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Inhalant flows draw fluid into an orifice from a reservoir and are ubiquitous in engineering and
biology. Surprisingly, there is a lack of quantitative information on viscous inhalant flows. We
consider here laminar flows (Reynolds number Re ≤ 100) developing after impulsive inhalation
begins. We implement finite element simulations of flows with varying Re and extraction height h
(orifice height above a bottom bed). Numerical results are experimentally validated using particle
image velocimetry (PIV) measurements in a physical model for a representative flow case in the
middle of the Re-h parameter space. We use two metrics to characterize the flow in space and time:
regions of influence (RoIs) which describe the spatial extent of the flow field, and inhalation volumes
which describe the initial distribution of inhaled fluid. The transient response for all Re features
an inviscid, sink-like, component at early times followed by a viscous diffusive component. At lower
Re, diffusion entrains an increasing volume of fluid over time, enlarging the RoI indefinitely. In
some geometries, these flows spatially bifurcate, with some fluid being inhaled through the orifice
and some bypassing into recirculation. At higher Re, inward advection dominates outward viscous
diffusion, and the flow remains trapped in a sink-like state. Both RoIs and inhalation volumes are
strongly dependent on Re and extraction height, suggesting that organisms or engineers could tune
these parameters to achieve specific inhalation criteria.

I. INTRODUCTION

In this study, we investigate the hydrodynamics of a
class of flows that we refer to as “inhalant flows.” In the
most general sense, inhalant flows feature fluid drawn
from an effectively infinite reservoir through an inlet ori-
fice and into an inhalant tube (Fig. 1). These flows are
ubiquitous in engineered and biological systems, and yet
while constituent aspects of this flow have been stud-
ied extensively in the literature in a variety of disparate
contexts, there remains a surprising lack of quantitative
information about the fundamental hydrodynamics, par-
ticularly for viscous flow approaching the inlet orifice.
Here, we consider laminar, inhalant flows that develop
following the impulsive start of constant volumetric in-
halation.

Inhalant flows are common to many fields and they are
referred to and intuitively understood through discipline-
specific lenses. Engineers think of siphons as a means of
conveying liquids into tubes, and siphons are prototypical
flows in the study of engineering hydraulics [1]. Biolog-
ical oceanographers think of siphon and suction flows in
the context of organismal feeding, predation, and respi-
ration [2–4]. In the biomedical world, researchers refer
to inspiratory flows in the context of respiration [5, 6].
Scientists across disciplines use the term “pipette” [7] in
reference to drawing a sample volume of fluid into a tube
from a larger reservoir [8, 9].

Conceptually, inhalant flows can be divided into three
regions: the “exterior flow” upstream of the inlet orifice,
the developing “entrance flow” just downstream of the
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FIG. 1. Conceptual model of a generic inhalant flow. An
inhalant tube of diameter D protrudes a distance h (the ex-
traction height) above a flat plate into an infinite reservoir.
Viscous fluid is drawn from the reservoir into the inhalant
tube under the action of suction. A laminar velocity profile
develops downstream of the inlet orifice.

inlet orifice, and the “fully-developed flow” that follows.
We refer to the latter two regions collectively as “interior
flow”. The coupled interior and exterior flows upstream
and downstream of the inlet orifice affect and inform the
hydrodynamics of the holistic system. For example, ter-
restrial vertebrate respiration features inhalation of air
through an inlet orifice (e.g., a nostril). Although some
researchers have focused on the interior flow in the in-
ternal airways [5], and others have focused on aspects of
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the exterior flow [10], fundamental hydrodynamics of the
coupled inhalant flow system have not been character-
ized, though they are certainly acknowledged [11]. While
both interior flow regions have been investigated exten-
sively in the literature, viscous exterior flow approaching
an inlet orifice is relatively unstudied.

Exterior flows approaching an inlet orifice have been
investigated in a variety of contexts; however, most stud-
ies feature simplifications and/or complexities which ren-
der a mechanistic understanding of viscous inhalant flow
hydrodynamics impossible. For example, aerosol and wa-
ter samplers both feature fluid drawn from an effectively
infinite reservoir, and considerable effort has gone into
understanding optimal sampling procedures to eliminate
biases associated with various inhalation regimes. These
studies are predominantly conducted in the context of
sampling particle-laden flows [12, 13], however, and have
not characterized the fundamental hydrodynamics, par-
ticularly for viscous flows in the exterior. Synthetic
jets (net-zero mass flux) that produce periodic suction
(inhalation) and ejection (exhalation) of fluid through
an orifice are used in a variety of applications, includ-
ing aerodynamic flow control [14] and turbulence gen-
eration [15], in which the interior flow is of little con-
sequence. Biologically, various aspects of the exterior
flow have been investigated in the context of organis-
mal predation, feeding, and respiration [4]. Ambush-
feeding fishes use impulsive suction to capture prey in a
hydrodynamically-inconspicuous manner [16, 17]; while
these studies do shed insight into some aspects of the
exterior flow, they are often highly inertial and feature
additional complexities such as dynamic inlet orifice ge-
ometries (mouth gape). Other aquatic organisms such as
benthic bivalves (clams, oysters) draw prey- and oxygen-
rich water through an inhalant siphon and expel the fil-
trate as an excurrent jet [3, 18, 19]; although these phe-
nomena are well documented morphologically and phys-
iologically, characteristics of exterior flows generated by
inhalant siphons are not well known.

Analytical treatment of exterior flow almost univer-
sally utilizes potential flow theory to produce an inviscid
sink flow approximation, regardless of Reynolds number.
For an inviscid point sink of strength Q [L3/T ], the cor-
responding radial flow field ur(a) at radial distance a
(spherical polar coordinate system) from the sink is

ur(a) = − Q

απa2
, (1)

where α = constant. For the limiting case of large ex-
traction height (h/D � 1), influence of the bottom bed is
negligible and the exterior flow is typically approximated
as a sink flow in an infinite domain with α = 4. For the
other limiting case when the inlet orifice is flush with the
bottom bed (h/D = 0), the exterior flow approximation
is a sink flow in a semi-infinite domain with α = 2. These
potential flow characterizations are inviscid and steady,
lacking dependence on viscosity or time, and thus they

are inherently incapable of describing time-evolving, vis-
cous, inhalant flows [4]; these flows are fundamentally
diffusive in nature, featuring fluid momentum diffusing
radially outward from the inlet orifice. Although po-
tential flows can satisfy impermeability boundary condi-
tions, they are incapable of satisfying the viscous no-slip
condition and therefore cannot resolve realistic boundary
conditions.

Analytical solutions do exist for the idealized problem
of axisymmetric flow generated by a point sink in the cen-
ter of an infinite plate [20, 21], or more generally at the
vertex of a cone [22]. These solutions are of the match-
ing type, however, featuring an inner laminar boundary
layer flow matched to a potential outer flow; they are
only valid in close proximity to the solid surface in the
high-Re limit. As in all sink flows, these solutions are
singular at the origin and break down in the neighbor-
hood of the inlet orifice. They are ultimately incapable
of describing inhalant flow hydrodynamics that feature
viscous fluid flow in an effectively infinite domain forced
by a directional and spatially distributed flow boundary
condition at the inlet orifice.

Downstream of the inlet orifice, many facets of the
problem of laminar interior flow have been studied ex-
tensively numerically, experimentally, and analytically.
In the hydrodynamic entrance-length problem [23], the
entrance (or development) length for inhalant flows is
defined as the region of the interior flow over which the
boundary layer grows from zero thickness at the inlet
orifice to a thickness equal to the internal radius of the
inhalant tube. In this region, flow develops from an ini-
tial velocity profile prescribed as a boundary condition at
the inlet orifice to a fully developed profile invariant in
the streamwise direction [24, 25]. Typically the boundary
condition prescribed at the inlet orifice is a uniform pro-
file across the inlet, although some investigators have pre-
scribed various other profiles (e.g., parabolic); the choice
of boundary condition at the inlet determines the subse-
quent entrance length and associated pressure drop [26].
Even though the entrance-length problem has been ex-
tensively studied, there remains notable discrepancies be-
tween theory and experiment (reviewed by Durst et al.
[23]).

Downstream of the developing flow in the entrance re-
gion, the Hagen-Poiseuille law governing steady laminar
flow in an axisymmetric tube has been well known for
close to 175 yr (see history of Poiseuille’s Law by Sutera
and Skalak [27]). Flow is driven through an axisymmet-
ric tube of constant cross-section under the influence of
an axial pressure gradient ∆P . The velocity profile w(r)
in a tube of inner radius R is parabolic in the radial (r)
direction and invariant in the axial (z or streamwise) di-
rection (cylindrical polar coordinate system) as

w(r) = −∆P

4µ
(R2 − r2) , (2)

where µ is the fluid dynamic viscosity. The volumetric
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flowrate Q is

Q = −∆Pπr4

8µ
(3)

with average cross-sectional velocity wo = Q/A over
cross-sectional tube area A = πR2. Finally, the flow
Reynolds number Re based on the inhalant tube inner
diameter D for a fluid with kinematic viscosity ν is

Re =
woD

ν
. (4)

As detailed above, while various aspects of the exte-
rior and interior flows have been investigated separately
in a variety of contexts, the detailed hydrodynamics of
the holistic problem, particularly for time-developing,
viscous flow approaching the inlet orifice, are not well
known.

Historical treatment of the exterior inhalant flow as
an inviscid sink flow, regardless of Re, is not unreason-
able considering that analytical solutions to the Navier-
Stokes equations are generally possible only in two lim-
iting cases: in the low-Re (� 1) limit where the nonlin-
ear advective terms vanish and in the high-Re limit (�
1) where viscous effects are negligible everywhere except
in thin layers near solid surfaces (the viscous boundary
layer). For intermediate Re where both viscosity and in-
ertia are dynamically important throughout the domain
as in the present study, finding analytical solutions is
impractical, and we are forced to rely on experimental
observation or numerical solutions applicable to specific
geometries [21, 28].

In this study, we characterize the hydrodynamics of
time-evolving, viscous, inhalant flows approaching an in-
let orifice from an effectively infinite reservoir. We use
numerical simulations to solve the viscous Navier-Stokes
equations with realistic boundary conditions. We use the
impulsive application of a constant volumetric inhalation
rate Q to drive the time-evolving interior and exterior
flows. We explore effects of Reynolds number and ex-
traction height on the development of the exterior flow
field and the spatial extent of fluid inhalation volumes.

II. METHODOLOGY

A. Flow description

We model laminar inhalant flows with fluid of density
ρ and kinematic viscosity ν being drawn from an infinite
reservoir into a round inhalant tube with inner diame-
ter D and an inlet orifice at extraction height h above
a solid bottom bed (Fig. 1). The flow develops in time
and space following an impulsive start of constant vol-
umetric flowrate Q within the inhalant tube. Viscous
fluid is drawn from the reservoir into the inhalant tube

under the action of suction, and a laminar velocity pro-
file develops downstream of the inlet orifice. We consider
three Reynolds numbers (Re = 1, 10, and 100) and three
extraction heights (h = 0, 2D, and 40D). The inhalant
tube wall thickness is 0.1D. The model is axisymmet-
ric in a cylindrical polar coordinate system with origin
at the center of the inlet orifice; z is axial distance from
the inlet orifice and r is radial distance from the inhalant
tube axis. The parameter space was chosen to inves-
tigate effects of viscosity and solid-bed interactions on
the flow. The Re values range from a more viscous case
(Re = 1) to one that approaches the inviscid limit while
remaining well within the laminar regime (Re = 100).
The extraction heights range from the limiting case of a
bed-flush inlet orifice (h = 0) to the large-height limiting
case (h = 40D) beyond which the effect of the solid bot-
tom bed vanishes. Model results were insensitive to h for
h ≥ 40D.

B. Governing equations and scaling

The nondimensional flow field u∗ = [u∗, w∗] with radial
(r∗) and axial (z∗) velocity components u∗ and w∗ is
governed by the nondimensional, incompressible, Navier-
Stokes and continuity equations

∂u∗

∂t∗
+ u∗ · ∇∗u∗ = −∇∗p∗ + Re−1∇∗2u∗ + g∗ (5)

and

∇∗ · u∗ = 0 , (6)

where length, time, velocity, and pressure have been
nondimensionalized by D, D/wo, wo, and ρw2

o, respec-
tively, and where g∗ = Dg/w2

o. Note that the flow field
governed by Eqs. 5 and 6 is controlled by the single
nondimensional parameter Re (Eq. 4). Here and else-
where we denote vector quantities in bold face, scalar
quantities in plain face, and non-dimensional quantities
with an asterisk.

The initial conditions were zero velocity and pres-
sure everywhere. The flow was started impulsively by
a boundary condition of laminar outflow from the down-
stream end of the inhalant tube with constant volumet-
ric flowrate Q = woA at time t∗ ≥ 0. The inhalant
tube walls and the bottom bed were impermeable, no
slip boundaries. The top and lateral boundary condi-
tions were open boundaries through which fluid could
enter and leave the domain without normal stress. The
implementation of the equations governing the initial and
boundary conditions are described in detail in the numer-
ical methods subsection below.

When nondimensionalizing the Navier-Stokes equa-
tions, the time scale for unsteadiness is T = D/wo.
This time scale has several useful, context-specific in-
terpretations. For example, rewriting the time scale as
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T = D/wo = (D2/ν)/Re (where D2/ν is the diffusive
time scale) demonstrates that the transient time scale
decreases with increasing Re. Alternatively, the time
scale can be algebraically manipulated as T = D/wo =
(πD3)/(4Q), indicating that it is also the time required to
pump a characteristic volume (π/4)D3 (a cylinder with
length and diameter D) through the inhalant tube at
volumetric flowrate Q.

C. Numerical methods

Numerical simulations were performed via finite ele-
ment discretization of the Navier-Stokes and continuity
equations (Eqs. 5 and 6). Because the flow is driven en-
tirely by a boundary condition of constant volumetric
flowrate at the tube outlet, gravity plays no dynamical
role and acts only to superimpose a hydrostatic pres-
sure gradient. For this reason, we do not include gravity
in the the finite element model formulation. The COM-
SOL Multiphysics package was used to generate the mesh
and to solve the system of equations resulting from the
weak (integral) form discretization of the governing equa-
tions. The mesh contained triangular and quadrilateral
elements with local refinement around solid surfaces (in-
halant tube walls and impermeable bottom bed). A mesh
refinement study was performed to test for solution con-
vergence throughout the domain. We iterated to finer
meshes (increasing model degrees of freedom) until the
total relative error estimate summed over all elements
and degrees of freedom was of order 1e-11, and there was
no discernible change in the solution with further grid re-
finement. The final mesh implemented had typical max-
imum and minimum element sizes (spatial resolution) of
approximately 0.075D and 0.01D, respectively. In addi-
tion to the mesh refinement study, we also validated the
model experimentally as discussed in detail below.

Lagrangian (polynomial) shape functions (basis func-
tions) were implemented for weak form discretization of
the fluid velocity (second order) and pressure (first order)
fields; the second-order velocity shape functions are ap-
propriate for the low flow velocities in the exterior lam-
inar flow approaching the inlet orifice [29]. The order
of the numerical integration scheme was matched to the
order of the element (shape function) for each depen-
dent variable. The time discretization scheme was an
implicit backward differentiation formula (BDF) method
with maximum second order schemes, balancing numer-
ical stability and damping tendencies for our gradually
varying flows with smooth gradients. BDF methods use
variable-order, variable step-size backward differentiation
and are known for their stability [30, 31]. Time stepping
was thus adaptive and the variable step size taken by the
solver was informed by a prescribed absolute tolerance
for the nonlinear solver and an implicit formulation of
the mesh Courant-Friedrichs-Lewy (CFL) number. The
nonlinear systems of equations were solved using the di-
rect PARDISO solver [32, 33], a solver optimized for par-

allelized solution of sparse systems of equations.
Initial conditions were zero velocity and pressure ev-

erywhere, u∗ = 0 and p∗ = 0. The inhalant tube walls
and the bottom bed were impermeable, no slip condi-
tions, u∗ = 0. Flow was initiated by a boundary con-
dition of constant volumetric flowrate Q from the down-
stream outlet of the inhalant tube for time t∗ ≥ 0. This
was enforced by prescribing an outlet boundary condi-
tion of laminar outflow perpendicular to the flat bound-
ary of the tube cross-section with average outlet veloc-
ity wo = Q/A. Laminar outflow is then prescribed via a
coupled ODE which computes p∗exit such that the desired
outlet velocity is achieved under laminar flow conditions:
Lexit∇∗t · [−p∗I+µ(∇∗tu∗+(∇∗tu∗)T )] = −p∗exitn where I
is the identity matrix, ∇∗t is the tangential gradient, and
n is the unit vector normal to the outlet boundary. This
laminar outflow boundary condition is effectively a nor-
mal stress condition, together with a no tangential stress
condition, a typical formulation for an outlet boundary
condition [34]. The downstream outlet of the inhalant
tube is located a distance Lexit downstream of the inlet
orifice. To eliminate influence of outlet boundary condi-
tions on exterior and interior flows of interest, Lexit is set
as 10 times the empirical estimate of the low-Re, laminar,
entry-flow development length [23].

In order to obtain a numerically well-posed problem
and avoid convergence problems when specifying the de-
sired velocity condition at the outlet, the inlet boundary
conditions (top and lateral boundaries) were prescribed
as pressure conditions [34]. Thus, the top and lateral
domain boundaries were open boundaries through which
fluid could enter and leave the domain without normal
stress, prescribed as [−p∗I + µ(∇∗u∗ + (∇∗u∗)T )]n = 0.
Specifying zero normal force enforces that the pressure is
balanced by the viscous shear force on the inlet bound-
aries which is true when the normal gradient of the nor-
mal velocity at the boundary is small.

Fluid inhalation volumes were computed numerically
by seeding passive particles across the inlet orifice and
advecting them backwards in time (Improved Euler
Method) within flow fields solved for previously via nu-
merical simulations of the Navier-Stokes equations. Re-
finement studies on spatial and temporal resolution of
velocity data used to compute inhalant volumes ensured
convergence. The shape and total volume of fluid cap-
tured is a function of start time and inhalation pe-
riod. Inhalation volumes were computed with start time
t∗ = 100, well beyond the time scale of rapid transient
development (t∗ = 1), and proceeded for a total inhala-
tion period of ∆t∗ = 100.

D. Model validation

To validate the model, particle image velocimetry
(PIV) data were collected in an acrylic tank in the r− z
plane (Fig. 2). There was a round inhalant tube protrud-
ing above the bottom bed in the center of the tank, and
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the flow was drawn into the orifice, through the tube, and
to an elevated receiving reservoir by a digital gear pump
with volumetric flowrate Q. The tank was roughly a cube
with length, width, and depth equal to 170 diameters,
minimizing the influence of the sidewalls and free sur-
face. The working fluid (mineral oil) and inhalant tube
(borosilicate glass) were index of refraction-matched en-
abling simultaneous characterization of both the exterior
and interior flow fields.
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FIG. 2. Schematic of the apparatus used for experimental
PIV validation of the numerical model. A camera images
particles in the indicated field of view (FOV); illumination is
provided by a pulsed laser sheet. A digital gear pump located
far downstream of the orifice draws a constant volumetric
flowrate through the inhalant tube.

The tank was seeded with neutrally buoyant, low
Stokes number particles (20 µm, 1.03 g/cc microspheres)
with 8 - 10 particles in the resulting interrogation subwin-
dows [35]. A double-pulsed Nd:YAG laser (532 nm) beam
was spread into a thin sheet (∼500 µm) using a cylindri-
cal diverging lens. An sCMOS camera imaged particles
in the laser sheet at pulse separation times that opti-
mized particle displacements at one-quarter the width of
a subwindow [35]. The image set was postprocessed using
DaVis software (8.2.3, LaVision GmbH) to compute pla-
nar fluid velocity fields via fast-fourier transform (FFT)
based cross-correlation analyses of particle displacement
within subwindows between image pairs.

Due to the complexity of performing the experiments
relative to running numerical simulations, PIV data were
collected for a single flow case in the middle of the Re-h∗

parameter space (Re = 10 and h∗ = 2), and for a single

nondimensional time (t∗ = 10). These results were used
to validate the numerical model for a single represen-
tative case, permitting further numerical exploration of
the local Re-h∗ parameter space. Velocity data obtained
experimentally and numerically are compared directly in
Fig. 3. The profiles demonstrate close agreement in both
velocity components (u∗,w∗) throughout the domain, in-
cluding in regions of high deformation rates and velocity
gradients near the inlet orifice.
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FIG. 3. Comparison of velocity profiles obtained with par-
ticle image velocimetry (symbols) and numerical simulations
(lines) for Re = 10, h∗ = 2, t∗ = 10. a) axial profiles of ra-
dial (u∗, left panel) and axial (w∗, right panel) velocity com-
ponents at r∗ = 1.0 (blue, dark gray), 1.5 (red, gray), and
2.5 (green, light gray), and b) radial profiles of radial (u∗,
left panel) and axial (v∗, right panel) velocity components at
z∗ = 0.5 (blue, dark gray), 1.0 (red, gray), and 2.0 (green,
light gray). Note that the spatial scales are identical in a.)
and b.) while the velocity scales are considerably different.

III. RESULTS

Principal aims of this study are to characterize the ex-
terior flow field of inhalant flows, to understand transient
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development of these flows, and to quantify the initial
spatial distribution of subsequently inhaled fluid. First,
the long-time behavior beyond the time scale of rapid
transient development is presented in order to identify
basic features of the flow field. Next, the transient re-
sponse is investigated by tracking the time evolution of
a region of influence (RoI) of the flow. We define RoIs
at any instant in time as the volume of fluid bounded by
a particular velocity magnitude contour. Lastly, fluid
inhalation volumes are quantified as a function of in-
halation period. Results are presented for Re = 1, 10,
and 100, and at extraction heights h∗ = 0 (“bed-flush”),
h∗ = 2 (“near-bed”), and h∗ = 40 (“unbounded”).

A. Long-time behavior

To characterize basic features of the flow, we present
flow fields at times large compared to the time scale of
rapid transient development ((D2/ν)/Re); we consider
flows at t∗ = 100 as being representative of long-time
behavior. Although exterior flows continue to slowly
develop after t∗ = 100, particularly for the Re = 1
case, structure of the flows becomes essentially constant.
Model results at t∗ = 100 are shown for h∗ = 0, 2, and 40
in Figs. 4, 5, and 6, respectively. Within each figure, the
Reynolds number varies from 1 (left panel) to 10 (middle
panel) to 100 (right panel). Because the flow is axisym-
metric about the z-axis, flow fields are displayed in the
r−z half-plane. To best visualize the large dynamic range
in u∗, velocity magnitudes are displayed on a logarithmic
scale. Velocity magnitude attenuates rapidly with radial
distance from the inlet orifice and decays to |u∗| = 0.01
within a few inhalant tube diameters, corresponding to
1% wo. While the velocity vectors as presented are visi-
ble down to approximately |u∗| = 0.002 (0.2% wo), these
smallest velocities are likely too small to be relevant or
measurable in most practical applications. To indicate
the region of the flow where velocities are meaningful,
we define an effective RoI at any instant in time as the
volume of fluid bounded by a specific contour of |u∗|. We
present RoIs for |u∗| = 0.05 and |u∗| = 0.01 indicating
where velocities have decayed to 5% and 1% of wo (the
average velocity in the inhalant tube), respectively.

In the bed-flush geometry (h∗ = 0, Fig. 4), flow con-
sists of radial inflow towards the inlet orifice for all Re.
Inflow magnitude decays rapidly with distance from the
inlet orifice in a manner reminiscent of a sink flow. At
different Re, subtle flow differences are evidenced in the
size and shape of the RoIs. The no-slip condition along
the bottom bed gives rise to a thicker boundary layer at
lower Re, flattening the 1% RoI near the bed. At low Re,
this bottom boundary layer retards lateral inflow, caus-
ing preferential vertical inflow along the z-axis. At high
Re, thinning of the bottom boundary layer permits more
omnidirectional inflow. Directional flow bias at lower Re
alters the aspect ratio of the RoIs. For Re = 1, the RoIs
show elongation along the z-axis. This effect is somewhat

mitigated at Re = 10 (middle panel) and at Re = 100
(right panel) the RoIs are very nearly hemispherical. As
the most inviscid flow modeled, the Re = 100 case most
closely resembles a sink flow in which the velocity con-
tours would conform to hemispherical potential lines.

Increasing extraction height to h∗ = 2 (near-bed case,
Fig. 5) results in structural changes to the flow field,
particularly at low Re. At high Reynolds number (Re
= 100, right panel), there is once again radial inflow to
the orifice, that now includes fluid from below. At Re = 1
and 10 (left and middle panels), however, the flow bifur-
cates and some entrained fluid now bypasses the orifice
and continues downward along the exterior, inhalant tube
wall and radially outwards along the bottom bed. De-
marcation between inhaled and bypassed fluid is a stag-
nation streamline that terminates on the rim of the inlet
orifice, as shown in the figure (here and elsewhere we de-
note stagnation streamlines as dashed gray lines). Flow
velocities associated with fluid that bypasses the orifice
manifest as a lobe of the 1% RoI extending below the
orifice. Impact of viscous entrainment is largest at the
lowest Reynolds number (Re = 1, left panel), increasing
the amount of bypassed fluid with a corresponding in-
crease in size of the 1% RoI lobe. Enhanced effects of
viscous diffusion at low Re are also evident in the over-
all increase in spatial extent of the 1% RoI. Conversely,
in the most inviscid flow case (Re = 100, right panel),
inward advection of momentum dominates outward vis-
cous diffusion, and the flow reverts once again to a state
suggestive of an inviscid sink flow with radial inflow and
nearly spherical RoIs.

For the unbounded geometry (h∗ = 40, Fig. 6), the
influence of the bottom bed is effectively eliminated. As
in the h∗ = 2 geometry, the Re = 1 and 10 flows (left
and middle panels) bifurcate and some entrained fluid
bypasses the orifice and is recirculated outwards. As be-
fore, the stagnation streamline (dashed line) separates
inhaled and bypassed fluid. For Re = 1, viscous diffusion
causes the extent of the flow field to be greatly expanded.
In fact, as we show later, the transient development for
this viscous case continues indefinitely. These amplified
diffusive effects are evidenced by substantial enlargement
of the RoIs relative to the previous two geometries. In-
creased viscous entrainment of fluid also increases the size
of the 1% RoI lobe of bypassed fluid. In the absence of
the nearby bottom bed, the deflection of the lobe later-
ally away from the inhalant tube is reduced. The Re = 10
unbounded case (middle panel) is surprisingly similar to
the corresponding near-bed case. Finally, in the most
inviscid case (Re = 100, right panel), inward advection
dominates outward diffusion and the flow field is once
again trapped in a state reminiscent of an unbounded
sink flow with nearly spherical RoIs.
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FIG. 4. Long-time behavior of the bed-flush case (h∗ = 0) at t∗ = 100 for Re = 1 (left panel), 10 (middle panel), and 100 (right
panel). The z-axis is the line of axisymmetry, the thick black line at r∗ = 0.5 is a section of the inhalant tube sidewall, and
the crosshatch at z∗ = 0 is the solid bottom bed. Thin, black lines are the 1% and 5% RoIs, and gray lines are streamlines.
Velocity direction and magnitude are denoted by arrow orientation and coloration, respectively.

4

0

7

-2

r*

z*

0.001

0.01

0.1

u*||

0

Increasing Re

FIG. 5. Long-time behavior of the near-bed case (h∗ = 2) at t∗ = 100 for Re = 1 (left panel), 10 (middle panel), and 100 (right
panel). Inhalant tube, bottom bed, RoIs, streamlines, and velocity vectors are represented as in Fig. 4. Re = 1 and 10 flow
fields include stagnation streamlines indicated with a dashed line.

B. Transient response

To characterize the transient response of the flow, we
present 1% RoI contours at the impulsive start of in-
halation (t∗ = 0), through rapid transient development
(t∗ = 1), and into the long-time behavior (t∗ = 100).
Model results are shown for h∗ = 0, 2, and 40 in Figs.
7, 8, and 9, respectively, for Re = 1 (left panels), Re
= 10 (middle panels), and Re = 100 (right panels). The

t∗ = 100 RoI contours here correspond to long-time re-
sults in the previous section.

Conceptually, the transient response of the exterior
flow can be decomposed into the sum of two separate
components. First, an inviscid, elliptic baseline compo-
nent that sets up instantaneously and is reminiscent of
the steady, sink flow, but must satisfy the no-slip bound-
ary conditions along solid surfaces and must match the
distributed and directional flow at the orifice. Second,
a viscous component diffuses radially outward over time.
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FIG. 6. Long-time behavior of the unbounded case (h∗ = 40) at t∗ = 100 for Re = 1 (left panel), 10 (middle panel), and 100
(right panel). Inhalant tube, bottom bed, velocity magnitude contours, streamlines, and velocity vectors are represented as in
Figs. 4. Note the break in the vertical axis indicating large separation between the inlet orifice and bottom bed. Re = 1 and
10 flow fields include stagnation streamlines (dashed lines).

The relative strength and interplay of these two compo-
nents depends on nondimensional time, Re, and h∗.

At t∗ = 0, flow consists entirely of the inviscid elliptic
response that is insensitive to Re for any particular ge-
ometry and associated boundary conditions. Figures 7,
8, and 9 confirm that the t∗ = 0 RoIs at Re = 1 (left
panels) are identical to those at Re = 10 (middle panels)
and Re = 100 (right panels). For t∗ ≥ 0, the unsteady,
viscous component of the transient propagates radially
outward from the orifice. Because the time scale for the
transient development goes as (D2/ν)/Re, the transient
develops 100 times faster at Re = 100 when compared
to Re = 1 (for constant D and ν). Furthermore, at high
Re the component of the transient is relatively weak, and
the elliptic, inviscid component dominates. Again, Figs.
7, 8, and 9 confirm that RoIs for the most inviscid flow
(Re = 100, right panels) are nearly identical for all four

t∗ values shown, indicating that the flow is trapped in
a state dominated by the sink-like, inviscid component.
For the intermediate case (Re = 10, middle panels), the
increased relative importance of viscous, diffusive effects
causes the RoIs to enlargen and propagate further rela-
tive to the most inviscid flow at a given h∗. Finally, for
the most viscous flow at Re = 1, the viscous transient
component becomes dominant, and the flow evolves con-
tinuously in time. As h∗ increases, and influence of the
bottom bed is reduced, the effects of the viscous transient
component at Re = 1 (left panels) are increased and the
RoIs grow larger and propagates further. In contrast, the
spatial extent of the RoIs for the intermediate (Re = 10,
middle panels) and most inviscid (Re = 100, tight pan-
els) flows are insensitive to h∗. These differences in the
transient response from the most viscous flow (Re = 1)
to the most inviscid (Re = 100) again emphasize a fun-
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FIG. 7. Transient development of the flow field as represented by 1% RoI contours for the bed-flush geometry (h∗ = 0) at Re
= 1 (left panel), 10 (middle panel), and 100 (right panel).
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FIG. 8. Transient development of the flow field as represented by 1% RoI contours for the near-bed geometry (h∗ = 2) at Re
= 1 (left panel), 10 (middle panel), and 100 (right panel).

damental feature of the flow: the competition between
advection of momentum towards the orifice and viscous
diffusion away from the orifice.

C. Inhalation volumes

Here, we investigate the initial spatial distribution of
fluid that is subsequently ingested into the inhalant tube.
We represent these inhalation volumes by their bound-
ing envelopes (Fig. 10). These volumes were computed
with inhalation beginning at t∗ = 100 (corresponding to
the long-time behavior of the flow) and proceeding for

inhalation durations ∆t∗ = 1, 10, and 100. An inhala-
tion duration ∆t∗ = 1 corresponds to the time required
to inhale a characteristic volume ((πD3)/(4Q)) – this is
equivalent to a cylinder with diameter and length equal to
D. Sizes of inhalant volumes for a given nondimensional
inhalation duration ∆t∗ are therefore identical (regard-
less of Re or h∗). That is, all blue (dark gray) envelopes
in Fig. 10 represent equal volumes. Although the two-
dimensional envelopes for a given ∆t∗ do not necessarily
have equal areas, they sweep out equal volumes when
rotated around the line of axisymmetry (z-axis). Repre-
sentative streamlines at t∗ = 100 are shown in gray; flow
continues to develop over time but the change is negli-
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FIG. 9. Transient development of the flow field as represented by 1% RoI contours for the unbounded geometry (h∗ = 40) at
Re = 1 (left panel), 10 (middle panel), and 100 (right panel). Note the break in the vertical axis indicating large separation
between the inlet orifice and bottom bed.

gible over the inhalation durations used. For cases that
have a stagnation streamline (four lower-left panels, see
also Figs. 5, 6), a portion of the inhalation volume en-
velope along the bottom coincides with this streamline
(shown with a dashed line). Fluid below this streamline
is recirculated outwards and can never enter the orifice.
In contrast, for the h∗ = 0 (top row) and for Re = 100
(right column) cases, all flow is radially inward, and as
∆t∗ →∞ the envelopes expand to fill the entire domain.

Inhalant volumes show strong directional bias as a
function of not only Re (columns) but also extraction
height h∗ (rows) and depart significantly from what
would be predicted by potential flow theory (Fig. 10).
For the most viscous case (Re = 1, left column), in-
creasing h∗ shifts inhalant volumes up towards the axis
of the inhalant tube, producing directional inhalation.
Conversely, for the most inviscid case (Re = 100, right
column), we see the exact opposite: increasing h∗ now
enables a more omnidirectional inhalation. For the in-

termediate case (Re = 10, middle column), the shape of
the inhalation volume is relatively insensitive to h∗. The
most striking departure from potential flow theory occurs
at Re = 1 and h∗ = 40 (lower-left panel). For this viscous
case, downward momentum from the directional flow in
the inhalant tube diffuses readily throughout the exterior
domain. In the absence of a nearby bed, this diffusion
activates a systemic downward flow (see left panel in Fig.
6), much of which must bypass the orifice (as evidenced
by the upward deflection of the stagnation streamline).
This produces a conical inhalation volume that samples
preferentially from above. Overall, the choice of Re and
h∗ is seen to have profound impact on the spatial distri-
bution of inhaled fluid.
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FIG. 10. Inhalation volume envelopes for durations of ∆t∗ = 1, 10, and 100. Reynolds number Re increases from 1 (left
column), to 10 (middle column), to 100 (right column) and h∗ increases from 0 (top row), to 2 (middle row), to 40 (bottom
row). Streamlines are shown in gray. For the four lower-left panels, the bottom boundary of the inhalation volume coincides
with a stagnation streamline (dashed line) as discussed in the text.

IV. SUMMARY

Potential flow theory has been historically used to ap-
proximate flows approaching an orifice as inviscid sink

flows. However, many inhalant flows are not well-
described by potential flow theory because they are sub-
ject to boundary conditions that are both directional
and spatially distributed, and their development is influ-
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enced by viscous diffusion of momentum. In this study
we characterized transient hydrodynamics of impulsively-
started, laminar inhalant flows approaching an orifice for
a range of Reynolds numbers (to vary the influence of vis-
cous effects) and extraction heights (to vary the influence
of the solid bed). The increasing importance of viscos-
ity at lower Re is evidenced in our results by significant
departures from potential flow theory.

For all Re, the flow at t∗ � 1 is sink-like, represent-
ing the inviscid, elliptic response. For high Re, the flow
remains relatively similar to the sink flow for all times.
At lower Re, increased viscous effects entrain an ever-
growing volume of fluid, and the flow continues to develop
indefinitely. In some cases, flows at lower Re spatially bi-
furcate causing some fluid to be inhaled and other fluid
to bypass the orifice. The demarcation line between in-
haled and bypassed fluid is a stagnation streamline that
terminates on the rim of the orifice. The viscous, diffu-
sive effects seen at lower Re are further enhanced with
increasing extraction height, whereas the higher Re flows
remain trapped in a sink-like state regardless of h∗.

The structural changes in the fluid inhalation volumes
as a function of Re and h∗ are analogous to those in the
RoIs. For lower Re, increasing h∗ shifts inhalant volumes
towards the axis of the inhalant tube, producing more di-
rectional inhalation. In contrast, at higher Re, increasing

h∗ has the opposite effect and produces a more omnidi-
rectional inhalation. Strong directional bias in inhalation
as a function of Re and h∗ could be exploited by or-
ganisms and engineers alike to achieve specific inhalation
criteria. For example, a bottom-dwelling, siphon-feeding
organism might decrease its pumping Re and increase
its tube height to sample more directionally from above
and inhale food- and oxygen-rich fluid volumes farther
removed from the bottom bed. However, this pumping
regime will also produce the greatest spatial extent of
the region of influence of the flow, perhaps making the
organism more detectable to nearby predators. Similarly,
engineers and scientists may require fluid samplers capa-
ble of both isotropic and anisotropic sampling regimes
depending on environmental conditions or design crite-
ria; this could be achieved by adjusting Reynolds number
and extraction height to suit sampling needs of a specific
application.
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