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Abstract 

 An intense, short laser pulse incident on a transparent dielectric can excite electrons from 

valence to the conduction band. As these electrons undergo scattering, both from phonons and ions, 

they emit bremsstrahlung. Here we present a theory of bremsstrahlung emission appropriate for the 

interaction of laser pulses with dielectrics. Simulations of the interaction, incorporating this theory, 

illustrate characteristics of the radiation (power, energy and spectra) for arbitrary ratios of electron 

collision frequency to radiation frequency. The conversion efficiency of laser pulse energy into 

bremsstrahlung depends strongly on both the intensity and duration of the pulse, saturating at values 

of about 10-5. Depending on whether the intensity is above or below the damage threshold of the 

material, the emission can originate either from the surface or the bulk of the dielectric, respectively. 

The bremsstrahlung emission may provide a broadband light source for diagnostics. 
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1. Introduction 

The wide availability of high intensity, ultrashort pulse lasers has led to an explosion of 

research into ultrasfast laser-material interactions. The irradiation of transparent, solid dielectrics, in 

particular, has been investigated in several contexts, including non-thermal heating and laser ablation, 

[1,2,3,4], high precision hole drilling [5], and nano-cavity formation [6,7]. Regardless of context, the 

interaction evolves along a common sequence of processes: (i) production of conduction band 

electrons via optical field and collisional excitation; (ii) deposition of laser energy in conduction band 

electrons; and (iii) transfer of energy from conduction band electrons to the lattice leading to melting, 

surface ablation or micro-explosions within the dielectric.  

 These processes are not, however, exhaustive. For instance, radiative phenomena, such as 

supercontinuum and high harmonic generation, regularly occur during the interaction [8,9,10,11,12]. 

For example, electrons created by optical field ionization re-collide with their parent ion and 

recombine emitting harmonics of the laser frequency. The harmonic spectrum is characterized by a 

plateau that starts in the near-ultraviolet part and that extends into the extreme-ultraviolet. These 

radiative processes are not, however, the focus of our current investigation. Of interest here is 

collisional radiation, or bremsstrahlung. While bremsstrahlung is commonly associated with plasmas, 

the underlying mechanism, Larmor radiation from the acceleration of an electron during a collision, 

occurs in laser heated dielectrics as well. In plasma, free electrons undergo collisions with ions; in 

dielectrics, conduction band electrons (CBEs) scatter from ions or the lattice (electron-phonon 

scattering). 

 Bremsstrahlung from plasmas has been studied extensively, often providing an indispensable 

diagnostic tool. Thermal bremsstrahlung has been used, for example, to diagnosis hot electron 

populations in inertial confinement fusion experiments [13,14], provide information about star 

formation in starburst galaxies [15,16], and to extract radiation temperatures in discharges [17]. In all 

of these cases, the plasma can be considered both fully ionized and weakly collisional, i.e. the 

collision frequency, ν ,  is much smaller than the radiation frequency, ω .  These conditions greatly 

simplify calculations of the bremsstrahlung spectrum and emitted power, permitting the use of well 

known formulas for the spectral intensity [18] or power emitted per unit volume [15]. 

 In contrast, bremsstrahlung from CBEs in dielectrics has received little attention [19]. 

Transient photo-excitation and a range of collision frequencies typify the interaction of laser pulses 

with dielectrics. This invalidates the simplifications of full ionization and weak collisionality used in 

plasmas, such that the well known formulas are not applicable. As we will show, the bremsstrahlung 
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emission exhibits a broadband spectrum, spanning microwave to ultraviolet frequencies, with the 

collision frequency often falling in between. Thus a theory of bremsstrahlung appropriate for 

dielectrics must treat arbitrary ratios of collision frequency to radiation frequency, v / ω . 

Furthermore, the theory must include collisions between electrons and phonons and electrons and 

ions. To our knowledge, such a theory has yet to be presented.  

 The purpose of this manuscript is to develop a theory and numerical model appropriate for the 

bremsstrahlung emission from dielectrics irradiated by a short laser pulse. Our motivation is twofold: 

(1) to illustrate the characteristics of bremsstrahlung from the interaction of a laser pulse with 

dielectrics, i.e. radiation emitted by cold (a few eV), dense (solid density) electrons in the conduction 

band that undergo both phonon and ion collisions, and (2) to explore the potential use of the 

bremsstrahlung as a diagnostic. 

The remainder of this manuscript is organized as follows. Section 2 provides a brief overview 

of the emission characteristics. In section 3, we develop the general theory of bremsstrahlung for 

arbitrary ratio of collision frequency to radiation frequency. The frequency and temperature scalings 

of a representative radiation spectrum are discussed therein. Section 4 details an implementation of 

the bremsstrahlung theory for simulations. Section 5 presents simulations of a laser pulse interacting 

with a dielectric that incorporate the bremsstrahlung theory. For a representative dielectric, we use 

SiO2, which has well established properties and electron collision data, and has been widely used for 

numerical simulations [1,3,6,20,21,22,23]. The simulation results include the bremsstrahlung spectra, 

power, energy, and conversion efficiency. For laser pulse intensities below and above the damage 

threshold, we find the dielectric is predominantly a volumetric or surface emitter, respectively. At the 

end of the section, we present scalings of the conversion efficiency as a function of pulse intensity for 

a short (fs) and long (ps) pulse. Section 6 summarizes our findings. 

2. Emission Characteristics 

Prior to presenting the theory and simulations of bremsstrahlung emission, it is instructive to 

discuss qualitative features based on what is known about the interaction of short pulses with 

dielectrics [22,23]. As an example, we consider a pulse with a wavelength λ0 = 800 nm, full width at 

half maximum (FWHM) duration TFWHM = 1 ps, and an intensity, IL , near the breakdown threshold, 

17 -2~ 2 10 W mthrI × ⋅ . When incident on the dielectric, the pulse excites a thin surface layer of 

electrons to the conduction band. The CBEs have a density, ne , near the critical density, 

2 27 -3
0/ 1.7 10 mcr en rπ λ= = ×  where re  is the classical electron radius, and a temperature ~ 5 eVB ek T , 
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where kB  is Boltzmann’s constant. The layer thickness is about one skin depth, 

1/2(4 ) ~ 100 nmskin e en rπ −=l .  

As we show in the next section, the power emitted per unit volume into bremsstrahlung is 

given, in the collisional limit, by 2 2 4(4 / )( ) / ( )brems B e eP mc k T n Tα π ν≅ h , where α  is the fine structure 

constant, ħ the Planck constant,  m the electron mass, and c  the speed of light. The total collision 

frequency, ν  , includes both electron-phonon and electron-ion processes, but is dominated, for nearly 

all parameters of interest, by electron-phonon scattering. The conversion efficiency of pulse energy 

into bremsstrahlung, ηbrems ≅ Pbremsℓ skin / Ithr , can then be estimated by setting e crn n=  and 

15 -13 10 sν = ×  [20], providing ηbrems ~ 10−6 . The modest efficiency results predominantly from the 

low electron temperature.  

The bremsstrahlung power spectrum is broadband, spanning microwave to ultraviolet 

frequencies, and peaks near the cutoff frequency, max ~ /B ek Tω h  or max ~ 250 nmλ , close to the 

visible range. The rapid recombination of CBEs, e.g. 150 fs in SiO2, limits the emission to durations 

comparable to the laser pulse duration. The bremsstrahlung emission would therefore appear as an 

ultrafast flash of broadband light. 

3. Bremsstrahlung Theory 

 We now develop the theory of bremsstrahlung emitted by thermal electrons in the conduction 

band of a dielectric. For simplicity, we consider a dielectric that maintains its lattice structure 

throughout the interaction, neither melting nor ablating. This assumption is made in order to avoid 

complications associated with phase transitions and allow for a well defined electron-phonon 

collision frequency. In general, the electrons are not in thermodynamic equilibrium with the dielectric 

lattice, having Te >> Tℓ , where Tℓ  is the lattice temperature. For an overview of the mechanisms for 

excitation to the conduction band and collisional processes refer to Refs [1].  

Conventional treatments of bremsstrahlung consider the weakly collisional limit, in which the 

collision frequency, ν , is assumed much smaller than the radiation frequency, ω : / 1ν ω << . For 

dielectrics heated by short pulses, the radiation frequency often falls in the opposite limit. To 

accommodate a broad range of emitted frequencies, we treat the more general case in which the ratio 

of collision frequency to radiation frequency is arbitrary. Analytical expressions for the emission, 

absorption coefficient, optical depth, and radiation intensity will be reduced to the two limiting cases: 

weak ( / 1ν ω << ) and strong ( / 1ν ω >> ) collisionality. For convenience, the formulas and notation 
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are written in SI units and follow closely Refs. [15,18]. 

(a) Radiative transfer 

The monochromatic radiation intensity, the energy emitted per unit area, time, frequency 

interval dω   and solid angle dΩ, evolves according to the radiation transport equation 

dI j a I
ds

ω
ω ω ω= − ,                                                                           (1) 

where s represents a possible path for the radiation, jω  the emission coefficient, and aω  the 

absorption length. The emission coefficient, jω , characterizes the radiation source—in our case the 

bremsstrahlung emission of CBEs within an infinitesimal volume element of the dielectric. 

Calculation of the emission coefficient requires averaging the spontaneous emission rate for 

bremsstrahlung, ( )ωη ε , over the electron energy distribution, f (ε ), and multiplying by the electron 

density: 

jω = ne f (ε )ηω (ε )d
0

∞

∫ ε .                                                                (2) 

The spontaneous emission rate, the energy radiated by a single electron with kinetic energy ε  per 

unit time, frequency interval, and solid angle is given by [18] 

2 2 2 2

1( ) ( )
3 1 ( ) /mcω
α εη ε ν ε
π ν ε ω

=
+

h .                                           (3) 

Note that ν(ε ) and f (ε ), and hence jω  depend implicitly on both space and time through the 

electron density and temperature. For the remainder, we assume a Maxwellian kinetic energy 

distribution: 1 1/2( ) exp( / )B ef N k Tε ε ε−= − , where the normalization 1/2 3/21
2 ( )B eN k Tπ=  ensures

∫0
∞ f (ε )dε = 1 and the average energy 3

0 2( ) B ef d k Tε ε ε ε∞= ∫ = . 

 As an inverse process to emission, the CBEs can also absorb radiation. This is captured in Eq. 

(1) by the absorption length:  

( )
ja

B T
ω

ω
ω

=  ,                                                                                 (4) 

where  is the black body radiation spectrum for a temperature T. 

Equation (4) can be derived by requiring energy conservation in the limiting case of a radiator in 

thermodynamic equilibrium with its environment: Iω = Bω (T ) . To ensure energy conservation in this 

limit, the absorption must balance emission, such that jω − aω Iω = 0 or aω Bω (T ) = jω  (see Eq. (1)). 
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With the absorption coefficient, one can define the optical depth, dτω , over the path length 

ds , as 

d a dsω ωτ = .                                                                          (5) 

The optical depth plays a central role in determining the transport of radiation through and out of the 

CBE region. To illustrate this, we consider Eq. (1) for the simple example of a flat, uniform radiator 

of length L (infinite in the other dimensions). This is an excellent approximation of the CBE layer 

created at the dielectric surface for pulse intensities near or above the breakdown threshold (the CBE 

region has a thickness of L ~ ℓ skin ∼100 nm  and a width comparable to the pulse spot size   w ~ 100μm

). Integrating Eq. (1) for the flat, uniform radiator, we find 

(1 )jI e
a

ωτω
ω

ω

−= − .                                                                  (6) 

Equation (6) has two limiting cases. An optically “thin” radiator satisfies τω << 1, such that 

Iω ≅ jω L .                                                                             (7) 

In this case, the radiation leaving the CBE region is simply the radiation produced inside that region. 

An optically “thick” radiator, on the other hand, satisfies τω >> 1, such that 

j LI ω
ω

ωτ
≅ .                                                                            (8) 

Here the radiation is strongly absorbed, reducing the intensity leaving the CBE region by a factor 

a Lω ωτ = , the optical depth of the media. Note that the frequency dependence of τω  implies a 

radiator can be optically thin at one frequency and thick at another.  

While this example illustrates the important limits, the physical thickness of the CBE region 

can vary widely: from a thin 100 nm layer just below the surface of the dielectric to a 1 mm swath 

trailing the laser pulse, depending on whether the pulse parameters are above or below the breakdown 

threshold respectively. A more general treatment for the emission from physically thick CBE regions 

is included in our simulations and will be discussed in the next section.  

 Through the spontaneous emission rate, the optical depth and emission coefficient for a 

particular radiator will depend on the properties of the collision frequency. Two properties distinguish 

the collision frequency of CBEs in dielectrics to that of traditional plasmas. First, the dominant 

collisions are electron-phonon, which depend solely on the electron temperature; the density 

dependent Coulomb collisions provide only a small contribution. Second, numerical simulations will 

show that the peak electron temperature, ~a few eV, is relatively insensitive to laser pulse parameters. 
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This insensitivity and the weak density dependence imply that the combined collision frequency 

(electron-phonon + electron-ion) is nearly constant. As a result, delineation of the weakly (ν << ω ) 

and strongly (ν >> ω ) collisional regimes is determined predominantly by the radiation frequency, 

and not the parameters of the interaction. For a rough demarcation in the following, we can use a 

typical electron-phonon collision frequency, 15 13 10 sν −≅ ×  [20].  

(b) Weak collisionality 

For dielectrics heated by short pulses, the weakly collisional limit, ν << ω , applies to 

ultraviolet (UV) or shorter wavelength radiation. In this limit, the spontaneous emission rate becomes 

independent of frequency: 2 2( ) ( / 3 ) ( )em cωη ε α π εν ε= h . The complex energy dependence of ν (ε ) 

precludes a direct analytical integration of Eq. (2) for jω . We can, however, estimate the integral by 

evaluating ωη  at the average energy, providing 2 2( / 3 ) ( )e ej m c nω α π εν ε≅ h . A more rigorous 

treatment, taking into account electrons with ε ε≠  by assuming their contribution to the frequency 

spectrum is proportional to their number, yields an additional factor . For a Maxwellian 

kinetic energy distribution, we then have: 

/
2 2 ( )

2
B ek TB e e

e
e

k T nj T e
m c

ω
ω

α ν
π

−≅ hh                                               (9) 

aω ≅
ω p

2

ω 2

ν(Te )
c

.                                                                     (10) 

The absorption length recovers the inverse-bremsstrahlung decay length commonly used in models of 

radiation propagating in tenuous plasmas. The optical depth resulting from Eq. (10), τω = aω L , 

increases rapidly with decreasing frequency, τω ~ ω −2 . This implies that low frequencies (but still 

larger than ν ) are preferentially absorbed. This preferential absorption is significant in a very limited 

frequency range. The range, /B ek Tν ω<< ≤ h , is bounded below by the relatively large collision 

frequency, 15 -1~ 3 10 sν × , and above by the exponential fall off of the emission, . 

By integrating jω  over all frequencies and solid angle, we obtain the total power of bremsstrahlung 

emitted per unit volume: 2 2(2 / )( ) ( )brems e B e e eP m c k T n Tα π ν≅ . Note that this formula quantifies 

emission within the CBE region, while the frequency integral of Iω , which we return to below, 

quantifies the radiation escaping the CBE region. The expression for Pbrems  reproduces the traditional 
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plasma result when the Spitzer electron-ion collision frequency is substituted for ν(Te ) . 

(c) Strong collisionality  

 The strongly collisional limit, ν >> ω , applies for radiation with wavelengths approximately 

satisfying λ > 1 μm . Following the procedure from subsection (b) above, the spontaneous emission 

rate reduces, in the limit ν >> ω , to 2 2 2( ) ( / 3 ) / ( )em cωη ε α π ω ε ν ε≅ h . For jω  and aω  we then find: 

2
/

2 22 ( )
B ek TB e e

e e

k T nj e
m c T

ω
ω

α ω
π ν

−≅ hh
                                             (11) 

aω ≅
ω p

2

cν (Te )
.                                                                        (12) 

In contrast to the weakly collisional limit, the absorption length, and hence the optical depth is 

independent of frequency. Integration of (11) yields the total power of bremsstrahlung emitted per 

unit volume: 2 2 4(4 / )( ) / ( )brems B e eP mc k T n Tα π ν≅ h . The power scales as 4~brems eP T  reminiscent of black 

body radiation with a temperature Te , suggesting that strong collisionality results in an optically thick 

radiator. A summary of the formulas in the two limiting cases is provided in Table 1.  

(d) Radiation intensity spectrum and absorption coefficient 

 To provide insight into the emission and absorption properties of the CBEs, we continue by 

examining qualitative features of the bremsstrahlung spectrum. For this purpose, it is sufficient to 

consider two quantities, which play central role in radiation emission and absorption: the radiation 

intensity Iω  and absorption coefficient aω . The exact frequency scaling of Iω  depends on the optical 

depth of the radiator. However, as borne out by simulations in the next section, for all cases of 

interest, the optically thin and thick regimes correspond directly to weak and strong collisionality 

respectively. As a result, we can discuss the frequency scaling of Iω  in terms of the collisionality.  

Figure 1 illustrates the general behavior of the radiation intensity for parameters 

corresponding to the dielectric breakdown regime of SiO2. For low frequencies (ω << ν ), the 

radiation intensity increases rapidly with frequency, 2~Iω ω  (Eq. (11)). The total energy emitted in 

this range (THz to mid-infrared) is relatively small. Most of the emission originates from the 

intermediate frequency range (ω ~ ν ), in which Iω  is nearly constant about its maximum (Eq. (11)). 

As alluded to in subsection (b) above, this near constant scaling is limited to a narrow range, 

/B ek Tν ω ≤ h , from the infrared to UV. Finally for large frequencies (ω >> ν ), the exponential 



9 
 

factor appearing in Eq. (11) causes a precipitous decrease in Iω . Overall, the emission spectrum 

exhibits the following scaling:  
2

/

~ const. ~
B ek T

I
e

ω
ω

ω ω ν
ω ν

ω ν−

⎧ <<
⎪
⎨
⎪ >>⎩

h

 .                                                      (13) 

The absorption length, and hence the optical depth, has a constant scaling for sub-infrared frequencies 

and falls off rapidly beyond the UV: 

aω ~ const. ω << ν
1/ ω 2 ω >> ν

⎧
⎨
⎪

⎩⎪
 .                                                     (14) 

The frequency scaling of Iω  and aω  can be understood physically by considering the motion 

of an electron undergoing collisions in the presence of the radiation field. In the absence of collisions, 

an electron would exchange no net energy with the radiation field. The electron would oscillate in 

phase with field, gaining energy in one half-cycle and radiating it away in the next. Collisions break 

this symmetry: the scattering of the electron from the phonon (or ion) introduces an additional 

acceleration, such that the electron’s oscillation is no longer in phase with the radiation field. This 

allows net energy exchange. In particular, for fixed radiation field amplitude, the electron excursion 

in the field, zωδ , decreases with increasing frequency, 2~zωδ ω− . In a large frequency field, the small 

electron excursion makes scattering events unlikely, limiting both absorption and emission. In a low 

frequency field, on the other hand, the large electron excursion can lead to several collisions before 

the electron can gain significant energy or coherently emit radiation. As displayed in Fig. (1), the 

optimum occurs in between. Note that these dynamics are captured implicitly in Eq. (1) and need not 

be calculated explicitly as with the electron dynamics in the field of the laser pulse.  

4. Implementation 

 In this section, we provide working formulas suitable for computation of radiation quantities 

in a 1D simulation. While the theory above can be implemented in a 3D simulation, the 1D geometry 

greatly simplifies the often difficult and expensive task of solving a multi-dimensional radiation 

transport equation, and provides insightful results in a relatively short amount of time. The radiation 

quantities of interest are based on integrals over the emission coefficient jω , which was derived only 

in the limiting cases of weak and strong collisionality. To provide a smooth transition between these 

limits, we adopt the formula 
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2
/

2 2 2 2( )
2 ( )

B ek TB e e
e

e e

k T nj T e
m c T

ω
ω

α ων
π ω ν

−≅
+

hh .                       (15) 

Equation (15) can be readily evaluated given ne  and Te  as a function of space and time. 

 The monochromatic radiation intensity ( )I tω  is calculated by solving Eq. (1) in the special 

case of a semi-infinite slab in the direction of laser pulse propagation. In general, the solution of Eq. 

(1) requires integrating over all paths originating within the dielectric and ending at a particular 

viewpoint—in our case any point on the dielectric surface (Fig. 2a). However, Apruzese et al. have 

demonstrated that accurate results can be obtained by considering a single representative path at an 

angle θ = π / 3 with respect to the axis (Fig. 2b) [24,25]. If jω  and aω  are known along the path, the 

solution of Eq. (1) is then straightforward: 
0(0) ( )

0 0
( ) (0) ( )

s sI s I e j s e dsω ωτ τ
ω ω ω

− −= + ∫ ,                              (16) 

where 0( )I sω  is the radiation intensity emerging from the dielectric at the viewpoint s0 , (0)Iω  

accounts for an external source of radiation intensity incident on the dielectric, ds = dx / cosθ  is the 

optical path length, and τω (s) = ∫ s
s0 aω (s ')ds ' is the optical depth for the path connecting  s and s0 . The 

first term on the right hand side of Eq. (16) represents attenuation of the external radiation source. For 

the situation of interest, no such radiation exists and this term is zero. The second term describes the 

mulative emission and absorption of bremsstrahlung originating within the dielectric. Equation (16) 

can be integrated for any time within the simulation. For clarity in the remainder, the monochromatic 

radiation intensity leaving the dielectric, 0( )I sω , will be denoted ( )I tω .  

The integral of ( )I tω  over time and solid angle yields the spectral fluence (energy emitted per 

unit area, unit frequency) 

Fω = 2π Iω (t)dt
0

tsims

∫ ,                                                             (17) 

while the integral over frequency and solid angle yields the radiation intensity (power emitted per unit 

area) 

I(t) = 2π Iω (t)dω
0

ω

∫ .                                                           (18) 

Here the integration over solid angle has been performed over the half plane to denote radiation 

escaping the dielectric surface. Because ( )I tω , Fω , and I(t) result from spatially integrating ( , )j x tω , 

information about the spatial distribution of emitted radiation is lost. We therefore introduce another 
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parameter, the radiation energy density (power emitted per unit volume), 

E(x) = 2π jω (x,t)dω dt
0

∞

∫0

tsims

∫ ,                                          (19) 

in order to illustrate the spatial structure of the radiation. For a rough measure of the absorption 

properties of CBEs, we also introduce the collisional optical depth: 

τ C (t) = aω (x,t)dx
0

L

∫  ,                                                         (20) 

where aω (x,t)  is the absorption coefficient in the collisional regime, Eq. (12). Use of the collisional 

optical depth is motivated by the preponderance of absorption in the optically thick, collisional 

regime. This has the added advantage that Eq. (20) is frequency independent, making the optical 

depth a function of time only. The frequency dependence can, however, be roughly accounted for by 

setting τω (t) ≅ τ C (t) / [1+ (ω / ν )2], providing a reasonable approximation across all collisionality 

regimes. 

Finally, perhaps the most useful, and simplest, quantity for characterizing the radiation 

emitted from the dielectric is the total radiation energy per unit area: Fbrems = ∫0
tsims I(t)dt . With Fbrems

one can calculate the conversion efficiency of laser pulse energy into bremsstrahlung 

ηbrems = Fbrems / FL ,                                                             (21) 

where FL = ILTFWHM  is the pulse fluence. Equations (15-21) are used in the numerical simulations 

described next. 

5. Simulation results 

 We now present simulation results of the bremsstrahlung emission from SiO2. While the range 

of pulse intensities and durations of interest can be rather large (several orders of magnitude each), 

three representative cases are sufficient to illustrate the general behavior. The cases are shown in Fig. 

3 in IL − TFWHM  space. The solid line marks the damage threshold of the dielectric, defined here as the 

point at which the CBE electron density reaches the critical electron density, i.e. e crn n≅  (

27 31.7 10crn m−= ×  for λ0 = 800 nm). As one may have expected, the threshold drops with either 

increasing pulse intensity or duration. Below the damage threshold, the laser pulse photo-excites only 

a small population of electrons to the conduction band. These electrons, in turn, absorb a small 

amount of laser energy. Above the damage threshold, the additional photo-excitation and laser pulse 

heating is sufficient to spark an avalanche of collisional excitation, which greatly increases the energy 
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absorbed from the pulse. The distinctness of these two interaction regimes motivates our case 

selection. Specifically, we chose pulse intensities below (case 1) and above (case 2) the damage 

threshold for a 60 fs FWHM short pulse. A third case (case 3) was also simulated to compare the 

bremsstrahlung resulting from a short (60 fs) and long (1 ps) pulse at the same intensity. 

 The numerical model of the interaction is the same as in Ref. [22] and similar to that in Ref. 

[23]. Here we briefly recount the salient features. The model captures the self-consistent propagation 

of a laser pulse through SiO2 and its interaction with CBEs. The model is 1D+t, resolving dynamics 

along the direction of laser propagation. Three processes for the creation and destruction of CBEs are 

included: optical field excitation (multiphoton or tunneling), impact excitation, and recombination. 

The laser pulse can energize the CBEs through inverse bremsstrahlung heating, predominantly a 

result of the scattering of electrons by acoustic phonons. At the same time, this heating depletes the 

energy in the laser pulse (similarly with optical field excitation). The CBEs can cool through 

collisional excitation, recombination, and the excitation of longitudinal optical phonons. Generally, 

the CBE cooling through lattice collisions was found to be small; the lattice temperature, as a result, 

is kept at room temperature. Phase transitions are not accounted for.  

 The y-polarized laser pulse starts in vacuum and propagates along the x-axis towards a semi-

infinite slab of SiO2 occupying the space x ≥ 0. The newly incorporated formulas to analyze the 

bremsstrahlung (listed in Section 4) are calculated over the first 500 μm. We have verified that this 

accounts for most of the radiation.  

 Figure 4 displays the laser pulse and CBE quantities for case 1 (60 fs, below the damage 

threshold) at three different times, 0.4, 1.6, and 3.2 ps. The enveloped pulse intensity is shown on the 

top row. Since the intensity, IL , is below the damage threshold, the pulse traverses the dielectric 

almost unperturbed (see also Fig. 6 in Ref. [22]). The slight decrease in intensity results from the 

creation of CBEs through optical field excitation. These electrons have a temperature and density 

shown in the second and third rows, respectively. The electron temperature peaks at ~4 eV, about half 

the excitation threshold, 9 eV, and extends over nearly the same region as the laser pulse. The 

maximum density is rather low, ne ≅ ncr / 100 , and coincides with the location of the pulse. Behind 

the pulse, the absence of field excitation and heating causes the density to quickly decay. 

Recombination occurs on a time scale of 150 fs, with a corresponding length of 45 μm, such that the 

CBE excitation behind the pulse is limited to a few hundred microns. 

 Figure 5a shows the resulting radiation intensity, and for comparison the laser pulse intensity, 

as a function of time. Because the CBEs accumulate over the entire duration of the pulse, the peak of 
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the radiation intensity occurs slightly behind the peak pulse intensity (about 100 fs). The radiation 

intensity decays over approximately the recombination time as CBEs created at the surface 

recombine. The radiation persists, however, at a low level for an interval much longer than the pulse 

duration, several picoseconds compared to 60 fs. The prolonged low level emission results from 

CBEs continually excited as the laser pulse traverses the dielectric. The low level emission eventually 

decays as photo-excitation depletes the laser pulse energy. In particular, a small reduction in pulse 

intensity causes a large drop in the excitation rate (approximately IL
6 ), and since jω ~ ne , a drop in 

radiation intensity follows. 

The spatial distribution of the radiation energy density created as the laser pulse traverses the 

dielectric can be observed in Fig. 5b. Perhaps the most important consequence of the processes 

described above is volumetric emission from the dielectric, i.e. a significant portion of the radiation 

originates from within the dielectric, not the surface. The energy density decreases exponentially 

away from the surface, albeit slowly, over ~100 μm. About half of the radiation is emitted from the 

region x = 0  to   x = 50 μm, and half from x > 50 μm. 

 The CBEs can absorb some of the radiation they emit. The collisional optical depth (Eq. (20)) 

is shown in Fig. 5c. The moderate optical depth, ~4, early in the emission demonstrates that 

absorption does take place, but is not significant. We note that Eq. (20) accounts for absorption by the 

CBEs only, and that the dielectric itself may also absorb radiation; this effect is not included in our 

model. 

 The time integrated radiation spectrum emerging from the dielectric (the spectral fluence Fω , 

Eq. (17)) is plotted in Fig. 5d. The spectrum resembles that in Fig. 1. Even though Fig. 5d was 

generated with parameters below the damage threshold and Fig. 1 with parameters above, the two 

exhibit the same frequency scaling. The spectrum peaks at a frequency about twice the laser 

frequency ( λpeak = 450 nm), the latter shown with a dashed vertical line. In the ultraviolet, the 

intensity falls sharply on account of the exp( / )B ek Tω−h  factor: due to the low temperature, few 

electrons have sufficient energy to emit a UV photon.  

To further illustrate the extent of absorption, the spectral fluence calculated without radiation 

transport is also plotted (dashed curve). In the strongly collisional regime (ω << ν ), absorption by the 

CBEs attenuates the spectral fluence by a factor corresponding roughly to the optical depth in Fig. 5c. 

This is in qualitative agreement with Eq. (8), which is valid only for a uniform CBE density. In the 

opposite regime of weak collisionality (ω >> ν ), the attenuation is negligible. Here the CBEs appear 
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optically thin to the high frequency radiation, 2~ 1ωτ ω− << , and the spectrum mirrors Eq. (7). 

When the fluence of the laser pulse exceeds the damage threshold, it significantly modifies the 

interaction of the laser pulse and dielectric. As shown in Fig. 6, which displays the results for case 2 

(60 fs, above threshold), enhanced energy absorption by the CBEs exhausts the pulse energy at a 

much faster rate. Halfway through the dielectric, the intensity of the pulse has dropped by an order of 

magnitude, from 2×1018 to 2.5×1017 W/m2 (Fig. 6b). The electron temperature, however, increases 

only marginally, from about 4 to 5 eV (c.f. Figs. 4d-f & 6d-f). The extra energy deposited by the laser 

pulse goes into increasing the electron density. As a result, a thin sheath of CBEs with density 

exceeding the critical density forms on the dielectric surface (Fig. 6g), and gradually decays through 

recombination (Fig. 6h). In addition, the transmitted pulse, now with a low intensity, excites a small 

number of CBEs inside the dielectric, akin to case 1. 

Analogous to Fig. 5, Fig. 7 displays the bremsstrahlung quantities for case 2. Several 

differences in the below and above threshold radiation quantities are worth noting. First, the radiation 

intensity plotted in Fig. 7a has similar time dependence to that in Fig. 5a, but its magnitude is 

substantially larger, about three orders of magnitude. The radiation energy density (Fig. 7b), on the 

other hand, has an entirely different structure. The emission originates almost entirely from a thin 

layer (<<1 μm) on the dielectric surface. That is, above the damage threshold the dielectric is a 

surface emitter, while below it is a volumetric emitter. Other than the ~103 increase in magnitude, the 

spectrum (Fig. 7d) resembles that of case 1. Again the CBEs appear optically thick and thin in the 

strongly and weakly collisional regimes respectively. 

 Figures 8 and 9 show the simulation results for case 3 (1 ps, above threshold). Early in the 

pulse, the density of CBEs at the dielectric surface reaches the critical density, e crn n> . As a result, 

the surface reflects most of the energy in the laser pulse. Otherwise the features of the CBEs are 

similar to case 2: a thin CBE surface layer and a rapidly decaying density behind the pulse. Unlike 

runs 1 and 2 however, significant bremsstrahlung emission occurs over a picosecond, an interval 

comparable to the pulse duration (Fig. 9a). In general, the greater of either the recombination time or 

pulse duration limits the interval over which the CBEs emit significant bremsstrahlung.  

The radiation energy density has the same spatial structure as case 2 (c.f. Figs. 7b & 9b). For 

both cases, IL >> Ithr , and the bremsstrahlung originates from the dielectric surface. A comparison of 

Figs. 7d & 9d demonstrates that the pulse duration has little impact on the radiation spectrum. This 

can be explained by the nearly constant peak electron temperature in both cases (3-5 eV), which 

determines the spectral peak of the radiation. 
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 The total conversion efficiency of laser pulse energy into bremsstrahlung as a function of peak 

intensity is plotted in Fig. 10 for both a short (60 fs) and long (1 ps) pulse. The conversion efficiency 

increases exponentially with IL , saturates, then increases sharply near the damage threshold, until it 

saturates again. The exponential rise for IL < Ithr  results from the nonlinear increase in electron 

density with laser intensity: Fbrems ~ ne ~ IL
6 . The first saturation occurs as the laser intensity 

approaches Ithr , and results from the enhanced reflection of the laser pulse as the surface CBE 

density increases. For IL > Ithr , avalanche impact excitation causes an enormous growth of the CBE 

density at the surface. Finally, when all the electrons are excited from the valence band, the electron 

density in the conduction band saturates and the conversion efficiency levels off. Both the short and 

long pulses exhibit similar behavior. 

6. Conclusions 

 We have developed a theory of bremsstrahlung emission appropriate for the interaction of 

ultrashort laser pulses with dielectrics. The theory is valid for arbitrary ratio of collision to radiation 

frequency, ν / ω , and can, in principle, be generalized to any type of electron collision. Salient 

features of the radiation spectrum were established, including frequency and temperature dependence. 

The theory was integrated into a simulation of a laser pulse interacting with a dielectric. The 

simulation provided examples of the expected emission spectra, power density, energy, and 

conversion efficiency. The most important findings of this paper are: 

• The emission may originate either from the "surface" or the bulk of the dielectric depending 

on the laser intensity with respect to damage threshold. 

• The bremsstrahlung spectrum increases as ω 2 , peaks near the visible and drops sharply for 

frequencies . The general shape of the spectrum is not sensitive to the laser pulse 

parameters (intensity and pulse duration). 

• The conversion efficiency of laser pulse energy into bremsstrahlung is a complicated function 

of the pulse intensity. It increases sharply with IL , and saturates twice: once near Ithr  due to 

reflection from CBEs generated at the dielectric surface, and again when all the surface 

electrons are transferred from valence to the conduction band. The maximum conversion 

efficiency calculated in this work is about ~10-5. 

• The optically thin and thick regimes correspond directly to the weakly and strongly collisional 

regimes respectively. The transition occurs near the optical frequency range.  
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Figure 1. Spectral fluence of the bremsstrahlung radiation created during the interaction of a laser 

pulse with SiO2 near breakdown. The pulse intensity, duration, and wavelength are 
IL = 6 ×1017 W ⋅cm−2 , TFWHM = 60 fs , and λL = 800 nm , respectively. The dashed vertical 
line corresponds to the laser frequency. 

 
 
 
 
 
 
 
 
 

 

 

Figure 2. Schematics of radiation transport calculations. (a) conventional radiation transport treatment 
with a set of paths at various angles; (b) representative path used in the simulations. 
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Figure 3. Threshold intensity for versus laser pulse duration (solid line). Symbols denote the locations 

of the runs. Case 1: IL = 2 ×1017 W ⋅cm−2 , TFWHM = 60 fs , Case 2: IL = 2 ×1018 W ⋅cm−2 , 

TFWHM = 60 fs , Case 3: IL = 2 ×1017 W ⋅cm−2 , TFWHM = 1 ps . 
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Figure 4. Calculated pulse intensity (top row), electron temperature (middle row) and electron density 

(bottom row) for case 1. 
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Figure 5 Radiation intensity (solid line) and laser pulse (dashed line) (a), radiation energy density (b), 

optical depth (c), and spectral fluence (d) for case 1. The dielectric length is 500 μm. 
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Figure 6. Calculated pulse intensity (top row), electron temperature (middle row) and electron density 

(bottom row) for case 2. 
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Figure 7 Radiation intensity (solid line) and laser pulse (dashed line) (a), radiation energy density (b), 

optical depth (c), and spectral fluence (d) for case 2. The dielectric length is 500 μm. 
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Figure 8. Calculated pulse intensity (top row), electron temperature (middle row) and electron density 

(bottom row) for case 3.  
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Figure 9. Radiation intensity (solid line) and laser pulse (dashed line) (a), radiation energy density 

(b), optical depth (c), and spectral fluence (d) for case 3. The dielectric length is 500 μm. 
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Figure 10. Conversion efficiency of laser pulse energy into bremsstrahlung radiation versus IL  for 
durations TFWHM = 60 fs  and TFWHM = 1 ps . The arrows denote the breakdown threshold. 
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Table 1. A summary of bremsstrahlung formulas in the limiting cases of weak and strong 
collisionality. 

parameter units  ν <<ω ν>>ω 

( , )ωη ε ω  J/(sr*rad) 2 2 ( )
3 em c
α ε ν ε
π

h  
2

2 23 ( )em c
α ε ω
π ν ε

h
 

( )jω ω  J/(m3*sr*rad) 
/

2 2 ( )
2

B ek TB e e
e

e

k T n T e
m c

ωα ν
π

−hh
2

/
2 22 ( )

B ek TB e e

e e

k T n e
m c T

ωα ω
π ν

−hh
 

( )aω ω  1/m 
2

2

( )p eT
c

ω ν
ω

 
2

( )
p

ec T
ω

ν
 

j W/(m3*sr) ( )2
2 2 ( )

2 B e e e
e

k T T n
m c
α ν

π
 ( )4

2 2 2 ( )
B e

e
e e

k T
n

m c T
α

π νh
 

  



23 
 

References: 
                                                 
1 P. Balling and J Schou, "Femtosecond-laser ablation dynamics of dielectrics: basics and 

applications for thin films", Rep. Prog. Phys. 76, 036502 (2013). 
2 E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, "Ablation of solids by 

femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics", 
Phys. Plasmas 9, 949 (2002). 

3 B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. 
Kieffer, "Damage and ablation thresholds of fused-silica in femtosecond regime", Phys. Rev. B 
84, 094104 (2011). 

4 L. Jiang and H. L. Tsai, "Plasma modeling for ultrashort pulse laser ablation of dielectrics", J. Appl. 
Phys. 100, 023116 (2006). 

5 M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-
pulse laser machining of dielectric materials”, J. Appl. Phys. 85, 6803 (1999). 

6 C. Mézel, L. Hallo, A. Bourgeade, D. Hébert, V. T. Tikhonchuk, B. Chimier, B. Nkonga, G. 
Schurtz, and G. Travaillé, "Formation of nanocavities in dielectrics: A self-consistent modeling", 
Phys. Plasmas 15, 093504 (2008). 

7 E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, and B. Luther-Davies, "Laser-matter 
interaction in the bulk of a transparent solid: Confined microexplosion and void formation" Phys. 
Rev. B 73, 214101 (2006). 

8 P. B. Corkum, P.P. Ho, R.R. Alfano, J.T. Manassah, “Generation of infrared supercontinuum 
covering 3-14 μm in dielectrics and semiconductors”, Opt. Lett. 10, 624 (1985). 

9 H. Liang, P. Krogen, R. Grynko, O. Novak, C.-L. Chang, G. J. Stein, D. Weerawarne, B. Shim, F. 
X. Kartner, and K.-H. Hong, “Three octave-spanning supercontinuum generation and sub-two-
cycle self-compression of mid-infrared filaments in dielectrics”, Opt. Lett. 40 1069 (2015). 

10 D. von der Linde, T. Engers, G. Jenke, P. Agostini, G. Grillon, E. Nibbering, A. Mysyrowicz, and 
A. Antonetti, “Generation of high-order harmonics from solid surfaces by intense femtosecond 
laser pulses”, Phys. Rev. A 52, R25 (1995). 

11 S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation 
of high-order harmonic generation in a bulk crystal”, Nat. Phys. 7, 138 (2011). 

12 G. Vampa, C. R. McDonald, G. Orlando, D. D. Klug, P. B. Corkum, and T. Brabec, “Theoretical 
Analysis of High-Harmonic Generation in Solids”, Phys. Rev. Lett. 113, 073901 (2014). 

13 J. Lindl, "Development of the indirect-drive approach to inertial confinement fusion and the target 
physics basis for ignition and gain", Phys. Plasmas 2, 3933 (1995). 

14 T. Döppner et al., "Direct Measurement of Energetic Electrons Coupling to an Imploding Low-
Adiabat Inertial Confinement Fusion Capsule", Phys. Rev. Lett. 108, 135006 (2012). 

15 G. Ghisellini, "Radiative Processes in High Energy Astrophysics", Lecture Notes in Physics, vol. 
873, Springer (2013). 

16 H. A. Thronson, Jr and D. A. Harper, "Compact H II regions in the far-infrared", Astrophys. 
Journal, 230 133-148 (1979). 

17 G. Bekefi and S. C. Brown, "Microwave Measurements of the Radiation Temperature of 
Plasmas", J. Appl. Phys. 32, 25 (1961). 

18 G. Bekefi, "Radiation processes in plasmas", John Willey & Sons, Inc. (1966). 
19 N. M. Bulgakova, V. P. Zhukov, I. Mirza, Y.P. Meshcheryakov, J. Tomastik, V. Michalek, O. 

Haderka, L. Fekete, A. M. Rubenchik, M. P. Fedoruk, T. Mocek, “Ultrashort-pulse laser 
processing of transparent materials: Insight from numerical and semi-analytical models,” Proc. 
SPIE 9735, 97350N (2016). 

20 B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, 



24 
 

                                                                                                                                                                     
"Nanosecond-to-femtosecond laser-induced breakdown in dielectrics", Phys. Rev. B 53, 1749 
(1996). 

21 A.-C, Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-Pulse Laser Damage in 
Transparent Materials as a Function of Pulse Duration", Phys. Rev. Lett. 82, 3883 (1999). 

22 G. M. Petrov and J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics”, J. Phys. 
B 41, 025601 (2008). 

23 J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, "Transmission of intense 
femtosecond laser pulses into dielectrics", Phys. Rev. E 72, 036412 (2005). 

24 J. P. Apruzese, "Direct solution of the equation of transfer using frequency-and angle-averaged 
photon-escape probabilities for spherical and cylindrical geometries", JQSRT 25, 419-425 (1981). 

25 J. P. Apruzese, "An analytic Voigt profile escape probability approximation", JQSRT 34, 447-452 
(1985). 


