on how many times we must

flip to get a useful output.

So, what are the thermodynamic costs of this RNG

scheme? With probability 2p(1−p) the first two flips lead

to an output; with probability (1− 2p(1− p))(2p(1− p))
the two flips do not, but the next two flips will; and so

on. The expected number of flips to generate a fair coin

output is L̂ = 1
p(1−p) . Using Eq. (2) this costs:

QLB = kBT ln 2

(
H(p)

p(1− p)
− 1

)
, (3)

where H(p) = −p log2(p) − (1 − p) log2(1 − p). Figure 2

shows QLB versus source bias p. It is always positive with

a minimum 3kBT ln 2 at p = 1/2.

This minimum means that generating a fair coin from

a fair coin has a heat cost of 3kBT ln 2. At first glance,

this seems wrong. Simply pass the fair coin through. The

reason it is correct is that the von Neumann RNG does

not know the input bias and, in particular, that it is fair.

In turn, this means we may flip the coin many times,

depending on the result of the flips, costing energy.

Notably, the bound diverges as p → 0 and as p → 1,

since the RNG must flip an increasingly large number

of times. As with all RNG methods, the positive lower

bound implies that generating an unbiased sample via

the von Neumann method is a heat dissipative process.

We must put energy in to get randomness out.

Consider the randomness extractor [60], a variation on

von Neumann RNG at extreme p, that uses a weakly ran-

dom physical source but still generates a highly random

output. (Examples of weakly random sources include ra-

dioactive decay, thermal noise, shot noise, radio noise,

avalanche noise in Zener diodes, and the like. We return

to physical randomness sources shortly.) For a weakly

random source p � 1, the bound in Eq. (3) simplifies

to −kBT ln p, which means heat dissipation diverges at

least as fast as − ln p in the limit p→ 0.

Knuth and Yao RNG: Consider a scenario opposite

von Neumann’s where we have a fair coin and can flip

it an unlimited number of times. How can we use it

to generate samples from any desired distribution over

a finite alphabet using the minimum number of samples

from the input? Knuth and Yao were among the first

to attempt an answer [61]. They proposed the discrete

distribution generation tree (DDD-tree) algorithm.

The algorithm operates as follows. Say the target dis-

tribution is {pj} with probabilities pj ordered from large

to small. Define the partial sum βk =
∑k

j=1 pj , with

β0 = 0. This partitions the unit interval (0, 1) into the

subintervals (βk−1, βk) with lengths pk. Now, start flip-

ping the coin, denoting the outcomes X1, X2, . . .. Let

Sl =
∑l

m=1Xm2−m. It can be easily shown that S∞ has

the uniform distribution over the unit interval. At any

step l, when we flip the coin, we examine Sl. If there

exists a k such that:

βk−1 ≤ Sl < Sl + 2−l ≤ βk , (4)

the output generated is symbol k. If not, we flip the coin
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Input Output

00 A
01 B
10 C
110 B
1110 A
11110 A
111110 B
111111 C

TABLE I. Most efficient map from inputs to outputs when
using the DDG-tree RNG method.

again for one or more times until we find a k that satisfies

the relation in Eq. (4) and report that k as the output.

This turns on realizing that if the condition is satis-

fied, then the value of future flips does not matter since,

for r > l, Sr always falls in the subinterval (βk−1, βk).

Recalling that S∞ is uniformly distributed over (0, 1) es-

tablishes that the algorithm generates the desired distri-

bution {pj}. The algorithm can be also interpreted as

walking a binary tree,5 a view related to arithmetic cod-

ing [58]. Noting that the input has entropy rate h = 1

and using Eq. (1) the heat dissipation is bounded by:

QLB = kBT ln 2
(
L̂−H[{pi}]

)
. (5)

Now, let’s determine L̂ for the Knuth-Yao RNG. Ref.

[61] showed that:

H[{pi}] ≤ L̂ ≤ H[{pi}] + 2 . (6)

More modern proofs are found in Refs. [54] and

[58]. Given a general target distribution the Knuth-Yao

RNG’s L̂ can be estimated more accurately. However,

it cannot be calculated in closed form, only bounded.

Notably, there are distributions {pj} for which L̂ can be

calculated exactly. These include the dyadic distributions

whose probabilities can be written as 2−n with n an in-

teger. For these target distributions, the DDG-tree RNG

has L̂ = H[{pi}].
Equations (2) and (6) lead one to conclude that the

heat dissipation for generating one random sample is al-

ways a strictly positive quantity, except for the dyadic

distributions which lead to vanishing or positive dissi-

pation. Embedding the DDG-tree RNG into a physical

machine, this means one must inject work to generate a

random sample. The actual amount of work depends on

the target distribution given.

Let us look at a particular example. Consider the case

5 For details see Ref. [58].

that our source of randomness is a fair coin with half

and half probability over symbols 0 and 1 and we want

to generate the target distribution {11/32, 25/64, 17/64} over

symbols A,B, and C. The target distribution has Shan-

non entropy H[{pi}] ≈ 1.567 bits. Equation (6) tells us

that L̂ should be larger than this. The DDG-tree method

leads to the most efficient RNG. Table I gives the map-

ping from binary inputs to three-symbol outputs. L̂ can

be calculated using the table: L̂ ≈ 2.469. This is ap-

proximately 1 bit larger than the entropy consistent with

Eq. (6). Now, using Eq. (5), we can bound the dissipated

heat: QLB ≈ 0.625kBT .

Roche and Hoshi RNG: A more sophisticated and

more general RNG problem was posed by Roche in 1991

[62]: What if we have a so-called M -coin that generates

the distribution {pi : i = 1, . . . ,M} and we want to use it

to generate a different target distribution {qj}? Roche’s

algorithm was probabilistic. And so, since we assume the

only source of randomness to which we have access is the

input samples themselves, Roche’s approach will not be

discussed here.

However, in 1995 Hoshi introduced a deterministic al-

gorithm [63] from which we can determine the thermo-

dynamic cost of this general RNG problem. Assume the

pis and qjs are ordered from large to small. Define αt =∑t
i=1 pi and βk =

∑k
j=1 qj , with α0 = β0 = 0. These

quantities partition (0, 1) into subintervals [αt−1, αt) and

Bk ≡ [βk−1, βk) with lengths pt and qk, respectively.

Consider now the operator D that takes two arguments—

an interval and an integer—and outputs another interval:

D([a, b), t) = [a+ (b− a)αt−1, a+ (b− a)αt) .

Hoshi’s algorithm works as follows. Set n = 0 and

R0 = [0, 1). Flip the M -coin, call the result xn. Increase

n by one and set Rn = D(Rn−1, xn). If there is a k such

that Rn ⊆ Bk, then report k, else flip the M -coin again.

Han and Hoshi showed that [63]:

H[{qj}]
H[{pi}]

≤ L̂ ≤ H[{qj}] + f({pi})
H[{pi}]

,

where:

f({pi}) = ln(2(M − 1)) +
H[{pmax, 1− pmax}]

1− pmax
,

with pmax = max
i=1,··· ,M

pi. Using this and Eq. (2) we see

that the heat dissipation per sample is always positive

except for measure-zero cases for which the dissipation

may be zero or not. This means one must do work on

the system independent of input and output distributions

to generate the target sample. Again, using this result

and Eq. (2) there exist input and output distributions
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Input Output

0 0
10 0
11 1

TABLE II. Immediate random number generation: The most
efficient map from inputs to output to transform fair coin
inputs to biased coin outputs with bias 1/4.

with heat dissipation at least as large as kBT ln 2f({pi}).
RNG Physical Implementations: Recall the first

RNG we described. The input distribution is a fair coin

and the output target distribution is a biased coin with

bias 1/4. Table II summarizes the optimal algorithm.

Generally, optimal algorithms require the input length

to differ from the output length—larger than or equal,

respectively.

This is the main challenge to designing physical im-

plementations. Note that for some inputs, after they are

read, the machine should wait for additional inputs until

it receives the correct input and then transfers it deter-

ministically to the output. For example, in our problem

if input 0 is read, the output would be 0. However, if

1 is read, the machine should wait for the next input

and then generate an output. How to implement these

delays? Let’s explore a chemical implementation of the

algorithm.

Chemical reaction networks (CRNs) [64, 65] have been

widely considered as substrates for physical information

processing [66] and as a programming model for engi-

neering artificial systems [67, 68]. Moreover, CRN chem-

ical implementations have been studied in detail [69, 70].

CRNs are also efficiently Turing-universal [71], which

makes them appealing. One of their main applications

is deterministic function computation [72, 73], which is

what our RNGs need.

Consider five particle types—0, 1, A, B, and γ—and

a machine consisting of a box that can contain them.

Particles 0 and 1 can be inputs to or outputs from the

machine and particle γ can be an output from the ma-

chine. “Machine” particles A and B always stay in the

machine’s box and are in contact with a thermal reser-

voir. Figure 3 shows that the left wall is designed so that

only input particles (0 and 1) can enter, but no particles

can exit. The right wall is designed so that only output

particles (0, 1, and γ) can exit.

To get started, assume there is only a single machine

particle A in the box. Every τ seconds a new input par-

ticle, 0 or 1, enters from the left. Now, the particles react

0 +A

0 +A

0 +

Temperature T

FIG. 3. Chemical Reaction Network (CRN) implementation
of an RNG machine consisting of a box and a particle in it.
The left wall acts as a membrane filter such that only input
particles, 0 and 1, can enter, but no particles can exit through
the wall. The right wall is also a membrane designed such that
only output particles, 0, 1 and γ, can exit. At the beginning
the only particle in the box is “machine particle” A, which
is confined to stay in the box. Every τ seconds a new input
particle enters the box from the left and, depending on the
reaction between the input particle and the machine particle,
an output particle may or may not be generated that exists
through the right wall.

in the following way:

0 +A ⇒ A+ 0 ,

1 +A ⇒ B ,

0 +B ⇒ A+ 0 + γ ,

1 +B ⇒ A+ 1 + γ .

The time period of each chemical reaction is also τ . With

this assumption it is not hard to show that if the distri-

bution of input particles 0 and 1 is {1/2, 1/2} then the dis-

tribution of output particles 0 and 1 would be {3/4, 1/4},
respectively. Thus, this CRN gives a physical implemen-

tation of our original RNG.

Using Eqs. (2) and (5) we can put a lower bound on the

average heat dissipation per output: QLB ≈ 0.478kBT .

Since deriving the bound does not invoke any constraints

over input or output particles, the bound is a universal

lower bound over all possible reaction energetics. That

is, if we find any four particles (molecules) obeying the

four reactions above then the bound holds. Naturally,

depending on the reactions’ energetics, the CRN-RNG’s

∆Q can be close to or far from the bound. Since CRNs

are Turing-universal [71] they can implement all of the

RNGs studied up to this point. The details of designing

CRNs for a given RNG algorithm can be gleaned from

the general procedures given in Ref. [72].
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III. PSEUDORANDOM NUMBER

GENERATION

So far, we abstained from von Neumann’s sin by as-

suming a source of randomness—a fair coin, a biased

coin, or any general IID process. Nevertheless, modern

digital computers generate random numbers using purely

deterministic arithmetical methods. This is pseudoran-

dom number generation (PRNG). Can these methods be

implemented by finite-state machines? Most certainly.

The effective memory in these machines is very large,

with the algorithms typically allowing the user to spec-

ify the amount of state information used [74]. Indeed,

they encourage the use of large amounts of state infor-

mation, promising better quality random numbers in the

sense that the recurrence time (generator period) is astro-

nomically large. Our concern, though, is not analyzing

their implementations. See Ref. [10] for a discussion of

design methods. We can simply assume they can be im-

plemented or, at least, there exist ones that have been,

such as the Unix C-library random() function just cited.

The PRNG setting forces us to forego accessing a

source of randomness. The input randomness reservoir

is not random at all. Rather, it is simply a pulse that in-

dicates that an output should be generated. Thus, h = 0

and L̂ = 1. In our analysis, we can take the outputs to

be samples of any desired IID process.

Even though a PRNG is supposed to generate a ran-

dom number, in reality after setting the seed [35, 36] it,

in fact, generates an exactly periodic sequence of out-

puts. Thus, as just noted, to be a good PRNG algorithm

that period should be relatively long compared to the

sample size of interest. Also, the sample statistics should

be close to those of the desired distribution. This means

that if we estimate h′ from the sample it should be close

to the Shannon entropy rate of the target distribution.

However, in reality h′ = 0 since h′ is a measure over

infinite-length samples, which in this case are completely

nonrandom due to their periodicity.

This is a key point. When we use PRNGs we are

only concerned about samples with comparatively short

lengths compared to the PRNG period. However, when

determining PRNG thermodynamics we average over

asymptotically large samples. As a result, we have

QLB = 0 or, equivalently, ∆Q ≥ 0. And so, PRNGs

are potentially heat dissipative processes. Depending on

the PRNG algorithm, it may be possible to find machin-

ery that achieves the lower bound (zero) or not. To date,

no such PRNG implementations have been introduced.

Indeed, the relevant energetic cost bounds are domi-

nated by the number of logically irreversible computa-

tion steps in the PRNG algorithm, following Landauer

[39]. This, from a perusal of open source code for mod-

…

1

…

FIG. 4. True general-distribution generator: Emit random
samples from an arbitrary probability distribution {pi}, i =
0, . . . , n − 1 where p1 to pn−1 sorted from large to small. It
has one internal state S and inputs and outputs can be 0,
1, ..., n − 1. All states have energy zero. The joint states
i ⊗ S for i 6= 0 have nonzero energies ∆Ei. Heat is trans-
ferred only during the transition from state 0 ⊗ S to states
i⊗ S. Work is transferred only during coupling the input bit
to the machine’s state and decoupling the output bit from the
machine’s state.

ern PRNGs, is quite high. However, this takes us far

afield, given our focus on input-output thermodynamic

processing costs.

IV. TRUE RANDOM NUMBER GENERATION

Consider situations in which no random information

source is explicitly given as with RNGs and none is ap-

proximated algorithmically as with PRNGs. This places

us in the domain of true random number generators

(TRNGs): randomness is naturally embedded in their

substrate physics. For example, a spin one-half quantum

particle oriented in the z+ direction, but measured in x+

and x− directions, gives x+ and x− outcomes with 1/2 and
1/2 probabilities. More sophisticated random stochas-

tic process generators employing quantum physics have

been introduced recently [75–80]. TRNGs have also been

based on chaotic lasers [81, 82], metastability in elec-

tronic circuits [83, 84], and electronic noise [85]. What

thermodynamic resources do these TRNGs require? We

address this here via one general construction.

True General-Distribution Generator: Consider the

general case where we want to generate a sample from

an arbitrary probability distribution {pi}. Each time we

need a random sample, we feed in 0 and the TRNG re-

turns a random sample. Again, the input is a long se-

quence of 0s and, as a consequence, h = 0. We also
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have h′ = H[{pi}] and L̂ = 1. Equation (2) puts a

bound on the dissipated heat and input work: QLB =

−kBT ln 2 H[{pi}]. Notice here that QLB is a negative

quantity. This is something that, as we showed above,

can never happen for RNG algorithms since they all are

heat-dissipation positive: QLB > 0. Of course, QLB is

only a lower bound and ∆Q may still be positive. How-

ever, negative QLB opens the door to producing work

from heat instead of turning heat to dissipated work—a

functioning not possible for RNG algorithms.

Figure 4 shows one example of a physical implemen-

tation. The machine has a single state S and the inputs

and outputs come from the symbol set {0, 1, · · · , n− 1},
all with zero energies. The system is designed so that

the joint state 0⊗ S has zero energy and the joint states

i ⊗ S, i > 0, have energy ∆Ei. Recall that every time

we need a random sample we feed a 0 to the TRNG ma-

chine. Feeding 0 has no energy cost, since the sum of

energies of states 0 and S is zero and equal to the energy

of the state 0⊗S. Then, putting the system into contact

with a thermal reservoir, we have stochastic transitions

between state 0⊗S and the other states i⊗S. Tuning the

i⊗S → 0⊗S transition probabilities in a fixed time τ to

1 and assuming detailed balance, all the other transition

probabilities are specified by the ∆Eis and, consequently,

for all i ∈ {1, 2, · · · , n− 1}, we have pi = exp (−β∆Ei).

The design has the system start in the joint state 0⊗
S and after time τ with probability pi it transitions to

state i ⊗ S. Then the average heat transferred from the

system to the thermal reservoir is −
∑n−1

i=1 pi∆Ei. Now,

independent of the current state i ⊗ S, we decouple the

machine state S from the target state i. The average

work we must pump into the system for this to occur is:

∆W = −
n−1∑
i=1

pi∆Ei .

This completes the TRNG specification. In summary,

the average heat ∆Q and the average work ∆W are the

same and equal to
∑n−1

i=1 pi∆Ei.

Replacing ∆Ei by −kBT ln pi we have:

∆Q = kBT

n−1∑
i=1

pi ln pi < 0 , (7)

which is consistent with the lower bound

−kBT ln 2 H[{pi}] given above. Though, as noted

there, a negative lower bound does not mean that we

can actually construct a machine with negative ∆Q, in

fact, here is one example of such a machine. Negative

∆Q leads to an important physical consequence. The

operation of a TRNG is a heat-consuming and work-

producing process, in contrast to the operation of an

RNG. This means not only are the random numbers we

need being generated, but we also have an engine that

absorbs heat from thermal reservoir and converts it to

work. Of course, the amount of work depends on the

distribution of interest. Thus, TRNGs are a potential

win-win strategy. Imagine that at the end of charging a

battery, one also had a fresh store of random numbers.

Let’s pursue this further. For a given target distri-

bution with n elements, we operate n such TRNG ma-

chines, all generating the distribution of interest. Any

of the n elements of the given distribution can be as-

signed to the self-transition p0. This gives freedom in

our design to choose any of the elements. After choosing

one, all the others are uniquely assigned to p1 to pn−1
from largest to smallest. Now, if our goal is to pump-

in less heat per sample, which of these machines is the

most efficient? Looking closely at Eq. (7), we see that

the amount of heat needed by machine j is proportional

to H({pi}) − |pj log2 pj |. And so, over all the machines,

that with the maximum |pj log2 pj | is the minimum-

heat consumer and that with minimum |pj log2 pj | is the

maximum-work producer.

Naturally, there are alternatives to the thermodynamic

transformations used in Fig. 4. One can use a method

based on spontaneous irreversible relaxation. Or, one

can use the approach of changing the Hamiltonian in-

stantaneously and changing it back quasistatically and

isothermally [42].

Let’s close with a challenge. Now that a machine with

negative ∆Q can be identified, we can go further and

ask if there is a machine that actually achieves the lower

bound QLB. If the answer is yes, then what is that ma-

chine? We leave the answer for the future.

V. CONCLUSION

Historically, three major approaches have been em-

ployed for immediate random number generation: RNG,

PRNG, and TRNG. RNG itself divides into three inter-

esting problems. First, when we have an IID source,

but we have no knowledge of the source and the goal

is to design machinery that generates an unbiased ran-

dom number—the von Neumann RNG. Second, when we

have a known IID source generating a uniform distribu-

tion and the goal is to invent a machine that can generate

any distribution of interest—the Knuth and Yao RNG.

Third, we have the general case of the second, when the

randomness source is known but arbitrary and the goal

is to devise a machine that generates another arbitrary

distribution—the Roche and Hoshi RNG. For all these

RNGs the overarching concern is to use the minimum

number of samples from the input source. These ap-



10

proaches to random number generation may seem rather

similar and to differ only in mathematical strategy and

cleverness. However, the thermodynamic analyses show

that they make rather different demands on their physical

substrates, on the thermodynamic resources required.

We showed that all RNG algorithms are heat-

consuming, work-consuming processes. In contrast,

we showed that TRNG algorithms are heat-consuming,

work-producing processes. And, PRNGs lie in between,

dissipation neutral (∆Q = 0) in general and so the phys-

ical implementation determines the detailed thermody-

namics. Depending on available resources and what costs

we want to pay, the designer can choose between these

three approaches.

The most thermodynamically efficient approach is

TRNG since it generates both the random numbers of

interest and converts heat that comes from the thermal

reservoir to work. Implementing a TRNG, however, also

needs a physical system with inherent stochastic dynam-

ics that, on their own, can be inefficient depending on the

resources needed. PRNG is the most unreliable method

since it ultimately produces periodic sequences instead

of real random numbers, but thermodynamically it po-

tentially can be efficient. The RNG approach, though,

can only be used given access to a randomness source.

It is particularly useful if it has access to a nearly free

randomness source. Thermodynamically, though, it is in-

efficient since the work reservoir must do work to run the

machine, but the resulting random numbers are reliable

in contrast to those generated vis a PRNG.

To see how different the RNG and TRNG approaches

can be, let’s examine a particular example assuming ac-

cess to a weakly random IID source with bias p� 1 and

we want to generate an unbiased sample. We can ig-

nore the randomness source and instead use the TRNG

method with the machine in Fig. 4. Using Eq. (7) on

average to produce one sample, the machine absorbs

|kBT p ln p| ≈ 0 heat from the heat reservoir and turns

it into work. Since the required work is very small, this

approach is resource neutral, meaning that there is no

energy transfer between reservoir and machine. Now,

consider the case when we use the RNG approach—the

von Neumann algorithm. To run the machine and gen-

erate one symbol, on average the work reservoir needs

to provide work energy to the machine. This thermo-

dynamic cost can be infinitely large depending on how

small p is. This comparison highlights how different the

random number generation approaches can be and how

their usefulness depends on available resources.

The thermodynamic analysis of the main RNG strate-

gies suggests a number of challenges. Let’s close with

several brief questions that hint at several future direc-

tions in the thermodynamics of random number gener-

ation. Given that random number generation is such a

critical and vital task in modern computing, following up

on these strike us as quite important.

First, is Szilard’s Engine [86] a TRNG? What are

the thermodynamic costs in harvesting randomness? A

recent analysis appears to have provided the answers

[87] and anticipates TRNG’s win-win property. Second,

the randomness sources and target distributions consid-

ered were rather limited compared to the wide range of

stochastic processes that arise in contemporary experi-

ment and theory. For example, what about the thermo-

dynamics of generating 1/f noise [88]? Nominally, this

and other complex distributions are associated with in-

finite memory processes [89]. What are the associated

thermodynamic cost bounds? Suggestively, it was re-

cently shown that infinite-memory devices can actually

achieve thermodynamic bounds [90]. Third, the random

number generation strategies considered here are not se-

cure. However, cryptographically secure random number

generators have been developed [91]. What type of phys-

ical systems can be used for secure TRNG and which

are thermodynamically the most efficient? One possi-

bility is to use superconducting nanowires and Joseph-

son junctions tuned near where they generate supercon-

ducting critical currents [92]. Fourth, what are the addi-

tional thermodynamic costs of adding security to RNGs?

Finally, there is a substantial advantage when employ-

ing quantum channels to compress classical random pro-

cesses [75]. What are the thermodynamic consequences

of using such quantum implementations for RNGs?

Let’s close with several reflections on the results’ prac-

tical impact. They could very well provide significant

guidance in the near future, as we reduce the power con-

sumption of computation for an energy-sustainable soci-

ety. One can even argue they are significant now, as cur-

rent technology strives to design ultra low-power devices

and as the sciences attempt to understand information

processing in biological process.

Consider the first—the total energy dissipated annu-

ally worldwide for computation. Total energy is directly

related to the number of raw bit manipulations. The

energy dissipated per bit manipulation arises from differ-

ent sources, such as the operation of logic circuits, mem-

ory arrays, and communication interfaces. Currently for

mainstream technology (e.g., CMOS), the average energy

per one bit manipulation is close to 10−14J , which is re-

ferred as the benchmark [93]. It is also known that the

computation volume (number of bit manipulations) in-

creases exponentially every year [94]. These observations

lead one to conclude that at the current benchmark en-

ergy dissipated per bit, global computing will not be sus-

tainable by 2040, when the energy required for comput-

ing is projected to exceed the world’s estimated energy
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production.

The conclusion is rather direct. We need a radical

improvement in the energy efficiency of computing and,

in particular, in random number generation which is a

significant component in general computing. Random

number generation is used heavily for many different

tasks, much of it outside of the sciences and technology

is found in security validation and secure communication

and storage. Here, in analyzing the thermodynamic costs

for alternative methods of random number generation,

we showed that one method is work producing, one is

work consuming, and the other is potentially dissipation

neutral. In this way, the results highlight the basic physi-

cal trade-offs when implementing energy-efficient random

number generation. Hopefully, these will be useful guide-

posts when designing future computing infrastructure.
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