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Entropy measures are widely applied to quantify the complexity of dynamical systems in diverse fields.
However, the practical application of entropy methods is challenging, due to the variety of entropy measures and
estimators and the complexity of real-world time series, including nonstationarities and long-range correlations
(LRC). We conduct a systematic study on the performance, bias and limitations of three basic measures
(entropy, conditional entropy, information storage) and three traditionally used estimators (linear, kernel, nearest
neighbor). We investigate the dependence of entropy measures on estimator- and process-specific parameters,
and we show the effects of three types of nonstationarities due to artifacts (trends, spikes, local variance change)
in simulations of stochastic autoregressive (AR) processes. We also analyze the impact of LRC on the theoretical
and estimated values of entropy measures. Finally, we apply entropy methods on heart rate variability data
from subjects in different physiological states and clinical conditions. We find that entropy measures can only
differentiate changes of specific types in cardiac dynamics, and that appropriate preprocessing is vital for correct
estimation and interpretation. Demonstrating the limitations of entropy methods and shedding light on how to
mitigate bias and provide correct interpretations of results, this work can serve as a comprehensive reference for
the application of entropy methods and the evaluation of existing studies.
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I. INTRODUCTION

The growing awareness that many real-world systems
exhibit complex dynamics that are challenging to quantify
has initiated extensive interest in developing measures and
approaches for time series analysis to characterize these
systems. In this context, the utilization of tools taken
from information theory has become extremely popular for
the assessment of the degree of complexity of physical,
biological, physiological, social and econometric systems.
A variety of measures rooted in the concept of entropy
and implemented according to several estimation approaches
have been proposed, including Approximate Entropy [1],
Sample Entropy [2], Corrected Conditional Entropy [3],
Fuzzy Entropy [4], Compression Entropy [5], Permutation
Entropy [6, 7], Distribution Entropy [8], Multiscale entropy
[9–12], Self Entropy and Information Storage [13, 14].
These measures have emerged as a less ambitious but
more practical alternative to classical techniques for the
analysis of nonlinear dynamical systems, like correlation
dimension [15], Lyapunov exponents [16] and nonlinear
prediction methods [17, 18]. In fact, the popularity of
entropy measures stems from their applicability to short and
noisy processes with important stochastic components such as
those describing the dynamical activity of real-world systems.
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These measures have been applied with great success to
numerous research fields, including heart rate variability [3,
19–23], cardiovascular control [3, 24–26], cerebrovascular
dynamics [27, 28], cardiac arrhythmias [29], financial
time series analysis [30, 31], gait and posture [32–36],
climatology [37], earth sciences [38], cellular automata [39,
40], electromyography [41], electroencephalography [42–44],
magnetoencephalography [45], functional neuroimaging [14,
46, 47] and others [48–51].

Despite the broad relevance and application of entropy
measures for various systems and fields of science, a number
of theoretical, computational and practical issues exist which
often prevent a fair evaluation of the performance of these
measures, as well as a correct interpretation of the measured
complexity of the observed dynamics.

First, since there are many entropy measures with a variety
of entropy estimators which are not always independent of
each other, it is not straightforward to associate a given
measure to the complexity of the dynamical system under
analysis and to compare the variety of entropy measures
obtained by different estimators. In addition, the crucial
but often elusive term of “complexity” is also related to
several other concepts in physics and biology, such as
the existence of long-range correlations [52–56], nonlinear
multifractal properties [57–61] and/or chaotic dynamics [15,
16], which are not univocally linked to the signal features
reflected by entropy measures [62]; even within the family of
entropy measures, different working definitions of complexity
have been proposed, e.g. in terms of “randomness” [63],
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“unpredictability” [3] or “regularity” [64].
Second, given that the practical computation of

information-theoretic measures from real-world time series is
not a trivial task, several approaches exist for the estimation
of these measures [65]. Entropy estimators differ in the
assumptions made about the properties of the investigated
process and follow different approaches to approximate the
probability density function utilized in the computation of
entropy measures. Thus, entropy estimates are often highly
dependent on method-specific parameters. In the absence of a
comparative evaluation of the different estimators, assessing
their performances and interpreting results obtained using
different estimation strategies has become a subjective task.
Furthermore, an incorrect or unaware setting of the estimation
parameters may easily lead to wrong inference about the
properties of the observed dynamics.

Third, even though stationarity of time series is a
prerequisite for the estimation of entropy measures for the
target dynamical system, entropy estimators are often blindly
applied without checking the fulfillment of this prerequisite.
The presence of nonstationarity is often due to artifacts
of various nature and exists in diversified forms such as
trends, spikes and changes in local variance. Due to the
differences in entropy measures and estimators, the effects
of nonstationarity vary for different entropy measures and for
different estimation approaches. Therefore, a comprehensive
investigation of the limitations and biases of entropy-based
methods in the presence of nonstationarity is not only vital for
reducing the biases in the estimation of entropy measures, but
also important for the evaluation and comparison of results
from different studies.

Fourth, an unaddressed issue with the computation of
entropy measures is the effect of long-range correlations. It
is well known that a broad class of dynamic processes in
physics, biology and econometrics exhibit long-range power-
law correlations that result in scaling properties observed
across multiple temporal scales [53, 55, 57, 58, 66–74].
Despite the fact that these intrinsic properties of dynamic
processes are manifested even at the shorter scales and within
the shorter time windows typically used in the assessment
of information theoretic measures, their effects on the
estimated values of entropy measures are not comprehensively
investigated and not taken into account in the majority of
empirical studies.

Due to the theoretical and practical issues related to the
variety of entropy measures, entropy estimators and the
complexity of real-world time series mentioned above, it
is therefore difficult to compare and evaluate the results
from existing literature which are often not consistent or
even contradicting because different studies are based on
data with different types of nonstationarity and long-range
correlations, and researchers adopt different entropy measures
and estimators as well as different data preprocessing and
filtering procedures which affect the outcome of information
theoretic analyses.

To address the problems and challenges mentioned above,
here we present a systematic study on the performance
of entropy measures and estimators in various situations

with both simulated and empirical time series. We aim to
answer three questions: 1) to what extent entropy measures
adequately characterize the dynamics of complex systems;
2) what are the limitations and biases of entropy estimators
in approximating entropy measures from time series with
various types of nonstationarity and presence of long-range
correlations; 3) how to perform credible estimations and
provide appropriate interpretations.

We present a unifying framework for the definition of
entropy measures and corresponding estimation methods from
time series data, which serves to clarify their theoretical
meanings and assess their practical significance in the
evaluation of the complexity of dynamic processes measured
from physical systems. We show that a range of information
theoretic measures can be subsumed by the three basic
measures of Entropy, Conditional Entropy and Information
Storage, and three of most widely used approaches for the
quantification of these measures - linear estimator, kernel
estimator and nearest neighbor estimator.

Further, we provide a detailed systematic analysis of
the most basic frequently encountered dynamic processes,
and perform a comparative assessment of entropy measures
and entropy estimators on multiple realizations of these
processes. We study the dependence of entropy measures
on estimator-specific parameters, as well as the effects of
three types of nonstationarities due to artifacts that are
commonly encountered in real data (i.e., slow trends, random
spikes, and local variance changes). Importantly, we present
for the first time a systematic quantitative assessment of
the impact on entropy measures of trends originating from
the intrinsic dynamics of systems exhibiting multi-fractal
scaling properties, both in the case of long-range power-
law correlations and in the more complicated and realistic
situation in which long-range correlations and short-term
autoregression coexist.

Finally, we consider a practical case of study that subsumes
all the issues treated in the simulations, i.e. the study of
human heartbeat fluctuations in different physiological states
(wake and sleep) and pathological conditions (healthy and
congestive heart failure). These analyses evidence advantages
and pitfalls of entropy measures and estimators, as well as
provide indications for their optimal use in the study of real-
world time series, including recommendations about which
measure to adopt depending on the purpose of the analysis,
which estimator to implement in different conditions, how to
deal with nonstationarities and artifacts, and how to interpret
the values obtained from complex systems with different
coexisting types of dynamics.

II. METHODS

A. Entropy Measures

In the analysis of dynamical systems, entropy measures
are used to characterize the temporal statistical structure
of a system evolving in time. In an information-theoretic
framework, the “information” contained in a dynamical
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system varies at each time step. When the system transits
from past states to a new state, new information is produced
in addition to the information that is already carried by the
past states. This process is reflected by entropy measures:
the entropy quantifies the information carried by the present
state of the system, the conditional entropy quantifies the new
information contained in the present but not in the past, and
the information storage quantifies the amount of information
carried by the present that can be explained by the past history
of the system.

To introduce the notation, we consider a dynamical system
X and assume that the states visited by this system are
described by the stochastic process X . Let us further denote
Xn as the random variable obtained by sampling the process
X at the present time n, andX−n = [X1, . . . , Xn−2, Xn−1] as
the vector variable describing the past of X . The probability
distribution for an individual variable Xi, i = 1, . . . , n, is
p(xi) = Pr{Xi = xi}, xi ∈ Ai, where Ai is the set of all
possible values that may be taken by Xi. Then, the process
X is fully characterized by the joint probability distributions
p(x1, . . . , xn) = Pr{X1 = x1, . . . , Xn = xn},∀n ≥
1, with (x1, . . . , xn) ∈ A1 × · · · × An. An important
property of dynamic processes is stationarity, which defines
the time-invariance of the joint probabilities extracted from
the process: Pr{X1 = x1, . . . , Xn = xn} = Pr{X1+m =
x1, . . . , Xn+m = xn} = p(x1, . . . , xn),∀n,m ≥ 1. Note
that all random variables that can be obtained sampling a
stationary process take values inside the same set, i.e., Ai =
A ∀i ≥ 1.

In the following, we provide definitions and illustrations
of entropy, conditional entropy and information storage
computed for a stationary stochastic process. Note that
the present study considers exclusively univariate stochastic
processes describing the activity of individual dynamical
systems; the reader is referred to the abundant literature in
the field [13, 75–78] for an extension to multivariate analysis.

1. Entropy

The central concept for the derivation of entropy measures
is the definition of the Shannon information content of a
random variable V [63]: the information contained in a
specific outcome v of a random variable V is the quantity
h(v) = − log p(v), where p(v) = Pr{V = v} is the
probability that V takes the value v. The units of information
depend on the base of the logarithm, being usually bits (base
2) for discrete random variables, and nats for continuous
variables where the natural logarithm is used. According to
this definition, the information content will be low for highly
probable outcomes of the observed random variable, and high
for unlikely outcomes. Then, if the variable is continuous,
the differential entropy expresses the amount of information
carried by V intended as its average information content:

H(V ) = −
∫
A
p(v) log p(v)dv, (1)

where the integral is computed over a continuous range of
values A. When the probability p(v) is discrete rather than
continuous, the entropy of the variable is defined as

H(V ) = −
∑
v∈A

p(v) log p(v), (2)

where A is in this case the finite alphabet of values that can
be taken by V . Using a notation that subsumes both Eq. (1)
and Eq. (2), entropy can be defined as the expected value of
the Shannon information content:

H(V ) = E[h(v)] = −E[log p(v)], (3)

where E[·] is the expectation operator. Entropy quantifies
information as the average uncertainty about the outcomes
of the variable: if all observations of the variable take
the same value, there is no uncertainty and the entropy is
zero; if, on the contrary, the variable takes different values
all with the same probability of occurrence, the entropy is
maximum and reflects maximum uncertainty. The concept
of entropy above defined relies on the seminal work of
Shannon performed in the field of communication theory
[63]. The relevant measure has been extended to the
definition of many alternative measures of information such
as the Renyi entropy [79] and the Tsallis entropy [80],
of which the Shannon entropy constitutes a limiting case
that possesses all the desired properties of an information
measure. Moreover, there are close parallels between these
information-theoretic entropy measures and the fundamental
thermodynamic entropy investigations of Boltzmann and
Gibbs [81, 82].

The entropies defined in Eqs. (1,2) are ”static” measures, in
the sense that they do not take any temporal information into
account when describing an observed probability distribution.
”Dynamic” measures of entropy can be introduced by
studying the information content of a stochastic process that
represents the activity of a system evolving in time such as
conditional entropy and information storage explained below.
Specifically, the entropy of the process X is defined as the
average information contained in its present state:

E(X) = H(Xn) = −E[log p(xn)], (4)

where xn is the value taken by the process X at the present
time n. Eq. (4) presupposes stationarity of the process, so that
it carries the same entropy at all times and dependence on time
is dropped in the definition of E(X). The past information
contained in the system up to time n−1 is defined as the joint
entropy of the past variables X−n :

H(X−n ) = H(X1, . . . , Xn−1) = −E[log p(x1, . . . , xn−1)].
(5)

Likewise, the total information contained the the system up to
time n is the joint entropy of the present and past variables, as
given by:

H(X−n , Xn) = H(X1, . . . , Xn) = −E[log p(x1, . . . , xn)].
(6)
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The simple ideas of separating the present from the past and of
incorporating the temporal information into the definition of
entropy as done in Eqs. (4-6) form the basis of the studies
of Kolmogorov [83] and Sinai [84], who first formalized
information-theoretic concepts for the analysis of dynamical
systems. As further studied by Ebeling [85] and discussed
in the next subsections, dynamic entropies are closely related
to the notion of predictability defined for a dynamical system
evolving in time.

2. Conditional entropy

In general, the present state of the observed process is
partially determined by its past history, but also carries a
certain amount of new information that cannot be inferred
from the past. The average rate of creation of new information
is given by the conditional entropy, also known as the
Kolmogorov-Sinai entropy [86]:

C(X) = H(Xn|X−n ) = H(X−n , Xn)−H(X−n )

= −E[log p(xn|x1, . . . , xn−1)], (7)

where p(xn|x1, . . . , xn−1) is the conditional probability that
X takes the value xn at time n given that the values taken
previously were x1, . . . , xn−1.

Thus, the conditional entropy quantifies the amount of
information contained in the present of the process that cannot
be explained by its past history: if the process is fully
random, the system produces information at the maximum
rate, yielding maximum conditional entropy; if, on the
contrary, the process is fully predictable, the system does
not produce new information and the conditional entropy is
zero. When the process is stationary, the system produces
new information at a constant rate, i.e. the conditional entropy
does not change over time.

The notion of conditional entropy subsumes a wide range
of entropy measures and estimates that have been proposed
in the recent past to quantify the complexity of a time series
intended as the degree of predictability of the underlying
process. These measures, which include Approximate
Entropy [1], Sample Entropy [2], Fuzzy Entropy [4],
Corrected Conditional Entropy [3], and Permutation Entropy
[6], are extremely popular for the estimation of conditional
entropy in several fields ranging from applied physics to
neuroscience, physiology, econometrics, climatology, earth
sciences and others [24, 25, 29–32, 37, 38, 87, 88].

3. Information storage

Another relevant entropy measure is the so-called infor-
mation storage, which quantifies the amount of information
shared between the present and the past observations of the
considered stochastic process. For a generic process X the

information storage is defined as

S(X) = I(Xn;X−n )

= E[log
p(x1, . . . , xn)

p(x1, . . . , xn−1)p(xn)
], (8)

where I(Xn;X−n ) denotes the mutual information between
Xn and X−n .

The information storage reflects the degree to which
information is preserved in a time-evolving system [14]. As
such, it measures how much of the uncertainty about the
present can be resolved by knowing the past: if the process is
fully random, the past gives no knowledge about the present,
so that the information storage is zero; if, on the contrary, the
process is fully predictable, the present can be fully predicted
from the past, which results in maximum information storage.
If the process X is stationary, the information shared between
the present and the past is constant.

Although information storage has been long recognized as
an important aspect of the dynamics of many physical and
biological processes, it has been formalized only recently
as in Eq. (8) as the information contained in the past of a
process that can be used to predict its future [39]. This
quantitative definition is gaining more and more relevance
and has been used with great success to analyze complex
dynamics in physiology [26, 27, 89], neuroscience [90, 91],
collective behaviors [92] and artificial systems [40, 93].

To summarize, the entropy of a dynamical system measures
the information contained in its present state. The information
of the present state can then be decomposed into two parts: the
new information that cannot be inferred from the past, which
is measured by the conditional entropy and the information
that can be explained by its past, which is measured by
the information storage. Consequently, entropy, conditional
entropy and information storage are related to each other by
the equation S(X) = E(X)− C(X).

4. Illustrative Example

In this section we demonstrate the properties of the entropy
measures defined above using an exemplary stationary binary
Markov process of order one as depicted in Fig. 1. The
binary process takes values in the alphabet A = {0, 1}
and is defined in a way such that the two outcomes are
equiprobable, i.e., p(Xn = 0) = p(Xn = 1) = 0.5.
Moreover, according to the Markov property, the present state
of the process depends on the past at only one time lag:
p(xn|x1, . . . , xn−1) = p(xn|xn−1). We further assume that
the conditional probability for the process to take the same
value at times n − 1 and n, Pr{Xn = x|Xn−1 = x}, is
inversely modulated by a parameter δ ∈ [0, 1] in a way such
that δ quantifies the strength of the internal dynamics in the
system: the higher δ is, the more the present state is dependent
on the past states (Fig. 1(a)).

The exact theoretical values of entropy, conditional entropy
and information storage computed as a function of δ are
reported in the bottom panel of Fig. 1(a), while the remaining
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panels depict exemplary realizations of the process and values
of the entropy measures for the cases of fully random
dynamics (δ = 0, Fig. 1(b)), fully predictable dynamics
(δ = 1, Fig. 1(c)) and partially predictable dynamics (δ =
0.5, Fig. 1(d)). As seen in Fig. 1(a), the entropy of the
process is constant and equal to 1 bit, because it only depends
on the marginal probabilities which do not change with δ
(p(Xn = 0) = p(Xn = 1) = 0.5). When δ moves from
0 to 1, the conditional entropy decreases and the information
storage increases, reflecting the increasing predictability of
the process. The entropy measures the present information
contained the dynamic system, H(Xn) = E(X), represented
by the solid line with triangle or the red oval. The conditional
entropy measures the rate of increase of the total information
of the system, which is represented by the slope of the solid
line with squares or the part of the red oval not overlapped
with the blue. The information storage measures the shared
amount of the present information H(Xn) and the past
information H(X−n ), which is represented by the overlap
of the red and blue ovals. The fully random dynamical
system described in Fig. 1(b) produces new information at
the maximum rate, yielding C(X) = E(X) and S(X) = 0
(no overlap of the red and blue ovals). The fully predictable
system in Fig. 1(c) produces no new information at any time,
yielding C(X) = 0 and S(X) = E(X) (superimposition
of the red and blue ovals). The partially predictable system
in Fig. 1(d) produces new information but also maintains
past information, yielding C(X) ∈ (0, E(X)) and S(X) ∈
(0, E(X)) (partial overlap of the red and blue ovals).

B. Entropy estimators

In practical analysis, entropy measures are computed from
realizations of the observed process that are available in
the form of time series data. In general, the estimation
of information-theoretic measures from time series is a
difficult task. A major issue is the so-called “curse of
dimensionality” [94], which refers to the fact that numerical
computation is possible only for entropies of finite order.
Specifically, when the dimension of the observed variables
increases, the conditional entropy estimated from time series
of finite length decays towards zero [3]. Therefore, in the
practice of short time series analysis, conditional entropy and
information storage are estimated using a finite number of
samples in the past, i.e., X−n is approximated by Xm

n =
[Xn−1, Xn−2, . . . , Xn−m] when computing H(Xn|X−n ) and
I(Xn;X−n ). While optimization techniques such as graphical
models [94] or non-uniform embedding [89, 95] exist to limit
the detrimental effects of the curse of dimensionality, yet in
this study we stick to the uniform embedding scheme which
selects m consecutive past samples, so as to compare the
performances of different estimators under the “standard”
conditions that are commonly studied in the existing literature.

Various entropy estimators that follow different approaches
to compute the probability distribution are available in the
literature[75].The estimators can be categorized into two
groups: model-based estimators and model-free estimators.

If the probability distribution of the data can be faithfully
represented by a known parametric distribution (e.g., Gaus-
sian), entropy measures can be computed using model-based
estimators as functions of the parameters of the presumed
probability distribution [13, 75, 96]. On the other hand,
when no assumptions can be made about the data distribution,
model-free approaches which approximate the probability
distribution directly from the data should be followed. The
most intuitive method is to build the histogram distribution of
the quantized time series amplitudes. However, this method
is proved to have serious bias problems and its estimates
are strongly dependent on the size of the quantization levels
[97, 98]. This situation can be improved to some extent by
using binless density estimators such as the kernels estimator
[2, 30, 99] or the nearest neighbor estimator [100, 101]. In this
paper, we consider the linear model-based estimation method
and the two model-free methods which employ kernel and
nearest neighbor entropy estimators. Details of these three
estimators are presented in the following.

1. Linear estimator

The linear estimator is a model-based approach for the
estimation of entropy measures. It adopts the assumption
of a joint Gaussian distribution for the observed variables,
and exploits the exact expressions that hold in this case for
the entropy measures. Specifically, the assumed Gaussian
probability distribution is given by

p(xn) =
1√

2πσ2
X

e
−x2n
σ2
X , (9)

where σ2
X is the variance of Xn. Then, by plugging Eq. (9)

into Eq. (3), the entropy of the present state of the observed
process is obtained as

E(X) = H(Xn) =
1

2
ln 2πeσ2

X . (10)

Note that the entropy of a stationary Gaussian process is a
function of its variance only.

Moreover, the linear method estimates the conditional
entropy from the variance of the prediction error of the linear
regression of the present of the process on its past [96].
Specifically, the linear regression of the present Xn on the
past Xm

n = [Xn−1, . . . , Xn−m] is performed as:

Xn =

m∑
i=1

aiXn−i + Un, (11)

where m is the order of the regression, ai, i = 1, . . . ,m,
are the regression coefficients, and Un is a zero-mean white
Gaussian noise. A paradigmatic example for the linear
regression of Xn on Xn−1 is given in Fig. 2. Then, the
linear estimate of the conditional entropy is obtained from the
variance of Un, σ2

U , as follows:

C(X) = H(Xn|Xm
n ) =

1

2
ln 2πeσ2

U . (12)
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FIG. 1: Computation of entropy measures for a stationary binary order-1 Markov process. Since this process takes discrete values, entropies
are computed using the base 2 logarithm and measured in bits. (a) Dependence of the transition probabilities and the entropy measures
on the internal coupling parameter δ. When δ rises from 0 to 1, the probability that a state transition keeps the process in the same state
(p(Xn = x|Xn−1 = x)) moves from 1/2 to 0; accordingly, conditional entropy decreases from 1 to 0 (green dotted line with diamond) and
information storage increases from 0 to 1(purple dashed line with down-triangle); note that, since for this process the marginal probabilities are
unaffected by δ, the entropy of the process does not change (red solid line with up-triangle). The values of entropy measures for δ = 0, 0.5, 1
are marked with full symbols. (b,c,d) Entropy analysis for representative parameter values, showing a realization of the process (solid line with
full circles), the total and present system information as a function of time, and the Venn diagram of the entropy measures (present information:
red oval; past information: blue oval). For this stationary process, the present information is the same at all times and measures the entropy
of the process (E), while the total information increases at a constant rate measured by the conditional entropy (C); the information storage
(S) is the information shared between the present and the past (overlap of ovals), while the C is the part of the present information not shared
with the past. When the process is fully random (δ = 0), the total information increases at the maximum rate (C = 1) and there is no stored
information (S = 0). On the contrary, a fully predictable process (δ = 1) does not produce new information (C = 0) and stores the whole
information contained in its present state (S = 1). Any intermediate parameter configuration (0 < δ < 1) yields a partially predictable process
with presence of both information production and information storage (0 < S < 1, 0 < C < 1).



7

FIG. 2: Schematic illustration of the linear estimation of entropy
measures. In this paradigmatic example in which a time series
{x1, . . . , x8} is considered as a realization of the process X , and
the past of the process is approximated with m = 1 lags (X−

n ≈
Xm

n = Xn−1), 7 realizations of (Xn, Xn−1) are found and used to
fill a two-dimensional space. Then, the linear regression of Xn on
Xn−1 is performed yielding the regression line Xn = aXn−1 (red
line) and, for a given observation xn of Xn, the prediction error un

is taken as the difference between the true and the predicted value,
un = xn − axn−1. The estimates {u2, . . . , u8} are finally used to
compute the variance of Un and the conditional entropy according to
Eq. (12).

Subtracting Eq. (12) from Eq. (10), the estimation of
information storage is obtained as

S(X) = I(Xn;Xm
n ) =

1

2
ln
σ2
X

σ2
U

. (13)

Hence, under the assumption of Gaussianity, the information
storage is determined by the ratio of the variance of the present
state of the process to the partial variance of the present given
the past.

The formulations above exploit a central result relating the
conditional entropy to the prediction error of a multivariate
regression [96], which is here adapted to univariate regression
and extended to the computation of information storage as
proposed recently in both theoretical and empirical studies
[13, 25, 25]. Note that, while the formulation presented
here holds exactly only for Gaussian processes for which the
linear representation captures the whole the entropy variations
in the system, it may be extended in a straightforward way
to non-linear representations when non-Gaussian parametric
distributions are assigned [75].

2. Kernel estimator

The Kernel entropy estimator is a model-free approach
which reconstructs the probability distribution of an observed
variable by centering kernel functions at each outcome of the
variable, and then exploits the estimated probabilities to derive
the relevant entropy measures. Kernels are used to weight the
distance of each point in the time series to the reference point
depending on the kernel function. For instance, the entropy of

the present state of the process X is estimated, starting from a
realization of length N available in the form of the time series
{x1, x2, . . . , xN}, first computing the kernel estimate of the
probability distribution:

p(xn) =
1

N

N∑
i=1

K(‖xn − xi‖), (14)

whereK is the kernel function and ‖·‖ is an appropriate norm,
and then plugging Eq. (14) into Eq. (4):

E(X) = H(Xn) = − ln〈p(xn)〉, (15)

where 〈·〉 denotes the average taken over all possible xn.
Similarly, Eq. (14) can be used to estimate the joint probability
distributions p(xmn ) = p(xn−1, . . . , xn−m) and p(xn, xmn ) in
them−dimensional and (m+1)-dimensional spaces spanned
by the realizations of Xm

n and (Xn, X
m
n ), from which the

conditional entropy is obtained as:

C(X) = H(Xn|Xm
n ) = − ln

〈p(xn, xmn )〉
〈p(xmn )〉

. (16)

Given the expressions of Eqs. (15) and (16) for the kernel
estimates of entropy and conditional entropy, the kernel
estimate of the information storage is then obtained as
follows:

S(X) = I(Xn;Xm
n ) = ln

〈p(xn, xmn )〉
〈p(xn)p(xmn )〉

. (17)

The most common metric to compute distances using the
kernel estimator, which is adopted also in this study, is the
so-called Chebyshev distance or maximum norm, which is
obtained as the maximum of the absolute differences between
scalar components, i.e., ‖xn − xi‖ = |xn − xi| and ‖xmn −
xmi ‖ = max

1≤k≤m
|xn−k − xi−k|. As to the kernel function, the

most popular is the Heaviside kernel, which sets a threshold r
to weight the distance of each point to the reference point. Its
expression is

K = Θ(‖xn − xi‖) =

{
1, ‖xn − xi‖ ≤ r
0, ‖xn − xi‖ > r

. (18)

Substituting Eq. (18) into Eq. (14), one can see that
the Heaviside Kernel estimator approximates the probability
density at the reference point xn with the fraction of time
series points that falls within the distance r from xn. The
threshold r is the width of the Heaviside kernel function,
which controls the precision of the density estimation: smaller
values of r give more detailed estimates yet requiring more
data points to be accurate, while too large values of r yield
very coarse probability estimates because too many points
are included in the neighborhood of the reference point. In
practical computation, the threshold r is usually set to be a
fraction of the data variance so as to remove the dependence
of entropy measures on the amplitude of the observed process
[1, 2]. An illustrative example is depicted in Fig. 3 for the
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FIG. 3: Schematic illustration of the kernel estimation of entropy
measures. In this example, the past of the processX is approximated
using m = 1 samples, and the Heaviside kernel with fixed threshold
r is used. In the (m + 1)−dimensional space spanned by the
realizations of (Xn, Xn−1), the probability of a given reference
point (xn, xn−1) (red dot) is estimated as the fraction of points
whose distance are less than r (grey dots) from it: p(xn, xn−1) =
2/7. The distance between two points is computed as the maximum
between the horizontal and the vertical distance between the two
points. Similarly, in the m− dimensional space spanned by the
realizations of Xn−1, the probability of xn−1 is approximated using
the same threshold r, yielding p(xn−1) = 3/7. This procedure is
repeated varying the reference point and the conditional entropy is
estimated by Eq. (16).

estimation of the probabilities p(xn, xn−1) and p(xn−1) in a
paradigmatic case (m = 1).

The kernel estimation for conditional entropy defined in
Eq. (16), when implemented applying the Heaviside Kernel
function and using the maximum norm to compute distances,
is equivalent to the Sample Entropy (SampEn) [2], a well-
known measure of dynamical complexity proposed to reduce
the bias of the first introduced kernel-based measure of
conditional entropy, i.e. the Approximate Entropy (ApEn)
[1]. These measures, and more generally all kernel-based
estimators of conditional entropy and information storage,
are ubiquitously used to assess the dynamical complexity
of time series in several fields ranging from physics to
engineering, biology and medicine [25, 29–31, 33, 37, 102,
103]. Therefore, it is of utmost importance to investigate how
these estimates behave in the conditions typical of real-world
time series analysis, as well as to understand their range of
applicability and limitations.

3. Nearest neighbor estimator

The k-nearest neighbor estimator (knn) is another model-
free approach that approximates the probability distribution
from multiple observed realizations of the considered vari-
able, and then plugs this probability into the entropy definition
to yield the entropy estimate. The knn estimator approximates
the probability distribution from the statistics of the distances
between neighboring points in the multidimensional spaces
spanned by the observed variables [100]. Compared to the
kernel estimator which fixes the neighborhood size for the
reference point according to a given threshold distance, the
knn estimator fixes the number of neighbors of the reference
point and quantifies the neighborhood size by computing
the distance between the reference point and its kth nearest
neighbor. Specifically, the method builds on the central
results, published in [100, 101], stating that the average
Shannon information content of a generic d-dimensional
random variable V can be estimated from a set of realizations
{v1, v2, . . . , vN} of the variable as

−E[ln p(vn)] = ψ(N)− ψ(k) + dE[ln εn], (19)

where ψ is the digamma function and εn is twice the
distance between the outcome vn and its k-th nearest neighbor
computed according to the maximum norm (i.e., taking the
maximum distance of the scalar components).

Exploiting Eq. (19), one can easily derive the expression
for the knn estimate of the entropy of the present state of the
process X computed for the time series {x1, x2, . . . , xN}:

E(X) = H(Xn) = ψ(N)− ψ(k) + 〈ln εn〉. (20)

Then, according to Eq. (7), the conditional entropy can be
computed as the difference between the joint entropy of the
present and the past, H(Xm

n , Xn), and that of only the past
of the process, H(Xm

n ). The information storage can be
computed as the difference between entropy and conditional
entropy. However, since H(Xn), H(Xm

n ), H(Xm
n , Xn) are

computed in spaces with different dimensions (respectively,
1, m and m + 1), the naive application of the same neighbor
search procedure in all spaces would result in different
distance lengths when approximating the probability density
in different dimensions, which would introduce different
estimation biases that cannot be compensated by taking the
entropy differences. Therefore, in order to keep the same
distance length in all explored spaces, we adopt the solution
[101] of performing a neighbor search only in the highest-
dimensional space and projecting the distances found in
this space to the lower-dimensional spaces, keeping these
distances as the range within which neighbors are counted.
An example is depicted Fig. 4 for the paradigmatic case of
m = 1. Specifically, the knn estimate of H(Xm

n , Xn) is
computed through the neighbor search:

H(Xn, X
m
n ) = ψ(N)− ψ(k) + (m+ 1)〈ln εn〉, (21)

where εn is twice the distance from (xn, x
m
n ) to its kth nearest

neighbor, and then, given the distances εn, the entropies in
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FIG. 4: Schematic illustration of the knn estimation of entropy
measures. In this example, the past of the processX is approximated
with m = 1 samples and k = 2 neighbors are used in the search
for neighbors. In the (m + 1)−dimensional space spanned by the
realizations of (Xn, Xn−1), a neighbor search is performed using
the maximum norm to find the kth nearest neighbor (blue dot) of the
assigned reference point (red dot). Then, the distance between these
two points, 0.5εn is used in the projected one-dimensional space
spanned by the realizations of of X1

n = Xn−1 as threshold distance
to find the neighbors of the reference point xn−1; in this example,
NX1

n
= 3 neighbors are counted. This procedure is repeated varying

the reference point and the obtained values of εn and NX1
n

are then
used in Eq. (24) to compute the conditional entropy.

the lower-dimensional spaces are estimated through a range
search:

H(Xm
n ) = ψ(N)− 〈ψ(NXm

n
)〉+m〈ln εn〉, (22)

H(Xn) = ψ(N)− 〈ψ(NXn)〉+ 〈ln εn〉, (23)

where NXn and NXm
n

are the number of points whose
distance from Xn and Xm

n , respectively, is smaller than εn/2.
Finally, the conditional entropy is obtained by subtracting
Eq. (22) from Eq. (21):

C(X) = H(Xn|Xm
n ) = −ψ(k) + 〈ψ(NXm

n
)〉+ 〈ln εn〉,

(24)
and the information storage is obtained subtracting Eq. (21)
from the sum of Eqs. (22) and (23) [26]:

S(X) = I(Xn;Xm
n ) = ψ(N)+ψ(k)−〈ψ(NXm

n
)〉−〈ψ(NXn)〉.

(25)

Since the nearest neighbor technique results in an adaptive
resolution as it changes the distance scale according to
the underlying probability distribution [97, 99], and may
also achieve bias compensation when implemented through
distance projection [101], this approach has gained in recent
years increasing popularity for the estimation of entropy
measures in time series analysis. While the utilization of
this estimator has been directed up to now mostly to the
computation of entropy measures for multivariate time series
where the issue of dimensionality is more serious [14, 25,
104–106], in this study we consider its implementation for the
computation of entropy measures for individual time series, as
first proposed in [106].

C. Simulation model of stochastic processes

In this section, we introduce the models to simulate four
different types of stochastic processes: stationary autoregres-
sive process, autoregressive process with nonstationarities,
fractionally correlated process, and fractionally integrated
autoregressive process.

We start with the stationary autoregressive process (AR
process), which constitutes the basic process on which
entropy measures can be applied. For this type of process,
techniques to compute the exact theoretical values of the
various entropy measures are available [13], and are here
reviewed in the Appendix A. We use these theoretical values
as a reference to evaluate the performance of different entropy
estimators. Results of this basic process will serve as a
baseline for more complicated processes that are studied later.

Secondly, we superimpose three types of nonstationarities
(i.e., sinusoidal trends, spikes and local variance changes)
on the stationary AR signal. These nonstationarities are
selected as they are commonly encountered in real-world
time series as factors corrupting the underlying dynamics
[57, 58, 107–110]. In our simulations, by comparing the
estimated values of entropy measures for AR signals with
nonstationarity and their corresponding theoretical values for
original stationary AR signals, we aim to understand the
effects of nonstationarity on entropy estimation and figure out
potential solutions to mitigate or remove consequent biases.

In addition to the autoregressive process, we also
investigate processes with long-range power-law correlations,
a property exhibited by many empirical time series such
as the human heart rate or the price index of the stock
market [58, 109]. Unlike the autoregressive process which
is considered to be short memory, these processes, usually
referred to as fractionally integrated processes, often exhibit
long-range or medium-range dependence [111]. In other
words, a fractionally integrated process has an autocorrelation
function that damps hyperbolically, more slowly than the
geometric damping of an autoregressive process. Despite
the fact that entropy measures are typically applied to time
series with long-range power-law correlation [2, 3, 24, 27,
30, 30, 31, 37, 89, 106], it is not well understood how these
measures relate to this type of long-memory dynamics and
how their estimation is affected by properties of correlations



10

including its sign and strength. To fill in this knowledge
gap, we first extend the approach used in [13] to compute the
theoretical values of entropy measures from given simulation
parameters for fractionally integrated processes, as shown in
the Appendix A. In addition, we compare these theoretical
values with the estimated values of different entropy measures
and estimators to evaluate their estimation bias. In this way,
our work provides a reference for the application of entropy
measures and estimators to power-law long-range correlated
processes.

Lastly, we consider more general cases of processes with
both autoregression and power-law long-range correlations
and follow the same procedures to evaluate the performance
of entropy measures and estimators by computing and
comparing their estimates with the corresponding theoretical
values.

1. Stationary AR process

The AR process is simulated as the output process of a
linear univariate AR model driven by a stochastic uncorrelated
noise. Using the polynominal notation, an autoregressive
process of order p can be expressed as

A(L)Xn = Un, (26)

where A(L) = 1 −
∑m

i=1AiL
i is an autoregressive

polynomial of order m, L is the backward shift operator
(LiXn = Xn−i), and U is a white Gaussian innovation
process with zero mean and unit variance.

In this study we simulate an AR process of order m = 2 by
placing two complex-conjugate poles (roots of A(L)) in the
complex plane, with modulus ρ and phase ±2πf , in a way
such that the coefficients of the AR polynomial become:

A1 = 2ρ cos(2πf)

A2 = −ρ2. (27)

With this setting, the parameters ρ and f determine
respectively the amplitude and frequency of a stochastic
oscillation that is imposed for the process. Note that
the process is stationary when ρ ∈ [0, 1), and that the
AR amplitude ρ determines the regularity of the stochastic
oscillation: the process is a fully unpredictable white noise
when ρ = 0, and becomes a highly predictable stochastic
process exhibiting a marked oscillatory behavior around the
frequency f when ρ approaches 1.

Stationary realizations of the AR process described above,
generated with different values set for the AR amplitude ρ
and frequency f , are given in Fig. 5. Comparing Figs. 5(a-
c) by column one can see that, for an assigned frequency f ,
the process is more regular for higher values of ρ, confirming
the expected increase in the predictability of the process with
the AR amplitude. On the other hand, variations in the
predictability of the process are more difficult to appreciate
when f is varied by keeping fixed the AR amplitude ρ. To
investigate this dependence in more detail, Figs. 5(d) and
5(e) report respectively the autocorrelation function of the

process, and the 2-D and 3-D phase plots of the temporal
relation between the present and the two past samples (Xn

vs. Xn−1, Xn−2), computed for the realizations of Fig. 5(c).
These plots indicate that the process exhibits longer memory,
as well as a much stronger linear dependence of the present on
the past values, when the AR frequency is very low (f = 0.01)
or very high (f = 0.49) compared to the intermediate value
(f = 0.25). This suggests that, besides the pole modulus ρ,
also the frequency f of the stochastic oscillation of an AR
process plays a role in determining its degree of regularity.

2. AR process with nonstationarity

Stationarity is a prerequisite for the computation of the
entropy measures from an individual realization of the process
under investigation. In fact, if the process is nonstationary,
the joint probability distribution of its present and past values
changes over time, which precludes the possibility of pooling
observations across time for estimating of such probabilities.
If observations are pooled across time in the presence of
nonstationarities, the estimated probability distribution is
unreliable and the resulting entropy measures deviate from
the value assumed for a stationary distribution to an extent
depending on the type and strength of the nonstationary
behavior.

Here we study the effects of three types of nonstationarities
due to common artifacts, including trends, spikes and local
changes in the signal variance, on the entropy, conditional
entropy and information storage of the AR process of order
2 described above. To reproduce these situations, we
superimpose the chosen type of nonstationary behavior to
stationary realizations of the AR process generated according
to Eqs. (26-27). Nonstationary AR signals with sinusoidal
trends are obtained by adding to the original stationary AR
signals a sine wave of period T and amplitude A. Signals
with random spikes with amplitude A and percentage P%
are generated by replacing random points of the original
time series with random numbers uniformly distributed in
the interval (−Aσ2

X , Aσ
2
X), where σ2

X is the variance of the
original signal. To simulate local changes in variance, we
choose random segments from the original time series and
inflate these segments by multiplying their original values
by a factor of σ. Each inflated segment contains 20 points
and the total number of inflated points covers P% of the
original signal length. The resulting realizations of the
AR process with superimposed nonstationary behavior were
always normalized to zero mean and unit variance before
computing the entropy measures. Exemplary realizations of
the analyzed nonstationary AR processes are depicted in Figs.
(11,13,15).

3. Fractionally integrated white noise process

Stochastic processes with power-law long-range correla-
tions are generated as fractionally integrated white noise
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FIG. 5: Autoregressive processes: characterization of a stationary order-2 AR process for different values of the AR amplitude ρ and frequency
f . (a-c) Exemplary realizations of the process obtained varying ρ (columns) and f (rows). Results: When f is fixed, the process appears more
regular for higher values of ρ. (d) Autocorrelation of the process as a function of the lag τ for the realizations in (c). (e) 2-D phase plots of
(Xn, Xn−1) and (Xn, Xn−2), and 3-D phase plots of (Xn, Xn−1, Xn−2), for the realizations in (c). When ρ is fixed, the process exhibits
shorter memory and weaker dependence of the present on the past for intermediate frequency f .

[112], defined by

(1− L)dXn = Un, (28)

where U is a gaussian white noise with zero mean and unit
variance, d ≥ 0 is the so-called differencing parameter and
(1− L)d is the fractional differencing operator defined by

(1− L)d =

∞∑
k=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)
, (29)

with Γ(·) denoting the gamma (generalized factorial) func-
tion. In this study, computation of Eq. (29) is approximated by

(1−L)d =
∑100

k=0
Γ(k−d)Lk

Γ(−d)Γ(k+1) . The differencing parameter d
controls the sign and degree of the correlations imposed in the
process. It is related to the Hurst exponent, α, by the relation
α = (2d + 1)/2, d ∈ [−0.5, 0.5] [113]. Within this range of
values for d, the fractionally integrated process is considered
as stationary [112]. For d ∈ (0, 0.5], the process is long-range
correlated, showing long-range positive dependence, while
for d ∈ [−0.5, 0), it is anti-correlated, showing long-range
negative dependence. The case d = 0 reduces to uncorrelated
white noise.

Fig. 6(a) shows exemplary realizations of fractionally
integrated white noise with differencing parameter set to
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FIG. 6: Processes with long-range correlations: characterization of a fractionally integrated process with long-range power-law correlations
for different values of the differencing parameter d which controls the correlations. (a) Exemplary realizations of the process with d =
−0.5, 0, 0.5. (b) Results of detrended fluctuation analysis (DFA) applied to longer realizations (220 data points) of the process in (a). For
d ∈ [−0.5, 0.5], the DFA exponent is α = (2d + 1)/2. (c) 2-D phase plots of (Xn, Xn−1) and (Xn, Xn−2), and 3-D phase plots of
(Xn, Xn−1, Xn−2), for the realizations in (a). Results: For fixed modulus of the differencing parameter, positively correlated processes
exhibits stronger dependence of the present on the past than anti-correlated processes.

d = −0.5, d = 0, and d = 0.5. The corresponding
multifractal behavior obtained through detrended fluctuation
analysis is depicted Fig. 6(b), confirming the relation between
the fractional differencing parameter d and the Hurst exponent
α. Fig. 6(c) depicts the two-dimensional phase plots of
(Xn, Xn−1) and (Xn, Xn−2) and three-dimensional phase
plots of (Xn, Xn−1, Xn−2) for anti-correlated, uncorrelated,
and positively correlated time series. The plots evidence a
cloud distribution of the points reflecting the absence of a
dependence of the present on the past for the uncorrelated
case (middle); moreover, when the degree of correlation is the
same, a much stronger dependence of the present on the past
is exhibited for a process with positive correlation (right) than
for a process with anti-correlation (left).

4. Fractionally integrated AR process

The combination of the autoregressive process and the
fractionally integrated processes defined in Eqs. (26) and
(28) results in a more general univariate process exhibiting
both stochastic oscillations and long memory. The resulting
process, which belongs to the class of fractionally integrated
autoregressive moving average processes (ARFIMA) [114,
115], is defined as follows:

A(L)(1− L)dXn = Un. (30)

Fig. 7 shows exemplary realizations and phase plots of
this fractionally integrated autoregressive process with fixed
AR amplitude ρ = 0.8 and varying differencing parameter
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FIG. 7: Autoregressive processes with long-range correlations: characterization of a stationary fractionally integrated AR process with both
autoregression and power-law long-range correlations for different values of the differencing (correlation) parameter d and fixed values of the
AR parameters ρ and f . (a) Exemplary realizations of the process with d = −0.5, 0, 0.5 and fixed ρ = 0.8, f = 0.25. (b) 2-D phase plots
of (Xn, Xn−1) and (Xn, Xn−2), and 3-D phase plots of (Xn, Xn−1, Xn−2) for the realizations in (a). Results: The fractionally integrated
AR process displays weaker dependence of the present on the past than the corresponding pure autoregressive process with the same AR
parameters in the presence of positive long-range correlations, and stronger dependence in the presence of negative long-range correlations.

d = −0.5, 0, 0.5. Compared with the case in which the
process is not long-range correlated but purely autoregressive
(Fig. 7(a), middle, ρ = 0.8, d = 0), the combination
of the AR stochastic oscillations with positive long-range
correlations (Fig. 7(a), right, ρ = 0.8, d = 0.5) seems to
slightly reduce the dependence of the present of the process
on its past, while the opposite seems to occur when AR
stochastic oscillations are combined with negative long-range
correlations (Fig. 7(a), left, ρ = 0.8, d = −0.5). The same
effect, i.e. a decrease of the predictability of the present given
the past for positive long-range correlations and an increase
of this predictability for negative long-range correlations, is
observed comparing the case of mixed AR and fractionally
integrated processes (Fig. 7(a)) with the pure fractionally
integrated process (Fig. 6(a)). Thus, a process with both
AR short-term dependencies and long-range correlations
results less predictable than its pure autoregressive or pure
fractionally integrated counterparts in the case of positive
long-range correlations, and more predictable in the case of
anticorrelations.

III. RESULTS

This section provides the results for the application of the
three entropy measures defined in Sect. II A (i.e., entropy,
conditional entropy and information storage) computed using
the three entropy estimators presented in Sect. II B (i.e., linear,
kernel and knn) on the four types of stochastic processes
discussed in Sect. II C (i.e., stationary AR processes, AR
processes with different types of nonstationarity, power-
law long-range correlated processes, and process with both
AR structure and long-range correlation). For each type
of process, we first theoretically obtain the true values of
all three entropy measures through analytical derivations
starting from the assigned model parameters. Then, using the
same simulation model and model parameters, we compute
the estimated values of entropy measures using all three
estimators for 100 realizations of the target process. Each
realization typically lasts 300 points. All the analyzed
processes have zero mean, and are reduced to unit variance
prior to the computation of entropy measures. All entropy
estimations are performed using m = 2 lagged components
to approximate the past of the process (i.e., Xm

n =
[Xn−1, Xn−2]); this setting corresponds to choosing the
true order of the simulated AR process, so as to make
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the interpretation of results free from issues related to an
inappropriate selection of the embedding dimension.

A. Performance of entropy estimators and entropy measures
for stationary AR processes

Fig. 8 reports the characterization of entropy measures and
entropy estimators for the case of a stationary AR process.
For this process, the exact behavior of the entropy measures in
response to changes in the analysis parameters can be studied
by looking at the theoretical values (black solid lines), and
can be compared with the distributions of values obtained
applying the different estimators to multiple realizations of
the process generated from setting specific values for the
parameters (symbols and error bars).

The theoretical values of all entropy measures are obviously
the same for different lengths of the generated realizations
(Fig. 8(d,e,f)). Moreover, since this example deals with
normalized Gaussian processes with zero mean and unit
variance, the entropy of the process is constant at varying the
AR parameters ρ and f (Fig. 8(g,j)). On the other hand, when
f is fixed and ρ increases, the theoretical value of conditional
entropy decreases and that of information storage increases.
When ρ is fixed and f increases, the theoretical value of
conditional entropy increases for f ∈ (0, 0.25] and decreases
for f ∈ (0.25, 0.5). The theoretical behavior of information
storage is the opposite. The dependence of the measures of
dynamical complexity on the AR amplitude is expected: a
process with higher ρ exhibits a stronger dependence of the
present on the past, and this better predictability is reflected
by lower conditional entropy and higher information storage.
On the other hand, the dependence of the entropy measures
on the AR frequency, documented in Fig. 8(k,l) and in more
cases in Fig. 10, is a less expected behavior which indicates
the existence of a complex relation between the statistical
structure of a dynamic process and its information content.

Turning to the analysis of the entropy estimates first we
see that, as one may expect, the estimated values exhibit
lower variability while increasing the time series length.
This behavior is particularly evident for the kernel estimator,
confirming the findings of previous studies [11, 12]. The
kernel estimator also shows a substantially higher variance
compared to that of the linear and knn estimators (Fig. 8(e,f)).
In addition, we find that the kernel estimates of entropy and
conditional entropy are strongly biased for all values of the
analysis parameters (Fig. 8(d,e,g,h,j,k)). The bias is less
evident for the kernel estimates of information storage, and
is generally low or negligible for the linear and knn estimates
of all measures.

In Fig. 9 we investigate how the estimates of the different
entropy measures are affected by the choice of the analysis
parameters. The linear estimation approach has no free
parameters and, for this case in which the amplitude
distribution of the simulated process matches the assumption
of Gaussianity made by the estimator, it returns very precise
estimates for all measures (Fig. 9(a,b,c)). The kernel
estimator turns out to be very sensitive to the choice of its

free parameter, the threshold r. Specifically, as shown in
Fig. 9(d,e), when r decreases from 0.5 to 0.2 and 0.1, we
observe that the estimates of entropy and conditional entropy
are higher and exhibit larger variability. Such sensitive
dependence on the threshold r results from the partition rule
of the state space used by the kernel estimator. The threshold
r is the width of the Heaviside kernel function and determines
the size of the cells used for probability estimation: when r
decreases, less points are included in the cell used to estimate
probabilities; as a result, the estimated probabilities are lower,
leading to higher entropy estimates regardless of the true
underlying value. On the contrary, when r increases, more
points are included in the neighborhood of any reference
point, increasing the estimated probability and thus leading to
a lower entropy estimate. This holds regardless of the type of
kernel function used for entropy estimation, and determines a
substantial unreliability for the absolute values of entropy and
conditional entropy estimated with the kernel method. The
bias (but not the variance) is compensated for the estimates
of information storage (Fig. 9(d,e,f)). On the contrary, results
from the knn estimator are more accurate for the estimation of
all entropy measures and much less dependent on the choice
of its free parameter k denoting the number of neighboring
points used for probability estimation.

Fig. 10 provides a more detailed analysis of the dependence
of entropy measures on the parameters of a stationary AR
process. In this case where both the AR amplitude ρ and
the AR frequency f are varied, we see that the entropy
measures reflect the signal properties observed in Fig. 5:
increasing ρ with constant f , or moving f away from 0.25
with constant ρ, yields a decrease of conditional entropy
and an increase of information storage that indicate lower
complexity and higher regularity of the dynamics. Moreover,
by comparing the theoretical and estimated values for the
different estimators we found that -despite the bias in the
kernel estimation of entropy and conditional entropy- all of
the estimators can follow the changes in entropy measures
when the internal dynamics of the stationary AR process
changes. However, unlike the linear estimator which makes
an accurate approximation of all entropy measures for all
combinations of AR parameters, the kernel and knn estimators
exhibit a bias when the AR amplitude is high (ρ ≥ 0.8) and the
AR frequency is very low (f < 0.1) or very high (f > 0.4).

In summary, the simulations reported in this section
indicate that the assessment of entropy measures is not an
easy task even for the simple case of stationary AR processes.
Theoretically, the expected values of conditional entropy and
information storage are dependent on the features of the
process in a way that is not always straightforward. Moreover,
the practical estimation of these measures is not an easy task:
while for the linear estimator computation is accurate thanks
to the close correspondence between model assumptions and
properties of the simulated data (i.e., stationary Gaussian
process), the model-free analysis is complicated by empirical
factors such as the data length, but also by the statistical
properties of the underlying process. Specifically, we found
that the estimates of conditional entropy and information
storage are strongly biased for processes exhibiting very
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FIG. 8: Performance of entropy estimators and entropy measures for stationary AR processes. (a-c) Exemplary realizations of AR processes
generated with fixed f = 0.25 and varying ρ = 0, 0.6, 0.9, with corresponding probability distributions reported on the right; note that if
ρ = 0 the process is a white noise ∀f . (d-f) Dependence of entropy measures and entropy estimates, obtained for AR processes with fixed
amplitude and frequency (ρ = 0.6, f = 0.25), on the length N of the time series generated as process realizations. (g-i) Dependence of
entropy measures and entropy estimates on the AR amplitude ρ with fixed AR frequency (f = 0.25) and time series length (N = 300).
(j-l) Dependence of entropy measures and entropy estimates on the AR frequency with fixed AR amplitude ρ = 0.6 and time series length
(N = 300). Panels (d-l) report the theoretical values (black solid line) and the estimated distributions (mean and 25% − 75% percentiles
over 100 realizations) of entropy (d,g,j), conditional entropy (e,h,k) and information storage (f,i,l) obtained with the linear estimator (green
squares), the kernel estimator implemented with threshold r = 0.2 (red circles) and the knn estimator implemented with k = 10 neighbors
(blue triangles). Results: The expected values of all entropy measures do not change with the realization length N . Moreover, for these
normalized time series the theoretical values of entropy are unaffected by the AR parameters. The conditional entropy decreases with the
increase of ρ when f is fixed, and increases with increasing f for f ∈ (0, 0.25] and decreases for f ∈ (0.25, 0.5) when ρ is fixed. The
theoretical behavior of information storage is the opposite of that of the conditional entropy. The estimates obtained with the linear and knn
estimators are close to the theoretical values for all entropy measures, while the estimates of entropy and conditional entropy obtained with the
kernel estimator are strongly biased and exhibit high variance for short time series.
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FIG. 9: Dependence of entropy estimators on estimator parameters for stationary AR processes. Plots depict the theoretical values (black
solid line) and the estimated distributions (mean and 25% − 75% percentiles over 100 realizations, colored symbols and error bars) of
entropy (a,d,g), conditional entropy (b,e,h) and information storage (c,f,i) computed using the linear estimator (a-c), the kernel estimator (g-i)
implemented with threshold r = 0.1 (green open squares), r = 0.2 (blue full triangles) and r = 0.5 (red open circles), and the knn estimator
(g-h) implemented with k = 5 (green open squares), k = 10 (blue full triangles) and k = 30 (red open circles) neighbors. Estimates are
computed over realizations of length N = 300, generated with fixed AR frequency f = 0.25 and varying the AR amplitude in the range
ρ ∈ {0, 0.4, 0.6, 0.8, 0.9}. Results: The kernel estimates of entropy and conditional entropy are strongly dependent on the parameter r setting
the kernel threshold, whereas the knn estimates are much less sensitive to the parameter k setting the number of neighbors. Since the linear
estimator assumes the form of the probability distributions, it has no free parameters.

slow or very fast regular oscillations. Moreover, the kernel
estimates of these measures, though being extremely popular
when implemented in measures like Approximate Entropy
and Sample Entropy, are highly biased with a bias strongly

dependent on the estimation parameter. On the other hand,
small bias and low estimation variance can be attained by
computing the same measures through the knn method.
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FIG. 10: Dependence of entropy measures and entropy estimators on AR process parameters. Plots depict the theoretical values (lines) and the
estimated distributions (mean and 25% − 75% percentiles over 100 realizations lasting N = 300 samples, colored symbols and error bars)
of entropy (a,d,g), conditional entropy (b,e,h) and information storage (c,f,i) computed using the linear estimator (a-c), the kernel estimator
implemented with threshold r = 0.2 (d-f), and the knn estimator implemented with k = 10 neighbors (g-i). Each measure is computed as a
function of the AR frequency varying in the range f ∈ (0− 0.5) for different values of the AR amplitude (ρ = 0, red crosses and solid lines;
ρ = 0.6, blue long-dashed lines and open squares; ρ = 0.8, pink short-dashed lines and full triangles; ρ = 0.9, green dotted lines and open
circles). Results: The linear estimates of entropy measures are close to the theoretical values regardless of the values of the AR amplitude ρ
and frequency f . The kernel and knn estimates exhibit a bias that is more evident for high values of the AR amplitude (ρ ≥ 0.8), and for very
low or very high values of the AR frequency (f ≤ 0.1, f ≥ 0.4).

B. Performance of entropy estimators and entropy measures
for AR processes with nonstationarities

Using the results for the stationary AR process as
a benchmark, in this Section we study the effect of

nonstationary behaviors on the performance of the estimators
of entropy, conditional entropy and information storage.
Starting from stationary AR processes, we induce three types
of nonstationarity by superimposing sinusoidal trends, adding



18

random spikes and inflating the amplitude of segments of the
original time series. For each type of nonstationarity, we first
compare the statistical properties and the entropy measures
estimated for of individual realizations of AR processes with
and without nonstationarity, and then perform exhaustive
analysis assessing how the estimation performance varies with
the severity of the simulated nonstationary behavior.

1. Nonstationarity due to sinusoidal trends

The first type of nonstationarity we consider is the
sinusoidal trend. As shown in Fig. 11(a,b), the presence
of a sinusoidal trend changes the probability distribution of
Xn, which departs from Gaussianity and becomes bi-modal.
Trends have also the effect of distorting the temporal relation
between Xn and Xn−2, making it more evident but changing
the sign of their correlation (see Fig. 11(c,d) where the cloud
of points is less dispersed and the fitting line changes its
slope). In this case, the change of the distribution after
superimposition of the trend is not reflected by alterations
of the estimates of the entropy of the time series, while the
higher predictability is reflected by a susbstantial decrease of
the conditional entropy and a clear increase of the information
storage (Fig. 11(e,f)). These effects are evident regardless of
the entropy estimator.

The effects described above are confirmed by the analysis
of 100 process realizations with and without sinusoidal trends
reported in Fig. 12. The analysis performed as a function
of the AR amplitude shows that, regardless of the period
or the amplitude of the trend, the presence of trends does
not have big effects on the estimation of entropy but totally
impairs the ability of all entropy estimators in following the
variations of the regularity of the AR process. While such an
ability was documented in Fig. 8 for the original stationary AR
process, here we see that none of the estimators can correctly
follow the theoretical behaviors of conditional entropy and
information storage as a function of AR amplitude ρ, not
even qualitatively (see the difference between the estimated
values for signals with trends (colored lines with markers) and
the theoretical value for original AR signals (black lines)).
Moreover, for all estimators we find that the estimation bias
depends more on the trend amplitude A (represented by
red line with cross and pink line with triangle) than on the
trend period T (represented by blue line with square and
green line with circle). With trend amplitude equal to the
variance of the original process (A = 1), the conditional
entropy is underestimated for ρ < 0.7 and overestimated
for ρ > 0.7, while the opposite happens for the information
storage; with trend amplitude A = 5 the conditional entropy
is systematically underestimated and the information storage
is systematically overestimated.

Overall, we find that trends have a big impact on the
detection of the dynamical complexity of stochastic processes.
In all cases, the negative impact of the presence of trends
is documented by the flat response of the entropy measures
to variations in the predictability of the underlying original
process.

2. Nonstationarity due to spikes

Next, we consider the case in which the stationary AR
process is corrupted by spikes with random temporal location
and amplitude. Spikes are extremely common in real life
signals [18, 49, 52, 53, 55, 108], and may be manifested
as artifacts originating from external conditions, or from
the intrinsic dynamics of the system. Here we simulate
spikes with random temporal location and amplitude. As
shown in Fig. 13(a,b), the presence of spikes concentrates
the probability distribution of Xn in a way such that the
largest part of the signal variance is due to the spikes,
which are outliers of the distribution. As a result of the
presence of random outliers, the points of the 2-D phase plot
of (Xn−2, Xn) are concentrated around the origin and the
estimation of the temporal relation between Xn and Xn−2 is
strongly biased with respect to the clean case (see Fig. 13(d)
where the linear fit follows the outliers rather than the non-
corrupted points). As documented in Fig. 13(e,f), the more
concentrated probability distribution induced by the presence
of spikes result in a decrease in the model-free estimate of
entropy (kernel and knn estimators), while the linear model-
based estimate is unchanged for these normalized time series.
Moreover, the errors in the detection of the linear relation
between time series samples result in a clear overestimation
of conditional entropy and underestimation of information
storage by the linear estimator. On the contrary, the kernel
and knn estimators are still able to capture the predictability
of the time series at least to some extent, as demonstrated
by the detection of a significant amount of information
storage resulting from the estimation of a decrease in the
conditional entropy compared with the entropy. We ascribe
the higher robustness to spikes of kernel and knn estimators
of conditional entropy and information storage to the fact
that these estimators explore locally the state space in the
computation of probabilities, thus excluding from the estimate
the points corrupted by spikes.

Fig. 14 reports the results of the systematic analysis of
the effects of spikes, performed studying the behavior of
the entropy measures as a function of the AR amplitude
of the uncorrupted AR process at varying the frequency of
occurrence and the amplitude of the spikes. We found that
the linear estimates of conditional entropy and information
storage are highly affected by spikes, which blunt the
capability of the measures to respond to changes in the AR
amplitude (Fig. 14(b,c), except for the case of low spike
amplitude (A = 1) and percentage (P = 5%) in which
a certain performance is preserved). On the other hand,
spikes were found to be less problematic for the kernel
and knn estimates of the entropy measures. Fig. 14(d-i)
displays that, apart from a negative bias in the estimation
of entropy and conditional entropy, the estimated values of
the entropy measures could correctly follow the variations in
their theoretical values for the original process induced by
changing the AR amplitude. The kernel and knn estimates of
information storage exhibit a lower bias and a higher variance
than the corresponding estimates of conditional entropy. The
dependence of the estimation biases on the spike percentage P
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FIG. 11: Performance comparison for AR signals with and without sinusoidal trends: alteration of signal properties and entropy estimates. (a)
and (b) show exemplary realizations of a stationary AR process with amplitude ρ = 0.6 and frequency f = 0.25 before and after superposition
of a sinusoidal trend with amplitude A = 1 and period T = 100; the corresponding probability distributions are shown on the right. Signals
are normalized to zero mean and unit variance. (c,d) 2-D phase plots of (Xn, Xn−2) derived from the time series in (a,b). The generating
equation of this AR process with ρ = 0.6 and f = 0.25 is Xn = −0.36Xn−2 + Un, which yields the theoretical temporal relation between
Xn and Xn−2 shown by the solid black line; the estimated temporal relation obtained through linear least-squares fit of the two clouds of
points is shown by the red dashed lines. (e-f) Entropy (shaded bars), conditional entropy (white bars) and information storage (gray bars)
expressed as theoretical values computed for the stationary AR process without trends and estimated values computed for the time series in
(a,b). Estimations are performed using the linear estimator, the kernel estimator with threshold r = 0.2, and the knn estimator with k = 10
neighbors. Results: The presence of a sinusoidal trend superimposed to a realization of the AR process alters the probability distribution ofXn

and distorts the temporal relation between Xn and Xn−2. This results in a significant decrease of the conditional entropy and in a significant
increase of the information storage for all estimators.
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FIG. 12: Effects of nonstationarity due to sinusoidal trends on the estimation of entropy measures. Plots depict the behavior of entropy (a,d,g),
conditional entropy (b,e,h) and information storage (c,f,i) computed as a function of the amplitude ρ of an AR process with fixed frequency
f = 0.25, expressed as theoretical values computed for the original process without trends (black solid lines), and estimated distributions (mean
and 25% − 75% percentiles) computed over 100 realizations of N = 300 samples of the process, each corrupted with an additive sinusoidal
trend of period T and amplitude A and normalized to zero mean and unit variance (colored symbols and error bars: T = 100, A = 1, red
crosses and solid lines; T = 100, A = 5, blue open squares and long-dashed lines; T = 400, A = 1, pink full triangles and short-dashed
lines; T = 400, A = 5, green open circles and dotted lines). Estimates are performed using the linear estimator (a-c), the kernel estimator
implemented with threshold r = 0.2 (d-f), and the knn estimator implemented with k = 10 neighbors (g-i). Results: The presence of trends
impairs the ability of all estimators to quantify the changes of conditional entropy and information storage induced by variations in the AR
amplitude ρ. Moreover, trends induce an estimation bias bias proportional to the trend amplitude A.
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and the spike amplitude A varies across estimators: the linear
estimator fails when P > 5% or A > 1, the kernel estimator
is equally affected by P and A and the knn estimator is more
affected by P than A.

Overall, these results indicate that spikes have a deleterious
impact on the model-based estimation of the measures
of dynamical complexity. Since spikes are commonly
encountered in a large variety of practical settings, we
conclude that cautions should be used in adopting linear
approaches to the computation of conditional entropy and
information storage in the presence of these artifacts. On
the contrary, model-free estimates are less affected by spikes
and, in the presence of a moderate amount and amplitude of
spikes, they are still sensitive to variations in the dynamical
complexity of the clean time series.

3. Nonstationarity due to local changes in the signal variance

As a third nonstationary behavior, we consider the
alteration in the amplitude of segments of the original AR
process. As shown in Fig. 15(a,b), the local alteration of the
signal variance has the effect of concentrating the probability
distribution of Xn in a similar way than for the case of
spikes. Similarly, the 2-D phase plot of (Xn−2, Xn) exhibits
a percentage of outliers that surround the cloud of points
representing the non-corrupted portions of the original time
series (Fig. 15(d)). However, since this type of nonstationarity
does not destroy the temporal relation between the time series
samples, the linear fit in the 2-D phase plot of (Xn−2, Xn)
is still quite accurate. As a result, the linear estimation of
conditional entropy and information storage is a bit degraded,
but not fully impaired as in the case of random spikes (see
Fig. 15(e,f)). In this individual realization, the kernel and
knn estimators provide slightly better performances in terms
of estimation of conditional entropy and information storage.
Note that, as in the case of random spikes, the concentration of
the probability distribution is reflected by lower values of the
entropy estimated using the kernel and knn estimators, while
the linear estimates are again unaffected by the shape of the
distribution.

Fig. 16 reports the results of the complete analysis whereby
the estimation of entropy measures is performed as a function
of the AR amplitude for different values of the percentage
and maximal amplitude of the segments of high variance
imposed in the AR process. The main effect of the presence
of segments of high variance is the introduction of a negative
bias in the model-free estimates of entropy and conditional
entropy, as well as of a positive bias in the model-free
estimates of information storage (Fig. 16(d-i)); the bias in
the information storage is higher for the kernel estimates than
for the knn estimates. The linear estimates of the entropy
measures are less affected by this bias (Fig. 16(a-c)). In
spite of the bias we found that, in all conditions of local
alteration of the signal variance, the values of the entropy
measures computed using all estimators could follow the
changes in their theoretical value imposed by varying the AR
amplitude ρ.

These results suggest that the presence of nonstationarity
due to segments of high variance is not as detrimental as other
types of nonstationary behaviors, as it introduces a bias in the
entropy measures but does not preclude the capability of these
measures to detect changes in dynamical complexity induced
by alterations of the predictable structure of the observed
process.

C. Performance of entropy estimators and entropy measures
for fractionally integrated white noise processes

In this Section we investigate the theoretical behavior of
the entropy measures, as well as the performance of all
entropy estimators in computing these measures, for processes
with power-law long-range correlations. After setting the
properties of fractionally integrated white noise processes
as described in the methods (Sect. II C 3), the theoretical
values of the entropy measures are computed as a function
of the differencing parameter d which controls the sign and
the strength of long range correlations using the derivations
described in Appendix A. We then compare these theoretical
values with the distribution of the estimated values, in order
to evaluate comparatively the efficacy of the various entropy
estimators.

Results of this analysis are reported in Fig. 17. First,
we find that both the theoretical and the estimated values of
conditional entropy decrease, and the values of information
storage increase, with the strength of long-range correlations
modulated by the differencing parameter d. Additionally, the
asymmetric behaviors of conditional entropy and information
storage in response to positive or negative variations of the
differencing parameter d (Fig. 17(b,c,e,f,h,i)) document that
entropy measures are more sensitive to positive long-range
correlations than to anti-correlations of the same strength.
These results mirror the fact that signals with positive
correlation are often associated with longer memory than
signals with a negative correlation of the same strength.

Moreover we investigate the dependence of the entropy
estimates on the time series lengthN , finding that not only the
variance, but also the bias of of the estimates of conditional
entropy and information storage, decrease for longer time
series; this behavior is particularly evident for positive long-
range correlations (Fig. 17(b,c,e,f,h,i)). Similar discrepancies
between numerical and mean estimated values of complexity
measures were observed in [12] for 1/f noise time series,
indicating that stationarity is an important prerequisite for the
analysis of short time series, and trend-like behaviors may
impair entropy estimation. A potential explanation for this
finding lies in the the fact that, since signals with stronger
positive correlation exhibit more trend-like behaviors (see
Fig. 6(a) for a representative example), longer time series are
needed to capture the similarity in the patterns that determines
accurate estimates of conditional entropy and information
storage. These results hold for all estimators, and also confirm
the higher variance of the kernel estimator, compared to
the linear and nearest neighbor estimators, as is previously
observed for the simulations of pure AR processes.
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FIG. 13: Performance comparison for AR signals with and without random spikes: alteration of signal properties and entropy estimates. (a)
and (b) show exemplary realizations of a stationary AR process with amplitude ρ = 0.8 and frequency f = 0.25 before and after superposition
of spikes with amplitude A = 5 to 5% of the time series points; the corresponding probability distributions are shown on the right. Signals
are normalized to zero mean and unit variance. (c,d) 2-D phase plots of (Xn, Xn−2) derived from the time series in (a,b). The generating
equation of this AR process with ρ = 0.8 and f = 0.25 is Xn = −0.64Xn−2 + Un, which yields the theoretical temporal relation between
Xn and Xn−2 shown by the solid black line; the estimated temporal relation obtained through linear least-squares fit of the two clouds of
points is shown by the red dashed lines. (e-f) Entropy (shaded bars), conditional entropy (white bars) and information storage (gray bars)
expressed as theoretical values computed for the stationary AR process without spikes and estimated values computed for the time series in
(a,b). Estimations are performed using the linear estimator, the kernel estimator with threshold r = 0.2, and the knn estimator with k = 10
neighbors. Results: The presence of spikes superimposed to a realization of the AR process concentrates the probability distribution of the
process and adds random outliers, which blurs the detection of the temporal relation between between Xn and Xn−2. This results in the
inability of the linear estimator to detect the information storage in the process, while the kernel and knn estimators are less affected.
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FIG. 14: Effects of nonstationarity due to random spikes on the estimation of entropy measures. Plots depict the behavior of entropy (a,d,g),
conditional entropy (b,e,h) and information storage (c,f,i) computed as a function of the amplitude ρ of an AR process with fixed frequency
f = 0.25, expressed as theoretical values computed for the original process without spikes (black solid lines), and estimated distributions
(mean and 25% − 75% percentiles) computed over 100 realizations of N = 300 samples of the process, each corrupted with additive
random spikes of amplitude A occurring with probability P and normalized to zero mean and unit variance (colored symbols and error bars:
P = 5%, A = 1, red crosses and solid lines; P = 5%, A = 5, blue open squares and long-dashed lines; P = 20%, A = 1, pink full triangles
and short-dashed lines; P = 20%, A = 5, green open circles and dotted lines). Estimates are performed using the linear estimator (a-c), the
kernel estimator implemented with threshold r = 0.2 (d-f), and the knn estimator implemented with k = 10 neighbors (g-i). Results: The
presence of spikes partially impairs the ability to quantify the changes of conditional entropy and information storage induced by variations in
the AR amplitude ρ; the impairment is more evident for the linear estimator and for high percentages of spikes. Moreover, spikes induce an
estimation bias proportional to both the amplitude and the percentage of spikes.
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FIG. 15: Performance comparison for AR signals with and without segments of high variance: alteration of signal properties and entropy
estimates in the presence of local changes in signal variance. (a) and (b) show exemplary realizations of a stationary AR process with
amplitude ρ = 0.9 and frequency f = 0.25 before and after inflating random segments by an amplification factor σ = 5 (a total of P = 20%
of the time series points are inflated); the corresponding probability distributions are shown on the right. Signals are normalized to zero mean
and unit variance. (c,d) 2-D phase plots of (Xn, Xn−2) derived from the time series in (a,b). The generating equation of this AR process with
ρ = 0.9 and f = 0.25 is Xn = −0.81Xn−2 + Un, which yields the theoretical temporal relation between Xn and Xn−2 shown by the solid
black line; the estimated temporal relation obtained through linear least-squares fit of the two clouds of points is shown by the red dashed lines.
(e-f) Entropy (shaded bars), conditional entropy (white bars) and information storage (gray bars) expressed as theoretical values computed for
the stationary AR process without changes in variance and estimated values computed for the time series in (a,b). Estimations are performed
using the linear estimator, the kernel estimator with threshold r = 0.2, and the knn estimator with k = 10 neighbors. Results: The presence of
segments with higher variance concentrates the probability distribution of the process and disperses a portion of the points without distorting
their temporal relation. This results in a mild decrease of the conditional entropy and increase of the information storage for the kernel and
knn estimators, while opposite changes are appreciated for the linear estimator.

The findings reported in this Section document that,
in addition to traditionally used analytical tools for the
quantification of long-range correlations such as the detrended
fluctuation analysis (DFA), also the entropy measures studied

in this work, which are commonly used to assess short-
range dependencies, are able to quantify the the degree
of long-range dependency of the present of a process on
its past values. However, the accuracy of the estimates
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FIG. 16: Effects of nonstationarity due to local changes in the signal variance on the estimation of entropy measures. Plots depict the behavior
of entropy (a,d,g), conditional entropy (b,e,h) and information storage (c,f,i) computed as a function of the amplitude ρ of an AR process with
fixed frequency f = 0.25, expressed as theoretical values computed for the original process without changes in variance (black solid lines),
and estimated distributions (mean and 25% − 75% percentiles) computed over 100 realizations of N = 300 samples of the process, each
corrupted by randomly distributed inflated segments and normalized to zero mean and unit variance. Each inflated segment lasts 20 points
and is generated by magnifying original data points by a factor of σ, with the percentage of inflated points to the total signal length being
P% (colored symbols and error bars: P = 5%, σ = 5, red crosses and solid lines; P = 5%, σ = 10, blue open squares and long-dashed
lines; P = 20%, σ = 5, pink full triangles and short-dashed lines; P = 20%, σ = 10, green open circles and dotted lines). Estimates are
performed using the linear estimator (a-c), the kernel estimator implemented with threshold r = 0.2 (d-f), and the knn estimator implemented
with k = 10 neighbors (g-i). Results: The presence of segments with high variance does not impair significantly the ability to quantify the
changes of conditional entropy and information storage induced by variations in the AR amplitude ρ. However, local changes in the signal
variance induce an estimation bias proportional to the percentage of inflated points and -to a lower extent- to the amplitude of inflation.
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is highly dependent on the time series length, indicating
that - contrary to what happens for the estimation of short-
range AR dependencies - very long realizations would be
needed to yield accurate estimation of conditional entropy and
information storage in the presence of strong positive long-
range correlations.

D. Performance of entropy estimators and entropy measures
for fractionally integrated autoregressive processes

The results reported in the previous Sections describe
the capability of entropy measures and entropy estimators
to reflect changes in the temporal structure of both pure
AR processes producing stochastic oscillations and pure
fractionally integrated white noise processes exhibiting
power-law long-range correlations. Here we extend the
analysis by investigating whether and how the theoretical
properties of the entropy measures and the performance of
the entropy estimators change when the analyzed processes
display both short-term AR dependencies and power-law
long-range correlations. Representative examples of these
processes are reported in Fig. 18, suggesting that their
dynamical structure is altered in a different way depending
on the strength of the stochastic oscillation and the sign of
the long-range correlations. Specifically, we see that long-
range correlations of the same strength (|d| = 0.5) determine
different structure in the signals depending on their sign when
the AR amplitude is low (ρ = 0.3, Fig. 18(a,b)), while they do
not affect substantially or differently the dynamical structure
when the AR amplitude is high (ρ = 0.9, Fig. 18(c,d)).

Results of the analysis performed at varying the AR
amplitude ρ for different values of the differencing parameter
d are reported in Fig. 19. First, the analysis confirms that, for
these Gaussian normalized time series, the expected values of
entropy are not dependent on the parameters ρ and d, and the
estimates, apart from the bias of the kernel method known
also before, are accurate for all approaches Fig. 19(a,d,g).
The theoretical values of conditional entropy and information
storage deviate from their behavior for pure AR processes
(pink short-dashed curves) in a way depending on the sign of
long-range correlations: for anti-correlated processes (d < 0,
red solid and blue long-dashed curves) the trend is similar
to the case d = 0 apart from a shift of the curves toward
lower conditional entropy and higher information storage; for
positive long-range correlated processes (green dotted and
gray dash-dot curves) conditional entropy and information
storage are no more increasing monotonically with ρ, showing
a non-trivial dependency especially for high values of the
differencing parameter. As seen in Fig. 19(b,c,e,f,h,i), these
theoretical trends were followed by the estimated values with
a performance comparable to that observed for the various
estimators applied to pure AR or fractionally integrated
processes (i.e., with the strong bias typical of the kernel
estimator and with a slightly better performance of the linear
estimator compared with the knn estimator). The main
difference is that in this case of combined AR and fractionally
integrated processes all estimators (even the linear) produced

biased estimates of the entropy measures. The bias was
positive for conditional entropy estimates and negative for
information storage estimates, increased with the differencing
parameter d, and was more marked for positive d than for
negative d.

Thus, the combined presence of stochastic oscillations
arising from short-term interactions and of power-law long-
range correlations, which is a very common situation of real-
world time series, complicates both the theoretical behavior
and the practical estimation of entropy measures. The
interpretation of the values taken by these measures, as well as
their accurate estimation, become problematic in the presence
of very regular stochastic oscillations, when the increase of
the conditional entropy (and the decrease of the information
storage) with the strength of long-range correlations is more
subtle, or in the presence of strong positive correlations,
when it may happen that the conditional entropy does not
decrease (and the information storage does not increase) while
increasing the regularity of the stochastic oscillations.

IV. APPLICATION TO HEART RATE VARIABILITY

Heart rate variability (HRV), the variation over time of
the period between consecutive heartbeats, is a reliable
reflection of the many physiological factors modulating the
rhythm of the heart in healthy conditions, as well as of
the alteration of these factors related to pathological states
[116, 117]. It is widely accepted that the assessment of
HRV over temporal scales ranging from seconds to few
minutes allows the indirect investigation of the short-term
mechanisms underlying cardiovascular control [118–120]. To
investigate these short-term dynamics and their structural
complexity, a viable and widely exploited approach is the
use of entropy-based methods such as Approximate entropy
(ApEn), Sample entropy (SampEn), corrected conditional
entropy (CCE) and various refinements of these measures
[2–4, 19, 20, 30, 121, 122]. On the other hand, it is
also known that heartbeat fluctuations exhibit long-range
correlation properties manifested in 1/f -like behavior, power-
law correlations, multifractal spectrum and scaling behaviors
that change with physiological state and disease [57, 58,
66, 68, 69, 123, 124]. Therefore, the assessment of the
dynamical complexity of HRV remains a challenge because
of the poorly investigated effects of long-range correlation
properties on the patterns of short-term dynamics, and of the
unclear role played by non-standardized preprocessing steps
and utilization of different entropy measures and estimators.

In order to test the ability of entropy measures in detecting
changes in the static and dynamical properties of HRV signals
in different physiological states and clinical conditions, as
well as to assess the sensitivity of these measures to the
adopted entropy estimator and pre-processing steps, here we
study heartbeat dynamics measured in healthy subjects and
congestive heart failure patients (CHF) during wake and sleep
conditions [125]. Specifically, we considered a group of 18
healthy subjects (13 females and 5 males, with ages between
20 and 50, average 34.3 years) and a group of 12 patients



27

FIG. 17: Performance of entropy estimators and entropy measures for fractionally integrated processes with long-range power-law correlations.
Plots depict the theoretical values (black solid lines) and the estimated distributions (mean and 25% − 75% percentiles over 100 realizations
of length N = 100 (red crosses and solid lines), N = 300 (blue open squares and long-dashed lines), N = 500 (pink solid triangles with
short-dashed lines), and N = 2000 (green open circles with dotted lines)) of entropy (a,d,g), conditional entropy (b,e,h) and information
storage (c,f,i) computed as a function of the differencing parameter d. Estimates are obtained using the linear estimator (a-c), the kernel
estimator implemented with threshold r = 0.2 (d-f), and the knn estimator implemented with k = 10 neighbors (g-i). Results: Signals with
positive correlations present lower conditional entropy and higher information storage than signals with anti-correlation of the same strength.
All estimators reflect the changes in entropy measures with the type and strength of power-law correlation, with a higher accuracy for longer
time series length, but exhibit a bias which increases with the correlation strength.
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FIG. 18: Exemplary realizations of fractionally integrated autoregressive processes for varying AR amplitude ρ and differencing (correlation)
parameter d. Plots depict signals with (a) weak autoregression (ρ = 0.3) and strong anti-correlation (d = −0.5), (b) weak autoregression
(ρ = 0.3) and strong positive correlation (d = 0.5), (c) strong autoregression (ρ = 0.9) and strong anti-correlation (d = −0.5), (d) strong
autoregression (ρ = 0.9) and strong positive correlation (d = 0.5). Slow trends in the signal are present for strong positive long-range
correlation, and less evident for anti-correlated signals or in the presence of a strong AR component.

suffering from CHF, (3 females and 9 males, with ages
between 22 and 71, average 60.8 years), in whom the time
series of the consecutive heartbeat intervals were measured
from the holter ECG recordings acquired continuously during
six hours of wake (12 pm to 6 pm) and six hours of sleep (12
am to 6 am); an example for one healthy subject and one CHF
patient is reported in Fig. 20.

For each recording, entropy, conditional entropy and infor-
mation storage were computed over consecutive sequences of
300 interbeat intervals overlapped by half using the linear,
kernel and nearest neighbor estimators. The analyses were
performed under three types of pre-processing procedure:
1) the originally measured HRV time series in which the
mean is removed within each 300-point window (local mean
removal); note that removing the mean within each window
will not affect the computation of entropy measures, but only
serves as a prerequisite for the linear estimator because it was
implemented without a constant term; 2) the same time series
normalized to zero mean and unit variance within each 300-
point window (local normalization); and 3) the same time
series filtered by a linear high-pass filter (IIR with zero-phase,
cut-off frequency at 3dB: 0.02 cycles/beat [126]) to remove
slow trends and normalized to zero mean and unit variance
within each 300-point window (slow-trend removal and local
normalization). Exemplary signals for all three preprocessing
procedures are given in Fig. 21.

Estimations were performed by setting standard commonly
used values for the embedding and estimator-specific param-
eters, which also correspond to those used in the simulations:
m = 2 points were chosen for representing the past of the
processes; kernel entropy estimates were computed setting the
threshold r equal to 0.2 times the dtandard deviation of the
time series, and knn estimates were computed using k = 10
neighbors.

Then, the median value of the distribution of each entropy
measure computed for each healthy subject or CHF patients
during wake (W) and sleep (S) was retained for statistical
analysis. A paired t-test was used to test the difference
between measures derived during W and S inside the same
group (Healthy or CHF), while an unpaired t-test was used
to check differences between Healthy and CHF for a given
analysis condition (W or S). A p < 0.05 was always
considered as statistically significant.

Fig. 22 collects the results of the analysis of the three
entropy measures, computed using the three considered
estimators applied to the HRV time series measured from the
CHF patients and the healthy controls during wake and sleep
conditions, as well as to the normalized and filtered versions
of these time series. Results illustrate that different entropy
measures can reflect different aspects of cardiac dynamics
across physiological states and pathological conditions. They
also provide evidence for the sensitivity of the measures to the
estimator adopted and the pre-processing procedures applied.
Our major findings are listed in the following.

A. Static measure of complexity in HRV signals: entropy

Let us start by analyzing the entropy of the cardiac
dynamics (Fig. 22(a,d,g)). Note that estimated values of
Entropy measured by the linear and knn estimators depend
on the units of measure of the time series amplitudes (in this
case, seconds), thus being little informative. As shown in
Fig. 22(a,g), the values of Entropy measured by the linear
and knn estimators were negative for signals that are not
normalized to unit variance and were positive for signals with
unit variance, which is reasonable given that their estimations
are dependent on signal variance (Eq. 10 and 20). On the other
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FIG. 19: Performance of entropy estimators and entropy measures for fractionally integrated autoregressive processes. Plots depict the
theoretical values (lines) and the estimated distributions (mean and 25% − 75% percentiles over 100 realizations lasting N = 300 samples,
colored symbols and error bars) of entropy (a,d,g), conditional entropy (b,e,h) and information storage (c,f,i) computed using the linear
estimator (a-c), the kernel estimator implemented with threshold r = 0.2 (d-f), and the knn estimator implemented with k = 10 neighbors
(g-i). Each measure is computed as a function of the AR amplitude varying in the range ρ ∈ (0, 0.9) for fixed AR frequency (f = 0.25) and
different values of the differencing parameter (d = −0.5, red crosses and solid lines; ρ = −0.25, blue long-dashed lines and open squares;
ρ = 0, pink short-dashed lines and full triangles; ρ = 0.25, green dotted lines and open circles; ρ = 0.5, grey dash-dotted lines and open
circles). Results: The presence of strong positive correlation alters markedly the dependence of conditional entropy and information storage
on the AR amplitude, whereas anti-correlation induces only a shift in the measures without affecting substantially the dependence on ρ. All
estimators are biased in approximating conditional entropy and information storage for fractionally correlated AR signals. The bias is more
evident for positive than negative correlations and for stronger than weaker correlations.
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FIG. 20: Exemplary signals of consecutive heart beat intervals for one healthy subject (a,c) and one CHF subject (b,d) during day (a,b) and
night (c,d). The original signals of healthy subjects typically exhibit larger variability and amplitude than those of CHF subjects.

FIG. 21: Exemplary HRV time series of 300 points measured from the same CHF subject during day shown in Fig. 20(b) under different
pre-processing procedures. Panels depict the original signal (a), the same signal in (a) normalized to zero mean (b), the same signal in (a)
normalized to zero mean and unit variance (c), the same signal in (a) with slow trends removed by a linear high pass filter and normalized to
zero mean and unit variance.

hand, the kernel estimation of Entropy, being implemented
by taking a percentage of the signal variance as similarity
threshold when computing probabilities, is not sensitive to
alterations in variance and thus yields very stable estimates
for all pre-processing conditions (Fig. 22(d)).

The main finding about Entropy is that it was markedly
lower in CHF patients than in healthy subjects both during
wake and sleep, and was higher during sleep than during
wake in both groups. These results, which were observed
using the linear and knn estimators and hold only for the zero-
mean time series without pre-processing, reflect respectively
a depressed HRV in CHF patients [127, 128], and a higher
variance of the cardiac dynamics during sleep. Normalization
of the time series to unit variance affects dramatically the
values of Entropy as well as their variations across conditions:
since the linear estimator relies only on variance to estimate
entropy, after normalization it fails to detect changes in the
overall signal variability (Fig. 22(a)); the decrease of the
knn estimates of entropy from wake to sleep in healthy
subjects was statistically significant after normalization to

unit variance (Fig. 22(g)), suggesting that the amplitude
distribution of HRV is less skewed during sleep than wake.

B. Dynamic measures of complexity in HRV signals:
conditional entropy and information storage

Moving to the analysis of the measures of dynamical
complexity of HRV, the first main finding is the significant
increase of the conditional entropy and decrease of the
information storage, observed moving from wake to sleep in
healthy subjects. This behavior was consistently found for all
three estimators and for both the original and the normalized
time series (Fig. 22(b,c,e,f,h,i)), and confirms previous
findings showing that HRV displays a higher short-term
complexity during nighttime than during daytime, potentially
due to the sympathetic withdrawal and parasympathetic
enhancement commonly observed during sleep [21, 122].
Interestingly, this increase of the HRV complexity during
sleep was not observed anymore when conditional entropy
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FIG. 22: Performance of entropy estimators and entropy measures for heart rate variability signals of healthy subjects and congestive heart
failure (CHF) patients measured during wake (W) and sleep (S) states. Panels contain the behavior of entropy (a,d,g), conditional entropy
(b,e,h) and information storage (c,f,i) computed for signals normalized to zero mean within each window (shaded bar), signals normalized
to zero mean and unit standard deviation within each window (open bar) and signals detrended by a linear high-pass filter and normalized to
zero mean and unit standard deviation within each window (solid bar) for healthy subjects (left side with white background and red bars) and
CHF subjects (right side with grey background and blue bars) during wake (W) and sleep (S). Barplots depict the mean + standard deviation
across subjects of the median value of entropy measures computed for consecutive windows of 300 data points with a 150 points overlap using
m = 2 lagged components and implemented with the linear estimator (a-c), the kernel estimator with threshold r = 0.2 (d-f), and the knn
estimator with k = 10 neighbors (g-i). Symbols denote statistical significance (p < 0.05) of the differences between W and S (∗, paired
t-test) or between healthy and CHF (#, unpaired t-test). Results: Compared to healthy subjects, CHF patients exhibit lower Entropy values
reflecting depressed HRV, and higher conditional entropy and lower information storage reflecting higher dynamical complexity. Healthy
subjects display a day-to-night increase of the dynamical complexity (higher conditional entropy and lower information storage during S than
during W) that is not observed in CHF patients.
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and information storage were computed on the time series
without slow trends obtained through the high-pass filtering.
Thus, also according to our simulation results (see, e.g.,
Fig. 17), the higher conditional entropy and lower information
storage during sleep than during wake for unfiltered signals
with slow trends are likely to reflect a decrease of long-
range correlations from wake to sleep, rather than alterations
in the short-term dynamics. To support this hypothesis, we
performed detrended fluctuation analysis on the whole 6-
hour time series measured for each subject in the wake and
sleep conditions under the above mentioned preprocessing
steps. Similar to previous work[52, 53, 66, 67, 69, 129], we
found that significant differences exist in the DFA exponents
between wake and sleep as well as between healthy and
CHF subjects for original time series, indicating stronger long
range correlations during wake than during sleep, for CHF
subjects than healthy subjects. Moreover, after normalizing
and filtering the data, the DFA exponents decrease for
all signals and the differences in DFA exponents across
physiological states and clinical conditions are diminished,
indicating the removal of long-range correlations due to the
preprocessing procedure of normalization and filtering.

The second main result is the higher complexity in the
short-term dynamics of HRV signals displayed by the CHF
patients compared with the healthy subjects during both wake
and sleep, which is consistent with previous findings [130]
. This finding is documented by the significantly higher
conditional entropy (Fig. 22(b,e,h)) and lower information
storage (Fig. 22(c,f,i)) measured in CHF patients than healthy
subjects in most cases of physiological condition and for most
pre-processing procedures. This observation is consistent
for all estimators applied to the pre-processed signals after
normalization and detrending, suggesting that the short-term
dynamics of HRV play a crucial role in determining the
difference in the cardiac dynamics between CHF patients and
healthy subjects, as was also reported in previous studies of
the short-term dynamics of HRV time series [122].

On the other hand, the results for signals without slow
trends removal evidence non-univocal behaviors of the
entropy measures and entropy estimators. This suggests
the impact of normalization and the role of trends on the
short-term analysis of HRV complexity, which complicates
the interpretation of results. Using the linear estimator,
the conditional entropy computed for the original zero-mean
signals is lower in CHF patients than healthy subjects,
while it is higher if computed on signals normalized to
unit variance (Fig. 22(b)). Nevertheless, such a discrepancy
in the comparison between the healthy and CHF groups
before and after normalization to unit variance was not
observed for the linear estimation of information storage.
This result documents the importance of normalization to
unit variance, or of using the information storage as measure
of dynamical complexity, in situations where the signal
variance changes substantially across conditions. Using
the kernel estimator, results for conditional entropy were
independent of the pre-processing (Fig. 22(e,f)), confirming
that this estimator is less sensitive to alterations in the
signal variance across conditions. Using the knn estimator,

results were highly dependent on the pre-processing, with
CHF patients exhibiting lower conditional entropy/higher
storage than healthy subjects for the original HRV series, no
significant differences for the normalized series, and higher
conditional entropy/lower storage for the detrended series
(Fig. 22(h,i)); besides the effects of changes in the signal
variance, these different trends may be also ascribed to
changes in the shape of the probability distribution of the
HRV time series related to different impact of trends and long-
range correlations in the CHF group. Indeed, the effect of
stronger long-range correlations documented for CHF patients
[67, 128, 131] may explain the lower dynamical complexity
that was associated with heart failure in previous studies [130]
and is here documented by the low conditional entropy/high
storage measured for the original HRV series.

To summarize, in this section we reported a paradigmatic
application to show on real signals the performance of entropy
measures and entropy estimators in a field in which a big
volume of work was performed using these approaches. The
analysis of physiological time series reported in this Section
indicates that entropy measures can only reveal specific types
of dynamical features of real-world complex systems, which
are also dependent on the choice of entropy estimators and
preprocessing procedure. To achieve correct estimation and
meaningful interpretations, careful assessment of entropy
estimators and appropriate signal preprocessing have to be
carried out. Specifically, our results document the usefulness
of entropy measures to assess the overall signal variance, and
also the importance of normalization in order to detect more
cleanly alterations of the dynamical structure across states or
conditions. They document also the big impact of long-range
correlations on the values of entropy measures, which makes
it important to remove slow trends in computing conditional
entropy and information storage when the purpose is to
use these measures to characterize the short-term dynamical
properties of the observed system.

V. SUMMARY AND CONCLUSIONS

There is a large volume of studies in the literature where
various entropy measures with different entropy estimators
are applied to diverse dynamical systems across the fields
of physics, biology, engineering, medicine and economics.
These studies consider a range of experimental conditions
with different types of data artifacts and data limitations.
It is a challenge to compare results obtained for different
entropy measures applied to different systems, and to deduce
information about the intrinsic complexity and underlying
mechanisms. Thus, it is of paramount importance to assess
the performance of entropy measures for different types
of dynamics, often in the presence of nonstationarity and
artifacts, and to be aware of how estimated values of these
measures are affected by the choice of estimator-specific
parameters. This paper provides a detailed recipe for the
application of the most widely used entropy measures and
entropy estimators on the most general dynamic processes
encountered in physical and biological systems, and is a first
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account of the biases and limitations of entropy methods in
presence of nonstationarities and data artifacts.

In this paper, we investigate the theoretical behavior
of entropy measures, as well as the performance of
entropy estimators, for various types of dynamical processes
encountered in real-world systems. Specifically, we consider
the measures of entropy, conditional entropy and information
storage, computed by means of linear parametric estimators,
and nonlinear nonparametric estimators such as the kernel and
nearest neighbor methods.

We first define a set of models to generate stochastic
processes. We obtain theoretically the true values of the
entropy measures through analytical derivations where we
incorporate the known parameter values of the models used
to simulate stochastic processes. We next compare the
true theoretical values of the entropy measures with the
numerically estimated values of the same measures obtained
from the generated time series.

Our investigations include the following dynamic pro-
cesses: (i) stationary AR processes; (ii) non-stationary AR
processes corrupted by sinusoidal trends, random spikes
and local changes in variance; (iii) fractionally integrated
processes with long-range power-law correlations; (iv) AR
processes combined with long-range correlations. We
also apply linear, kernel and nearest neighbor estimators
of entropy, conditional entropy and information storage
to physiological signals of consecutive heartbeat intervals
recorded in different populations (healthy and congestive
heart failure) and during different physiological states (wake
and sleep).

Our major findings and observations are listed in the
following points:

(i) We find that even for a process as simple as the
stationary AR process, both the theoretical interpretation and
the practical estimation of entropy measures are not always
straightforward (Fig. 8 and 10). The dynamical complexity
of the AR process, reflected by high values of conditional
entropy and low values of information storage, varies not only
with the AR amplitude ρ, a parameter which controls the
predictability of the process, but also with the AR frequency
parameter f which defines the frequency of the stochastic
oscillations. Moreover, the accuracy in the estimation of
entropy measures by all estimators is higher for longer time
series (Fig. 8(d-f)). We find that the kernel and knn estimates
of all entropy measures are biased and provide low accuracy
for processes with high AR amplitude and very low or very
high AR frequency. This bias is significantly reduced for
AR processes with low and intermediate values of the AR
amplitude in combination with intermediate values of AR
frequency parameter. In contrast, we find that the accuracy
of the linear estimator does not depend on the AR parameters
(Fig. 8(g-l)).

(ii) We also find that the estimation results of nonparametric
estimators are affected by estimator-specific parameters
(Fig. 9). For the knn estimator, changes in the number of
neighbors k only have negligible impacts whereas the kernel
estimates of entropy and conditional entropy can be strongly
biased and highly variant when the threshold r (the width of

Heaviside kernel function) varies. The sensitive dependence
of the kernel estimator on its model parameter is not specific
to any particular kernel function but results from the general
approach adopted by the kernel methods to partition the
state space. Despite of such defect, the kernel estimates
of the conditional entropy are ubiquitously employed by the
Approximate Entropy (ApEn) and Sample Entropy (SampEn)
measures to assess the dynamical complexity of time series
in a wide range of empirical studies. Although it is
commonplace to consider a range of values for the threshold
parameter r as appropriate for the computation of ApEn or
SampEn (typically r is chosen between 0.1 and 0.3 times the
standard deviation of the observed signal), it is noteworthy
that kernel estimates of the conditional entropy can vary
with the threshold r to an extent that can easily exceed any
difference between the intrinsic complexity of the studied
dynamics (Fig. 9(d-f)).

(iii) The effects of nonstationarities due to various data
artifacts on the estimation of entropy measures vary with
the type of nonstationary behavior and with the type of the
estimator that is used. Sinusoidal trends are detrimental
to all estimators, reducing dramatically the capability of
conditional entropy and information storage to reflect changes
in the dynamical complexity of these processes (Fig. 11 and
12). Spikes impair the performance of the linear model-
based estimates of dynamical complexity, while affect less
model-free methods such as the kernel and nearest neighbor
estimators (Fig. 13 and 14). Local changes in signal variance
appear to be less problematic, as they do not compromise
the ability of all estimators to detect changes in dynamical
complexity despite introducing a bias (Fig. 15 and 16).
In addition to these systematical studies on the effects of
nonstationarities, future studies are foreseeable which assess
comparatively the performance of different nonparametric
entropy estimators in describing the complexity of signals
exhibiting nonlinear and/or chaotic dynamics.

(iv) For processes with power-law long-range correlations
(Fig. 17), we establish the theoretical dependence of the
entropy measures on the correlation strength using the novel
analytical derivations of the true values of entropy measures
based on given parameters of the stochastic processes
presented in the Appendix A. We observe lower theoretical
values of conditional entropy and higher values of information
storage when increasing the strength of positive correlations
or anti-correlations, while the theoretical values of entropy
remain unchanged as it depends only the variance and is
independent of the correlations in the signal. Moreover,
we find that when the strength of long-range correlations
is the same, the conditional entropy is higher and the
information storage is lower for signals with anti-correlations
than for signals with positive correlations. Such theoretical
properties of conditional entropy and information storage are
approximated fairly well by all estimators. The estimation
bias is related to not only data length but also the sign
and strength of the long-range correlations. In specific,
the estimations by all estimators are less accurate when the
data length is shorter and the absolute correlation strength
is higher. In addition, for data with the same absolute
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correlation strength, the entropy estimates are more biased
for signals with positive correlations than for signals with
negative correlations.

(v) For processes with both AR dynamics and long-
range power-law correlations (Fig. 19), we study both
the theoretical behaviors of the entropy measures and the
corresponding estimates by all three estimators. We show
that the combined effect of autoregression and long-range
correlations complicates the interpretation of conditional
entropy and information storage already at the theoretical
level. Specifically, for anti-correlated signals, we find that
the response of conditional entropy and information storage
to changes in the correlation strength or in the AR amplitude
is preserved compared with the cases of pure correlated noise
or pure AR process: the conditional entropy decreases and
the information storage increases with stronger short-term
dependence due to autoregression and with stronger long-
range correlations (either positive or anti-correlations). On
the contrary, for signals with positive long-range correlations,
such a response may be inverted: when increasing the
strength of short-term dependence due to autoregression in the
presence of strong positive long-range correlations or when
increasing the strength of positive long-range correlations
in the presence of strong short-term dependence due to
autoregression, the conditional entropy increases and the
information storage decreases. As regards the estimation
accuracy of entropy estimators we find that, with relatively
short data length common of real-world time series, all
estimators display a non-negligible bias, which is more
pronounced when long-range correlations are positive and/or
strong.

(vi) The practical analysis of heart rate variability (HRV)
series (Fig. 22) documents that, when properly applied,
entropy measures are able to characterize changes of specific
types in the cardiac system that are associated with different
physiological and clinical states. However, a correct
interpretation of the behavior of entropy measures for varying
conditions requires clear understandings of the properties
of the specific chosen measure and adopted estimator, and
proper choice of pre-processing applied to the measured
signals. In the reported application, 1) we observe that
the linear estimate of entropy for data not normalized to
unit variance successfully detected the wake-to-sleep increase
of HRV and the depressed HRV of heart failure patients
(smaller standard deviation). In contrast, such difference in
the estimated values of entropy across physiological states
and clinical conditions is not observed when other estimators
are adopted or when the analyzed signals are normalized.
This finding indicates that Entropy is a useful measure in
characterizing the variability in the data value, which is
preferable to be computed on the original time series prior
to any normalization; 2) For healthy subjects, we find that
the conditional entropy is lower and the information storage
is higher during wake than sleep (indicating higher dynamical
complexity) when their estimated values are obtained by all
three estimators both for the original and for the normalized
signals. Such changes of these two entropy measures are
lost when slow trends are removed from the analyzed signals

through high-pass filtering. In addition, by comparing the
results of detrended fluctuation analysis for the same data
set before and after filtering as well as during wake and
during sleep, we find that both the preprocessing procedure
of detrending and the switch of physiological state from wake
to sleep leads to decrease of long-range correlations, which
indicates that the observed changes in conditional entropy and
information storage may result from the variations of trending
behaviors in the signals due to long-range correlations; 3)
During both wake and sleep, we find that for normalized
and detrended signals the estimates of conditional entropy
are lower and the estimates of information storage are higher
by all estimators for healthy subjects than CHF patients
(black bars in Fig. 22(c,f,i)), indicating higher predictability
in the short-term dynamics of HRV recordings in healthy
subjects compared to CHF patients. For normalized signals
without detrending, the results are inconsistent across entropy
estimators and entropy measures when comparing clinical
conditions and physiological states. When entropy methods
are directly applied to original HRV signals, there are various
factors present in the data, such as different signal variance,
trends, or long-range correlations, which affect differently
the entropy measures and estimators, and may thus lead to
inconsistent results and impairs interpretation.

In conclusion, this paper provides a systematic overview
of the entropy-based approaches to the quantification of the
complexity of time series measured from dynamical systems.
Entropy measures and estimators used in this paper represent
or directly relate to very popular measures of complexity
such as Approximate Entropy (ApEn), Sample Entropy
(SampEn), multiscale entropy and permutation entropy, which
are utilized in thousands of publications in all possible
fields. We demonstrate that it is a challenging task to
choose an entropy measure that adequately quantifies the
target dynamical process and to provide a correct estimate of
this measure from real-life time series.

Based on the summarized findings above, we give the
following recommendations for the practical application of
the discussed entropy methods:

(1) Entropy reflects the static properties of the investigated
process, describing its amplitude distribution; it should be
computed on original, non-normalized time series, as this
measure is related to the variance of the signal.

(2) Conditional entropy and information storage are
complementary measures of the dynamical structure of the
process, reflecting respectively its complexity and regularity
intended in terms of predictability of the present given the
past.

(3) Information storage should be preferred to conditional
entropy, as it is less dependent on the signal variance and
in general its estimated values are less biased for all entropy
estimators.

(4) Linear estimates of the entropy measures are the most
appropriate for Gaussian processes; this property is lost
for nonstationary and nonlinear dynamics, which should be
studied employing nonparametric and model-free estimators.

(5) Among model-free approaches, the knn estimator
outperforms the kernel estimator in terms of bias and
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robustness for short time series. The kernel estimator, despite
being extremely popular for the computations of Approximate
Entropy and Sample Entropy computation, is highly biased
with strong dependence on the threshold parameter r. Thus,
we recommend to compute the conditional entropy using
the knn estimator rather than the kernel estimator. If the
kernel estimates of conditional entropy are computed (as
in the extensive literature based on Approximate Entropy
and Sample Entropy), we advise against the utilization of
different values of the threshold r when comparing different
experimental conditions.

(6) Entropy measures are affected in a different way by
different types of artifacts and non-stationarities in the time
series: slow trends are the most detrimental for all entropy
estimators, and should be removed in preprocessing; spikes
impair the linear estimation but have less impact on the kernel
and the nearest neighbor estimators; in comparison, local
changes in the variance of the time series lead to less bias for
all three estimators considered in this study.

(7) In order to ensure that the variations in conditional
entropy and information storage purely reflect changes in
the dynamical properties of the underlying process (e.g.
autoregression or long-range correlations), these measures
should be computed after the normalization of the time series
to zero mean and unit variance.

(8) In order to ensure that the variations in conditional
entropy and information storage purely reflect short-term
dynamical properties of the process (and not due to long-range
correlations), conditional entropy and information storage
should be computed after removing the slow trends in the time
series through a high-pass filter with an appropriate cutoff
frequency.

(9) The computation of conditional entropy and information
storage on the original time series with intrinsic trends may
reveal alterations of the long-range correlation properties
across conditions, with a sensitivity that increases with the
length of the analyzed time series.

The comprehensive evaluation of entropy measures and
entropy estimators provided here can be used as a reference
guide to compare and interpret results of existing studies.
This systematic investigation of the performance of entropy
measures and entropy estimators and their bias when applied
to real-life time series from diverse systems with complex
dynamics, nonstationarities and artifacts can serve as a primer
for researchers who apply entropy methods.
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Appendix A: Theoretical computation of Entropy Measures for
Autoregressive Fractionally Integrated processes

The practical computation of the entropy measures pre-
supposes to provide estimates of the entropy and conditional
entropy for vector variables. In the most general case,
and when nonlinear effects are relevant, non-parametric
approaches are recommended to yield model-free estimates.
In the case of Gaussian processes, exact computation can be
performed according to the approach proposed in [13] for
pure autoregressive processes, which is here extended to the
more general case of fractionally integrated autoregressive
processes with Gaussian distribution. In such a case, exact
values of entropy, conditional entropy and information storage
are those obtained by Eqs. (10,12,13), showing that these
measures can be derived from the variance of the zero-mean
process X , σ2

X = E[X2
n], and from the partial variance of the

process given its past, σ2
U = E[U2

n], where U is the residual of
a linear regression of the present of X on its past values (Eq.
11). A known result [96] is that for Gaussian variables the
partial variance of Xn given X l

n = [Xn−1 · · ·Xn−l] (l is the
number of points used to approximate the past of the process)
can be expressed in terms of covariance matrices as

σ(Xn|X l
n) = σ2

U = σ2
X−Σ(Xn;X l

n)Σ(X l
n)−1Σ(Xn;X l

n)T ,
(A1)

with Σ(·) and Σ(·; ·) indicating respectively covariance and
cross-covariance matrix. Thus, the computation of entropy
measures amounts to calculate the terms in (A1) and use
them in the definitions given by Eqs.(10,12,13). In order
to determine the subtrahend of (A1) we have to compute
the autocovariance of the process X , which is defined as
Rk = E[XnXn−k] for any time lag k ≥ 0. In the following,
we describe the procedure to derive the autocovariance of
autoregressive fractionally integrated (ARFI) processes from
the parametric representation of these processes.

The representation of an ARFI process is given by Eq. 30,
from which the polynomial part can be rewritten as:

A(L)(1− L)d = (1 +

m∑
k=1

AkL
k)(

∞∑
k=0

GkL
k), (A2)

where Gk = Γ(k−d)
Γ(−d)Γ(k+1) (note that G0 = 1). Thus,

the ARFI process can be approximated as a finite order AR
representation by truncating the fractional integration part at
a given (arbitrarily high) lag q and solving the polynomial
multiplication of Eq. (A2). This leads to representing the
ARFI process as an AR process of order p = m+ q:

Xn =

p∑
k=1

BkXn−k + Un, (A3)

where the coefficients Bk results from the polynomial
multiplication. In the simulations treated in this paper where
m = 2 (Eq. (27)), the coefficients become:
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B1 = A1 −G1, (A4)
Bk = A2Gk−2 +A1Gk−1 −Gk,∀k ≥ 2, (A5)

Bq+1 = A2Gq−1 +A1Gq, (A6)
Bq+2 = A2Gq. (A7)

Then, we recall that the autocovariance of the process (A3)
is related to the AR parameters Bk via the well known Yule-
Walker equations:

Rk =

p∑
l=1

BlRk−l + δk0σ
2
U , (A8)

where δk0 is the Kronecher product. In order to solve Eq. (A8)
for Rk, k = 0, 1, . . . , p − 1, we first express Eq. (A3) in a
compact form as Φn = AΦn−1 + En, where

Φn = [XnXn−1 · · ·Xn−p+1]T , (A9)

A =


A1 · · · Ap−1 Ap

1 · · · 0 0
...

. . .
...

...
1 · · · 0 0

 , (A10)

En = [σ2
U0 · · · 0]T , (A11)

Then, the covariance matrix of Φn , Ψ, takes the following
form:

Ψ = E[ΦnΦ
T
n ] =


R0 R1 · · · Rp−1

R1 R0 · · · Rp−2

...
...

. . .
...

Rp−1 Rp−2 · · · R0

 . (A12)

Since Ψ can be also expressed as a discrete-time Lyapunov
equation, Ψ = AΨAT + Ξ, where Ξ = E[EnE

T
n ] is he

covariance of En, we can solve for Ψ and obtain the auto-
covariance values R0 = σ2

X and R1, . . . , Rp−1. Afterwards,
by repeatedly applying Eq. (A8), the autocovariance Rk can
be calculated recursively for any lag k ≥ 0. This shows how
the autocovariance sequence can be computed up to arbitrarily
high lags starting from the parameters of ARFI representation
of the observed Gaussian process. The autocovariances
can then be used as elements in the covariance matrices in
Eq. (A1) to obtain the partial variance of Xn given X l

n.

The parameters determining the accuracy of the procedure
are the number of lags q used to truncate the AR
representation of the ARFI process, and the number of lags
l used to approximate the past history of the process for the
calculation of conditional entropy and information storage. In
fact, considering the past up to lag l corresponds to calculating
the autocovariance of the process (A3) up to the element
Rl. As a rule of thumb, given that for a pure AR process
the autocovariance decays exponentially with the lag, with
a rate of decay depending on the modulus of the largest
eigenvalue of A, ρ(A), it has been suggested to compute the
autocovariance up to a lag l such that ρ(A)l is smaller than
a predefined numerical tolerance [132]. This approximation
should hold also for a stationary ARFI process when the
lag q is chosen sufficiently high to detect the decay over
time of the coefficients Gk in Eq. A2. In this study we set
q = 100, observing that for this value both the coefficients
Gk and the autocorrelation Rk (which was computed up to
k = p = q +m = 102) decayed to very low values.
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[79] A. Rényi, Math. Stat. Probability 1, 547 (1961).
[80] C. Tsallis, Journal of statistical physics 52, 479 (1988).
[81] O. Kafri and H. Kafri, Entropy: God’s Dice Game (CreateSpace, 2013).
[82] K. Martinás, World Futures: Journal of General Evolution 50, 483 (1997).
[83] A. N. Kolmogorov, in Dokl. Akad. Nauk SSSR, Vol. 124 (1959) pp. 754–755.
[84] Y. G. Sinai, in Dokl. Akad. Nauk. SSSR, Vol. 124 (1959) pp. 768–771.
[85] W. Ebeling, World Futures: Journal of General Evolution 50, 467 (1997).
[86] J.-P. Eckmann and D. Ruelle, Reviews of modern physics 57, 617 (1985).
[87] K. Keller, A. M. Unakafov, and V. A. Unakafova, Entropy 16, 6212 (2014).
[88] Y. Cao, L. Cai, J. Wang, R. Wang, H. Yu, Y. Cao, and J. Liu, Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 083116

(2015).
[89] L. Faes, G. Nollo, F. Jurysta, and D. Marinazzo, New Journal of Physics 16, 105005 (2014).
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