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We study the thermodynamics of a Brownian particle under the influence of a time multiplexed
harmonic potential of finite width. The memory storage mechanism and the erasure protocol based
on time multiplexed potentials are utilized to experimentally realize erasure with work done close
to the Landauer’s bound. We quantify the work done on the system with respect to the duty-ratio
of time multiplexing, which also provides a handle to approach reversible erasures. A Langevin
dynamics based simulation model is developed for the proposed memory bit and the erasure protocol,
which guides the experimental realization. The study also provides insights into transport at the
micro scale.
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Landauer’s principle, pioneered by Rolf Landauer in
1961, provides a critical link between information theory
and thermodynamics of physical systems [1]. It states
that there is no process where the work done to erase
one bit of information is less than kbT ln 2 (Landauer’s
bound), when the prior probability of the bit being in any
of the two states is equal [2]. Here, kb is the Boltzmann
constant and T is the temperature of the heat bath.

Numerous analyses have corroborated Landauer’s
bound through different approaches [3–7]. The experi-
mental study of Landauer’s bound has only recently be-
come viable, enabled by tools that provide access to pro-
cesses with energetics in the scale of kbT . A first such
study in [8] examined Landauer’s bound, by employing
optical traps to realize a single bit memory. Bechhoe-
fer et.al. [9, 10] used an anti-Brownian electrokinetic
feedback trap and Hong et.al. [11] used nano magnetic
memory bits to study Landauer’s bound.

In this article, we study the stochastic energetics of
transport realized by time multiplexing a harmonic po-
tential of finite width, to realize a bi-stable potential.
Here a single laser in an optical tweezer setup, is mul-
tiplexed between two locations with varying dwell times
to create potentials (symmetric as well as asymmetric
bi-stable potentials), that effectuate the erasure process.
Furthermore, experimental variables to realize reversible
erasure are identified and utilized for approaching the
Landauer’s bound. Langevin dynamics based simulations
of a Brownian particle under the influence of a time mul-
tiplexed laser is developed and is shown to obey quantita-
tive trends observed in experiments. We use our method
of shaping the potential, by changing the dwell time of
multiplexing of the laser, to erase one bit of information.
The ease of implementation and the high-resolution ac-
counting of energetics are advantages of the method re-
ported. We resort to Sekimoto’s stochastic energetics
[12–15] framework to quantify the work done on the sys-
tem for the erasure process. The underlying principles
developed in this article are applicable toward the study
of transport achieved by time multiplexing of a single po-
tential, where realizations based on optical traps can be
considered a particular instantiation of the general un-

derpinnings of the framework presented.

I. Model for a One-Bit Memory

We use the abstraction of a Brownian particle in a double
well potential to model a one-bit memory. The memory
is designated the state ‘zero’ if the particle is in the left
well, and the state ‘one’ if it is in the right well. Exper-
imentally, we realize a Brownian particle in a harmonic
potential, albeit of finite width, by using a custom built
optical tweezer setup to trap (near the focus of the ob-
jective lens) a polystyrene bead (1µm in diameter) while
suspended in deionized water. The bead represents the
thermodynamic system of interest with the surrounding
medium acting as a heat bath.

Bead in a Laser Trap: A laser passing through a high
numerical aperture objective lens and incident on a bead
in a solution traps the bead. Here, the bead experiences a
harmonic potential with the equilibrium point (trap cen-
ter) located near the focus of the lens. For small displace-
ments away from the centre of the trap, the bead expe-
riences a restoring force directed towards the trap center
[16, 17]; the trap behaves like a Hookean spring with the
restoring force being k∆x, where k is the stiffness of the
trap and ∆x the distance between the bead center and
the trap center. The position of the bead (denoted by
x) is measured using a photo diode for a duration much
larger than the time constant of the dynamics of the bead
in the laser trap (∼ 1ms). The equilibrium probability
distribution, P (x), of the position of the bead, is then
obtained by binning the measured position data. The
potential energy landscape, U(x), of the bead in thermal
equilibrium with the trap is obtained using the relation,

U(x) = − ln(P (x)
C ), where C is the normalization con-

stant. In Fig. 1, the potential energy landscape expe-
rienced by an optical bead in a laser trap is shown (red
and black curves), which is constant outside a distance w
from the minimum of the potential and harmonic within
the distance w from the equilibrium point.
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FIG. 1. Potential energy landscape of a bead in a laser trap.
The experiments are performed with the bead initially at 500
nm (red curve) and −500 nm (black curve). The position of
the bead is measured for 50 seconds. The potential U(x) is
mostly flat after a certain distance w from the stable equi-
librium point. In the Monte Carlo simulations, the bead is
initialized randomly between 500 nm and −500 nm. The po-
sition trajectory of the bead obtained from 100 Monte Carlo
simulations is collected to determine U(x) from simulations
(blue curve).

The potential energy U(x) is modeled by,

U(x) =

{

1
2kx

2 + Ur, if |x| ≤ w
1
2kw

2 + Ur, if |x| > w,
(1)

which is harmonic up till a distance w (determined em-
pirically from Fig. 1) from the stable equilibrium point.
The stiffness k of the optical trap is determined exper-
imentally by applying the Equipartition Theorem, that
yields k = kbT/〈x2〉 [18]. The dynamics of the bead in a
trap is modeled by the over-damped Langevin equation
[15],

−γ
dx

dt
+ ξ(t) − ∂U(x)

∂x
= 0, (2)

where, γ is the coefficient of viscosity (determined ex-
perimentally by step response method [17]), U(x) is the
potential realized by the trap and ξ(t) is a zero mean
uncorrelated Gaussian noise force. Here, 〈ξ(t)〉 = 0,

〈ξ(t), ξ(t′ )〉 = 2Dδ(t − t
′

) with the diffusion coefficient
D = γkbT . The potential U(x) described by (1) is used
in conjunction with (2) to obtain 100 realizations (of 20
seconds each) of the bead trajectories. These realizations
are, in turn, used to reconstruct the potential felt by the
bead by binning the position trajectories. A close match
with experimental results is seen, as shown in Fig. 1.
Double Well Potential Model of Memory: A double
well potential with two locally stable equilibrium points
located at L and −L is created by alternately focusing
the trapping laser between the two locations by time-
multiplexing using an Acousto Optical Deflector. The
laser is multiplexed at least 100 times faster than the time
constant of the dynamics of the bead. The trapping laser
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FIG. 2. Double well potential for L = 550 nm obtained using
Monte-Carlo simulations and experiments.

multiplexed at the two locations is the external agent cou-
pled to the thermodynamic system of interest formed by
the bead. We define duty-ratio d as the fraction of the
total time-period the laser spends at the location −L.
The nature of the effective potential experienced by the
Brownian particle can be manipulated by adjusting the
duty-ratio. The potential energy landscape, U(x, d), ex-
perienced by the bead for a duty-ratio d, is determined
by the relationship Pd(x) = Ce−U(x,d)/kbT , where Pd(x)
is determined by binning the measured position of the
bead. Maintaining a duty-ratio of 0.5 results in near
identical parabolic potential wells at L and −L as shown
in Fig. 2, while a duty-ratio greater than 0.5 leads to
asymmetric double well potentials as shown in Fig. 3.

The bead dynamics under the influence of time mul-
tiplexed potential is modeled by the following Langevin
equation,

−γ
dx

dt
+ ξ(t)− ∂U(x, d)

∂x
= 0, (3)

where, the model for the potential U(x, d) used in (3)
incorporates the experimental observation that, for the
duration when the laser remains focused at the location
L or −L, the bead experiences a harmonic potential up
till a distance w from the trap focus. However, beyond
the distance w from the locally stable equilibrium points
L or −L, the bead undergoes a random walk [19]. Based
on these observations, the potential U(x, d) is modeled
by,

U(x, d) =











1
2k(x− L)2 + Ur, if |x− L| ≤ w, r(t) = 1,
1
2k(x+ L)2 + Ur, if |x+ L| ≤ w, r(t) = 0,
1
2kw

2 + Ur, otherwise,

(4)

where, r(t) denotes the binary variable representing the
presence/absence status of the laser at L. If the laser is
focused at L, then r(t) = 1, otherwise r(t) = 0. The
stiffness of the laser trap, k, and the width of the corre-
sponding parabolic potential, w, are determined by char-
acterization of the finite width harmonic potential ob-
tained due to a single trap, as described earlier in (1).
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The laser is multiplexed between the two locations at
a significantly faster rate (∼ 10µs) than the time con-
stant of the bead dynamics (∼ 1ms), which supports the
model in (4). Monte Carlo simulations performed using
(3) and the subsequent potential U(x, d) reconstructed
from bead position data, (using the canonical distribu-
tion) yield potentials that match closely with experimen-
tal observations as seen in Fig. 2. We remark that in
the Monte Carlo simulations as well as in experiments,
the stiffness of each of the wells formed at L and −L
when the duty-ratio is 0.5 is close to k

2 , which is half the
stiffness of the single trap. In summary, the model pa-
rameters (k and w) determined for a single trap is used in
the Monte Carlo simulations of the bead in a double well
potential realized by time multiplexing of the trapping
laser. A close match between simulation and experimen-
tal results is observed as shown in Fig. 2. Using the
Brownian particle in a double well potential model of a
single bit memory, we next present an erasure protocol
based on multiplexing of potentials.

II. Erasure Process

Erasure is a logically irreversible operation [20], where
irrespective of the initial state of the memory, the final
state is zero (also known as ‘reset-to-zero’ operation). A
bead in a double well potential is used to model a sin-
gle bit memory. No prior information on the state of the
memory is assumed initially; thus, it is equally likely that
the memory assumes the state zero or one. However, at
the end of erasure process the memory state is zero (the
bead must be in the left well). Thus, there is no change
in average energy of the bead in an erasure process (as
the depth of both wells is the same) while the decrease in
entropy associated with erasure is kb ln 2; thereby requir-
ing at least kbT ln 2 amount of work to be done on the
system [2]. We note that the Landauer’s bound is appli-
cable to the average work done on the system over many
realizations of the bead trajectory, but, it is possible to
obtain individual erasure realizations with the work done
on the system less than kbT ln 2. Indeed we demonstrate
later that for a fraction of trajectories, the work done on
the bead is lower than kbT ln 2 (see Fig. 6).

The Landauer’s bound of kbT ln 2 holds if the erasure
process is always successful. It can be shown that for im-
perfect erasure schemes with the probability of successful
erasure being p, at least kbT (ln 2+p ln p+(1−p) ln(1−p))
amount of work is required to be done on the system [2].
It is important to note that the bound decays rapidly
as p decreases from 1; with the bound being kbT ln 2 for
p = 1 and zero for p = 0.5. In our study, we ensure that
p > 0.95 and assume that the erasure process is always
successful.

The erasure protocol is described next where duty-
ratio is the fraction of the time spent by the laser at the
location, −L (see Fig. 4(c)), as compared to L; higher
the duty-ratio more is the time spent by the laser at −L.
In the first phase of the protocol, the memory model of a
Brownian particle in a symmetric double well potential is
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FIG. 3. Effect of duty-ratio on the nature of double well
potential. Increasing the duty-ratio at −L from 0.75 to 0.8
increases the asymmetry of the potential.

obtained by maintaining a duty ratio of 0.5 for a duration
of 10 seconds. Next, in the second phase of the proto-
col, an asymmetric well is realized, with the well at −L
deeper than the well at L, which is obtained by maintain-
ing the duty-ratio to be greater than 0.5 for a duration
(dependent on the choice of d) of τ seconds. Finally, we
revert the duty-ratio to a value of 0.5 to complete the ‘re-
set to zero’ process (for a duration of 10 seconds). The
success of erasing the memory depends, on the magni-
tude of the deviation of the duty ratio from 0.5 and the
time duration τ during the second phase.

In the second phase, over the time duration τ , the laser
spends more time focused at −L than at L, enabling an
asymmetric potential landscape as is observed in Fig. 3.
Increasing the duty-ratio results in a lower barrier height
for the right to left transition than for the left to right
transition. It thus favors the transport of the bead from
the right to the left well, if the bead is initially in the
right well as shown in Fig. 4(a) and retains the bead in
the left well if it was initially in the left well as shown in
Fig. 4(b). The duration τ is chosen to be a few multiples
of the average exit time of the bead from the right well
but less than the average exit time of the bead from the
left well, which ensures a high likelihood of the bead’s
final location to be in the left well. For example, we
choose τ as 30 seconds for the duty ratio of 0.7, which is
approximately three times the observed exit time of the
bead from the right well.

The above mentioned erasure mechanism ensures high
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FIG. 4. (a) Schematic showing erasure process, with bead
initially in the right well. The initial bead position is 1 (right
well), with potential energy V2. The duty-ratio d at left well
is then increased, which lifts the bead and takes it to position
2 with energy V1. Thermal fluctuations enables the bead to
cross the barrier and reach position 3, with energy V3. De-
creasing the duty-ratio back to 0.5 lifts the bead to position
4, which has energy V2. The process 1 → 2 → 3 → 4 is the
erasure process. (b) Schematic showing erasure process, with
bead initially in the left well. Here, the process 1 → 2 → 3 is
the erasure process. (c) The signals r(t) and l(t) denote the
presence/ absence status of the laser at L and −L respectively.
A value of 1 means present and 0 means absent. To ensure a
duty-ratio greater than 0.5, we maintain d = Ton/Tcycle > 0.5.

success proportion as reported in Fig. 5. It is seen that
the duty-ratio of 0.65 yields success proportion signifi-
cantly less than 0.95, while a duty-ratio > 0.7 shows a
success proportion greater than 0.95. Similar trends are
reflected from Monte Carlo simulations as well as exper-
iments as seen in Fig. 5. Thus, to ensure a high success
proportion in order to demonstrate erasures with energy
expenditure close to the Landauer’s bound, we operate
our erasure protocol at a duty ratio of at least 0.7. In
the next section, we quantify the work done on the bead
in an erasure process for a given duty-ratio.

III. Erasure Thermodynamics

We now utilize the stochastic-energetics framework for
Langevin systems [14, 15] and quantify the work done on
the system, associated with erasure process realized by
manipulation of duty-ratios. The external system does
work on the bead by changing the duty-ratio, which re-
sults in modifying the potential felt by the bead. For an
erasure process, the work done on the bead, dW , is given
by,

dW =
∑

j

[U(x(tj), d(t
+
j ))− U(x(tj), d(t

−

j )], (5)

where d denotes the discontinuous parameter (here, the
duty-ratio) changed by the external system, and tj de-
notes the time instances when the parameter was changed
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FIG. 5. Effect of duty-ratio on success proportion p. Duty-
ratio of 0.65 has a success proportion of 0.82, whereas, duty-
ratio greater than 0.7 yields success proportion higher than
0.95.

(t−j and t+j denote the instants just before and after

changing the parameter respectively).
Landauer’s bound can be reached when the erasure

process is performed in a quasi static manner. For an
erasure performed over a large but finite duration τ , the
average work done on the system is [13],

〈dW 〉 = dWLandauer +
B

τ
(6)

where, dWLandauer = kbT ln 2 = 0.693kbT . The duration
for which an asymmetric double well potential is realized,
τ , is chosen to be a multiple of the exit time, τe, of the

bead from the right well. It is known that τe ∝ exp(δUr)
√

kr

,

[21] where δUr is the barrier height of the right well, kr is
the stiffness of the right well and exp(.) is the exponential
function. Note that d− 0.5 is indicative of the asymmet-
ric nature of the double well potential; higher the value,
more the asymmetry. We determine the dependency of
δUr and kr on 1

d−0.5 empirically. The dependency of nor-

malized δUr and kr on 1
d−0.5 is shown in Fig. 6 and 7

respectively. It follows that τ ∝ τe ∝ exp( 0.99

d−0.5
)√

1

d−0.5

. Substi-

tuting it in (6) for τ leads to,

〈dW 〉 = dWLandauer +B
exp(− 0.99

d−0.5)√
d− 0.5

. (7)

Reducing d, the time duration τ required for success-
ful erasures increases, whereby the erasure process ap-
proaches a quasi-static process. Thus, the duty-ratio
provides a handle to realize quasi-static erasure processes
using time multiplexed potentials.

The average work done on the bead 〈dW 〉, for duty-
ratio d > 0.7 obtained using simulations and experiments
is shown in Fig. 8 and Fig. 9 respectively. For a duty-
ratio of 0.7, average work done on the system obtained
from Monte Carlo simulations is 0.73 ± 0.037kbT , while
experimentally for duty-ratio of 0.7, the average work
done on the bead is obtained to be 0.9 ± 0.106kbT . The
average work of 0.9 ± 0.106kbT to erase a bit of infor-
mation is the closest to the Landauer’s bound of kbT ln 2
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FIG. 6. The blue and red points represent normalized barrier
height of right well as a function of 1

d−0.5
obtained using sim-

ulations and experiments respectively. The green line is the
least squares fit to the simulation data points.
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FIG. 7. The blue and red points represent normalized stiff-
ness of right well as a function of 1

d−0.5
obtained using sim-

ulations and experiments respectively. The green line is the
least squares fit to the simulation data points.

reported. As the duty-ratio is reduced (1/(d − 0.5) in-
creased), the average work done on the bead decreases,
as observed in simulations as well as experiments.

We fit the model derived in (7), 〈dW 〉fit = A +

B
exp(− 0.99

d−0.5
)

√

d−0.5
to the average work done on the bead ob-

tained by simulations and experiments for various duty-
ratio values, with A and B being free parameters (see Fig.
9). Using simulation data we obtain A = 0.65kbT,B =
8.49kbT , whereas for experimental data we have A =
0.70kbT,B = 35.04kbT . It is seen that A (which repre-
sents the average work done on the system in the quasi-
static case) has a value close to the Landauer bound of
kbT ln 2 (= 0.693kbT ), in both simulations as well as ex-
periments.

The distribution of work done while erasing a bit at
a duty-ratio of 0.7, obtained from simulations and ex-
periments is shown in Fig. 10. It is evident that for a
fraction of trajectories, the work done on the bead is less
than the Landauer’s bound; indeed, for some trajecto-
ries it is negative. However, the mean of the distribution
is close to the Landauer’s bound. Moreover, a bimodal
nature of the distribution is evident. The mode on the
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FIG. 8. The blue circles represent the average work done
on the bead obtained using 300 Monte Carlo realizations
(150, 0 → 0 and 150, 1 → 0 transfers) for duty ratio of
0.7, 0.75, 0.8, 0.85. The vertical lines represent the standard
error in mean for each duty ratio. The black dotted line de-
notes the the Landauer bound of kbT ln 2. The red dotted
line is the fit with the free parameters A and B.
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right in Fig. 10 corresponds to work done on the particle
for transition from right to left well (or 1 → 0) and mode
on the left corresponds to transition from left to left well
(or 0 → 0). The characteristics of the simulation data
are confirmed by experiments as shown in Fig. 10. On
increasing the duty-ratio, the mode on the right shifts
further to the right as work done on the bead is higher
for higher duty-ratios. This results in an increase in the
standard error in mean on increasing duty ratio as shown
by the length of the blue bars in Fig. 8 and Fig. 9.

Thus we have demonstrated that a single bit mem-
ory and its associated erasure protocol can be realized
by multiplexing a laser between two locations. The re-
sulting energetics can be effectively accounted for in the
framework developed by Sekimoto and the magnitude of
the deviation of the the duty-ratio of multiplexing from
0.5 provides an effective means for driving the erasure
process toward a quasistatic process.

Error Quantification: The primary sources of error in
the average work done on the system computed from po-
sition measurements are introduced by the photodiode
based measurements. The error statistics of the photo
diode used in the experiments are quantified in [22] and
is shown to have zero mean and a standard deviation of
the order of a nanometer. Assuming that error in posi-
tion measurement ex is independent of the actual bead
position x, the average error in potential energy of the
bead eU is given by,

〈eU 〉 = 〈1
2
k(x+ ex − L)2 − 1

2
k(x− L)2〉

=
1

2
k〈e2x〉 ∼ 10−3kbT.

Thus, error in obtaining the work done on the bead in a
realization of erasure is of the order of 10−3kbT .

IV. Conclusions

In this article, we study the thermodynamics of a Brow-
nian particle influenced by the time multiplexing of a
single harmonic potential of finite width. A Monte Carlo
simulation framework for a Brownian particle under the
influence of a time multiplexed laser is also developed
and shown to obey qualitative trends observed in exper-
iments. We demonstrate that the duty-ratio provides a
handle on the speed of the erasure process and its ap-
proach to reversibility. It is established through exper-
iments and simulations that reducing duty ratio results
in erasure process with average work done approaching
kbT ln 2; which is the minimum average work required to
erase one bit of information. Furthermore, the method is
easy to implement on a standard optical tweezer setup.
The insights obtained from this article can be potentially
leveraged to realize practical devices that yield erasure
mechanisms with energetics in the order of kbT ln 2.
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