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The primary mode of failure in disordered solids results from the formation and persistence of
highly localized regions of large plastic strains known as shear bands. Continuum-level field theories
capable of predicting this mechanical response rely upon an accurate representation of the initial
and evolving states of the amorphous structure. We perform molecular dynamics simulations of a
metallic glass and propose a methodology for coarse-graining discrete, atomistic quantities, such as
the potential energies of the elemental constituents. A strain criterion is established and used to
distinguish the coarse-grained degrees-of-freedom inside the emerging shear band from those of the
surrounding material. A signal-to-noise ratio provides a means of evaluating the strength of the
signal of the shear band as a function of the coarse-graining. Finally we investigate the effect of
different coarse-graining lengthscales by comparing a two-dimensional, numerical implementation
of the effective-temperature description in the shear transformation zone (STZ) theory with direct
molecular dynamics simulations. These comparisons indicate the coarse-graining lengthscale has a
lower bound, above which there is a high level of agreement between the atomistics and the STZ
theory, and below which the concept of effective temperature breaks down.

I. INTRODUCTION

Amorphous solids are characterized by a complex,
random arrangement of their atomic or molecular con-
stituents [1–3]. While amorphous materials have long
presented a great scientific challenge due to the nature of
their disordered structure, significant progress has been
made toward a theoretical foundation relating the degree
of disorder of the solid to thermodynamic principles [4–7].
Amorphous solids are essentially indistinguishable from
fluids in their microscopic structure, but they are un-
like fluids in that they exhibit a yield stress below which
they respond elastically to external forces, while fluids
flow even under infinitesimal shear stresses. Once an
amorphous solid is subjected to a shear stress that ex-
ceeds the yield stress, it can flow plastically in a manner
that depends on the temperature, the shear-rate, and
the density [8]. Microscopically the plastic flow is widely
believed to arise from local rearrangements of the con-
stituents in response to these external conditions, and in
recent years a proliferation of many distinct theoretical
models characterizing these rearrangements in different
ways has occurred [9–22]. The most appropriate way to
build a physical connection between the amorphous mi-
crostructure and the observed mechanical response such
as shear banding, a critical failure mode in many amor-
phous materials, remains controversial.

Shear banding, as the name implies, is a plastic insta-
bility that localizes large shear strains in a relatively thin
band when a material is deformed [23]. A shear band
has the ability to broaden and invade the surrounding

material outside the band which remains nearly unde-
formed [24–26]. Shear bands have been widely observed
in metals, polymers, the Earth’s mantle, granular solids,
yield stress fluids, and many other materials, including
liquids under shear flow [27]. In metallic glasses shear
banding is the primary mode of deformation, from yield-
ing to failure. One specific attempt to link local particle
rearrangements to shear banding is the shear transfor-
mation zone (STZ) theory [4–7, 28, 29], which proposes
that zones of tens or even hundreds of particles undergo
transitions between two states resulting in an increment
of plastic strain. The STZ theory is distinct from other
approaches in that a constitutive law relates the transi-
tions to an effective temperature [30–38], describing the
deforming amorphous structure in terms of a continuum
field. A mathematical field theory of this kind has signifi-
cant advantages as it essentially reduces the particle-level
complexity of amorphous plasticity to a boundary-value
problem in solid mechanics, but with the challenge of gen-
erating appropriate initial conditions, determining values
of the theory’s physical parameters, and establishing an
accurate method of validation.

Related to these considerations is the notion that a
well-formulated continuum theory must have far fewer
degrees-of-freedom (DOF) than, for example, detailed
atomistic simulations, and should also provide a com-
putationally efficient description of the mechanical re-
sponse. In particular, it would make the continuum as-
sumption that a representative volume element (RVE)
exists. The RVE has been defined as the smallest ma-
terial volume element of the system for which the usual
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spatially constant macroscopic constitutive representa-
tion is a sufficiently accurate model to represent mean
constitutive response [39]. This continuum assumption
is equivalent to neglecting the local heterogeneity of the
stresses and strains within the RVE, and instead work-
ing with averaged quantities, as the effects of the het-
erogeneities act only indirectly through a certain num-
ber of internal variables [40]. For crystalline materials
a great number of methods have been constructed using
the continuum hypothesis to describe elasto-plastic be-
havior, including nonlocal, energy-based, and multiscale
frameworks [40, 41].

The procedure of selectively reducing the number of
DOF of a system, known as coarse-graining, is essen-
tial to constructing a predictive continuum-level descrip-
tion. However, differences in system complexity and pur-
pose of modeling often lead to difficulties in developing
a universal method for coarse-graining [42]. Attempts to
formulate generalized coarse-graining frameworks which
account for a wide range of physical phenomena (e.g.
elasticity and electrical conductivity) often result in a
complex coarse-graining procedure with large numbers
of parameters and a diminished representation compared
to frameworks following a phenomena-dependent focus.
Several rigorous methods have been developed for equi-
librium systems where there is a well-defined partition
function [43, 44]. In cases where the system is driven out
of equilibrium, e.g. through the process of shear, such
clear statistical mechanics-based descriptions are often
precluded or extremely difficult to formulate.

Earlier work has attempted to address the problem
of coarse-graining the amorphous microstructure by con-
structing so-called “mesoscale models” that connect the
original STZ transition-rate equations to finite element
calculations [17, 45, 46] and evolving the system using
either a kinetic Monte Carlo or an extremal dynamics al-
gorithm. Similar techniques have been applied to three-
dimensional systems [47] and connections to the realistic
timescales of experiments have been made. Lattice-based
depinning models have been proposed which describe
plasticity in amorphous solids by allowing local element
interfaces to slip in a random fashion [48–51]. Significant
limitations exist with these mesoscale approaches. For
amorphous solids in particular, the nature of the RVE has
not been well investigated and remains largely unknown.
In nearly all mesoscale models the RVE is merely taken to
be the size of an individual STZ or slip event, and so the
fundamental question regarding how to correctly average
over experimental or atomistic data of the amorphous
microstructure has not been addressed. Moreover these
approaches have no connection to fundamental thermo-
dynamic considerations, which are known to be essential
in describing the shear-induced disordering of the mate-
rial’s structure during plastic deformation [52]. This is
most apparent in that changes in energy between mate-
rial states of varying disorder are typically not quanti-
fied in these models, and energetic criteria play no role
in influencing transition rates. Furthermore, only rather

modest and tangential comparisons to experiments and
atomistic simulations using these techniques have been
attempted so far, usually in the form of a demonstration
that the model can produce some feature of the deforma-
tion qualitatively, such as the presence of a yield stress or
a stress-strain history that is typical of a metallic glass.

In contrast to much of the prior work, we approach the
problem of coarse-graining by translating details directly
from an amorphous system where atom-by-atom infor-
mation is known and accessible. This is distinct from
building a coarse-grained representation from an estab-
lished set of assumptions. In choosing to directly reduce
the number of DOF in this way, we are able to recast the
problem as a study of averages of atomic-level quantites
over some chosen lengthscale. Because changes in atomic
potential energy reflect changes in the amorphous struc-
ture [53], we believe it is important to study the statistics
of these energies, how these statistics evolve as the ma-
terial is driven out of equilibrium during shear, and how
the statistics depend on the size of the RVE (i.e. coarse-
graining lengthscale). Of paramount importance is un-
derstanding whether there is an optimal coarse-graining
lengthscale for these quantities such that the shear band-
ing and the mechanical response is best captured when
cross-comparions are made between the coarse-grained
atomistics and a continuum description. In this paper
we propose a methodology for coarse-graining discrete,
atomistic data pertaining to an amorphous solid, and use
the coarse-grained representations to initialize and vali-
date the effective-temperature dynamics of the STZ the-
ory. Specifically, we preform molecular dynamics (MD)
simulations of amorphous copper-zirconium (CuZr) un-
der simple shear, and then coarse-grain the MD system
for a range of lengthscales to obtain continuum represen-
tations of potential energy and atomic strain.

The structure of this paper is as follows. In Sec. II
we present the details of the coarse-graining methodol-
ogy devised to efficiently take advantage of the detailed
per-atom information of the MD simulations. Then in
Sec. III we define a signal of the shear band and distingish
it from the background through a criterion that connects
the atomic strain to the potential energy. Analysis of
the system’s signal-to-noise suggests a lower bound on
the coarse-graining lengthscale. In Sec. IV we apply the
coarse-graining procedure to the MD system and extract
an initial condition for the effective-temperature field in
the STZ theory. We compare the coarse-grainedMD sim-
ulation of the shear banding alongside the results of a
two-dimensional, quasi-static numerical implementation
of STZ theory using this initial condition. We conclude
in Sec. V with a discussion of how this preliminary work
can inform future efforts to develop continuum theories
of amorphous plasticity where coarse-grained represen-
tations of atomistic data are used to parametrize and
validate the material models.
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II. COARSE-GRAINING METHODOLOGY

MD simulations were preformed using the LAMMPS
software [54] with a well-established Embedded-Atom-
Method (EAM) interaction potential [55]. The initial
pre-sheared glass was formed by taking a 50-50 compo-
sition of CuZr with 297,680 total atoms and quenching
the equilibrated liquid at a rate of 1011 K/s to a tem-
perature T = 100 K. The system is square with sides
of length L = 400 Å, and has a thin out-of-plane di-
rection (30 Å) that allows us to treat the system as ef-
fectively two-dimensional. A non-equilibrium molecular
dynamics (NEMD) shear simulation was preformed by
deforming the simulation box of the quenched glass un-
der simple shear conditions at constant volume and tem-
perature with periodic boundary conditions in all direc-
tions enforced by the SLLOD [56] equations of motion. A
timestep of 0.005 picoseconds (ps) and an applied shear
rate γ̇ = 10−4 ps−1 were used. The system was held
at 100 K for the duration of the shear. The NEMD
shear simulation revealed the formation of a shear band
near the center of the simulation box. The shear band
was aligned with the direction of shear and continued to
broaden as the system was deformed.
The corresponding coarse-grained representation of the

system is defined by a two-dimensional square grid of
equally spaced continuum points. We map the the atomic
potential energies to the grid using a Gaussian function
gn = g(rn, c) of the form

gn =
2√
2πc

exp

(

− r2n
2c2

)

(1)

to weight the contributions of each atom. The function
gn is centered on continuum point α and rn is the dis-
tance from α to atom-n and defines a coarse-grained re-
gion determined by the cut-off radius rcut . In this way,
neighboring regions are allowed to overlap with one an-
other. The coarse-grained atomic potential energy Eα at
α, for instance, is given by

Eα =

∑

n
gnEn

∑

n
gn

(2)

where the sum on n extends over each atom within rcut .
The coarse-graining map is entirely determined by the

choice of the parameter c which sets the width of gn and
hence determines the spatial extent of the MD data influ-
encing the value of the continuum field at α, which was
found to be well converged when rcut ≥ 3c. A similar
consideration of convergence found the minimum spac-
ing between continuum points to be d = 0.25c.
The application of this coarse-graining procedure to

the potential energies of the pre-sheared glass is rela-
tively straightforward. However during the shear simula-
tion it is necessary to compute such coarse-grained field
quantities at a given timestep. A proper continuum-level

description requires a choice of either a Lagrangian or Eu-
lerian frame. We have chosen a Lagrangian approach in
what follows, as this is the typical description for solids.
In the Lagrangian description, the material points are
defined with respect to a reference configuration and con-
tinuum fields are functions of the reference coordinates
X and current time t. In the case of the coarse-grained
potential energy Eα = Eα (X, t). Therefore the MD sys-
tem is only coarse-grained based on atomic positions in
the initial configuration at t = 0 (before shear) and the
evolution of Eα is determined by the changes in the po-
tential energies of the atoms initially within the region
surrounding α defined by rcut .

The local atomic strain can also be calculated in a
way that is consistent with this coarse-graining method
through an adaptation of a well-established definition
of non-affine displacement [15]. The measure of non-
affinity is determined by minimizing the mean-square dif-
ference between the actual displacements of the neigh-
boring atoms relative to the central one and the relative
displacements that they would have if they were in a
region of homogeneous deformation. The square of the
error D2

min can be written as,

D2
min =

∑

n

g2n
∑

i



xi
n − xi

0 −
∑

j

Fij

(

Xj
n −Xj

0

)





2

(3)
The indices i and j denote Cartesian coordinates xi at
time t describing the spatial position of an atom during
the shear and Xj in the reference configuration. The
index n runs over the atoms within the coarse-graining
region surrounding α, where n = 0 is the reference atom
with coordinates xi

0 and Xj
0 , chosen to be closest to the

centroid of the region. We have found that this choice
for the reference atom is better than simply an arbitrary
atom which can present computational anomalies for re-
gions with a small number of atoms or for large strains.
Equation 3 differs from the original [15] in that it is
a weighted least-squares formulation, and because it is
generalized for finite deformations. The minimization of
D2

min allows a fit of the deformation gradient tensor Fij

from which the Green-Lagrange strain can be calculated
as

ǫαij =
1

2

(

∑

k

Fα
kiF

α
kj − δij

)

. (4)

In the following sections, the CuZr system studied using
NEMD simulations has been coarse-grained according to
the proposed methodology for selected lengthscales de-
fined by c = 5, 16, 32, and 50 Å, where c = 5 Å and
c = 50 Å correspond to the coarse-grained representa-
tions that are the finest and coarsest, respectively.
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III. SIGNAL AND NOISE IN MOLECULAR

DYNAMICS

The coarse-graining methodology of the previous sec-
tion efficiently reduces the vast number of DOF in the
MD system by appropriately weighting the contributions
of each atom within a given region surrounding a con-
tinuum point α and ensuring that the resulting coarse-
grained representation of the field values at α are con-
verged. The methodology relies entirely on the choice of
the width of the Gaussian filter c, and is amenable to lo-
cal calculations of field quantities for each α, in particular
the atomic strain which requires knowledge of atomic po-
sitions in both reference and current configurations. In
this Section we attempt to determine the range of values
of c that best distinguishes regions inside the shear band
from those outside it. Because spatial localization of both
potential energy and atomic strain has been shown to
characterize shear banding [53], we propose a criterion
whereby the atomic strain computed at α, as described
in the previous Section, is used to analyze the evolution
of the coarse-grained potential energies inside and out-
side the shear band. This enables us to study the effect
of different coarse-grained representations on the identi-
fication of states inside and outside the band.
Herein we define the shear band as simply the set of

coarse-grained atomic strains that reach or exceed the
net strain. More precisely the signal of the shear band is
the set

S = {ǫα12 | ǫα12 ≥ γ} (5)

where γ is the nominally imposed strain at the boundary
[57]. Analogously, we define the background as the set of
regions where the coarse-grained atomic strains are less
than the nominally imposed strain at the boundary,

B = {ǫα12 | ǫα12 < γ} (6)

Figures 1-4 show the sets S and B as the system evolves
from the purely elastic ramp-up, through the onset of
the shear band, and into the flow-stress regime for the
selected coarse-graining lengthscales. It is important to
note that we have only included the Cu atoms when ap-
plying Eq. 2 since the potential-energy distribution of
each species is different. Either species however shows
essentially the same results in terms of the onset of the
shear band and the qualitative changes in the distribu-
tions reflected in Figs. 1-4. The effect of considering only
one of the species is further discussed in Sec. IV.
The signal and background plots in Figs. 1-4 feature an

entirely mechanical response, in the sense that the dis-
tinction between signal states and background states is a
binary choice based solely upon whether a given contin-
uum point α has a local strain that satisfies the criterion
of Eq. 5. However this criterion for the mechanical re-
sponse of the system can be directly related to the poten-
tial energy. The right side of Figs. 1-4 shows histograms
of the potential energies corresponding to each α in S
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FIG. 1. Map (left column) of continuum points for a coarse-
grained representation of the Cu atoms where c = 50 Å
defining the signal (orange) of the shear band and the back-
ground (blue). Histograms (right column) of the correspond-
ing coarse-grained potential energies in the shear band and
background. Configurations shown at a net strain of: a) 3.5%,
b) 9.5%, c) 10%, d) 10.5%, and e) 27.5%.
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FIG. 2. Map (left column) of continuum points for a coarse-
grained representation of the Cu atoms where c = 32 Å
defining the signal (orange) of the shear band and the back-
ground (blue). Histograms (right column) of the correspond-
ing coarse-grained potential energies in the shear band and
background. Configurations shown at a net strain of: a) 3.5%,
b) 9.5%, c) 10%, d) 10.5%, and e) 27.5%.
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FIG. 3. Map (left column) of continuum points for a coarse-
grained representation of the Cu atoms where c = 16 Å
defining the signal (orange) of the shear band and the back-
ground (blue). Histograms (right column) of the correspond-
ing coarse-grained potential energies in the shear band and
background. Configurations shown at a net strain of: a) 3.5%,
b) 9.5%, c) 10%, d) 10.5%, and e) 27.5%.
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FIG. 4. Map (left column) of continuum points for a coarse-
grained representation of the Cu atoms where c = 5 Å defin-
ing the signal (orange) of the shear band and the back-
ground (blue). Histograms (right column) of the correspond-
ing coarse-grained potential energies in the shear band and
background. Configurations shown at a net strain of a) 3.5%,
b) 9.5%, c) 10%, d) 10.5%, and e) 27.5%.

Strain µs µbg σs σbg SNR

3.5% -3.3598 -3.3600 0.0004 0.0005 0.4377

9.5% -3.3578 -3.3588 0.0006 0.0007 1.4735

10% -3.3561 -3.3586 0.0009 0.0008 2.9933

10.5% -3.3533 -3.3595 0.0019 0.0012 5.0282

27.5% -3.3542 -3.3591 0.0014 0.0011 4.4564

TABLE I. The statistics of the coarse-grained potential en-
ergies in the signal and background distributions at different
strains for a coarse-grained representation where c = 50Å.
The mean µs and standard deviation σs of the signal and
the µb and σb of the background. The signal-to-noise ratio

SNR = |µs−µb|
σb

defines the strength of the shear band in the

energy background.

and B, identifying the signal and background as two dis-
tinct potential-energy distributions. Using these energy
distributions we define a signal-to-noise ratio (SNR) as

SNR =
|µs − µb|

σb
(7)

where µs and µb are the means of the signal and back-
ground, respectively, and σb is the standard deviation of
the background.
The emergence of the shear band can be readily seen

through the relative changes in these distributions. In the
purely elastic start-up the system exhibits a fluctuating
mixture of signal and background without any strain lo-
calization. The average of 2ǫα12 = γ at all times during the
deformation to satisfy compatibility. During the purely
elastic regime, the signal and background possess nearly
identical potential-energy distributions. The statistics of
these two distributions are summarized in Tab. I as the
system evolves for the representation where c = 50 Å. At
3.5% strain (still within the elastic regime) the means of
the signal and background are nearly identical, and the
SNR is very small.
The values of the SNR are shown in Fig. 5 as a function

of the net strain for the different coarse-grained represen-
tations. A proto-shear band begins to develop at 9.5%
strain, and the two distributions begin to show a notice-
able separation in their mean values. Figure 5 shows that
while the shear band begins its initial stages of formation
just prior to 9.5% strain, the signal µs − µb appears to
begin to significantly separate from the noise σb (when
SNR> 1) for c = 50, 32, and 16 Å. This indicates that
the SNR after banding is improved by considering larger
coarse-grained representations, but that the onset of the
shear band itself is detected equivalently as long as this
coarse-graining exceeds c = 16 Å.
The shear band is fully formed across the system at

10.5% strain, as can be seen at each level of coarse-
graining shown in Figs. 1-4. This also corresponds to the
largest SNR value, evidenced by both the most signifi-
cant separation in the means of the distributions as well
as the occupation of the highest energy states. Once the
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FIG. 5. The SNR as function of global strain for different
coarse-grained representations defined by c in gn. The signal
µs − µb exceeds the noise σb only when SNR > 1 (dashed
line).

signal and background distributions have distinctly sep-
arated, they remain so throughout the shear simulation.
We have observed that once the shear band has formed
at approximately 10.5% strain, the SNR tends to mono-
tonically increase with the width of the coarse-graining,
until saturating for c ≥ 32 Å as Fig. 5 shows. We note
that the minimum-image convention places a limit on the
size of any coarse-graining region surrounding a given α
relative to the size of the simulation cell, namely we must
ensure rcut ≤ L/2.

IV. EFFECTIVE-TEMPERATURE MODEL

The coarse-graining methodology and corresponding
analyses presented thus far suggest that coarser-grained
representations may better capture the shear banding
seen when the methodology is applied to NEMD shear
simulations of a CuZr glass. To further evaluate the suit-
ability of the different coarse-graining lengthscales and
their affect on the ability to predict the system’s me-
chanical response, we now turn to the preparation of the
initial condition of the STZ theory.
One critical feature of the STZ theory is its ability

to describe the structure of an amorphous solid through
a continuum scalar field of effective temperature [30–38]
Teff that is defined as

Teff =
∂Uc

∂Sc
, (8)

where Uc and Sc are the amorphous system’s potential
energy and entropy respectively of only the configura-
tional DOF, i.e. those DOF describing the structure of

the material [5–7, 35–37] and operating on timescales no
shorter than those associated with molecular rearrange-
ments. This is to be distinguished from the more famil-
iar, thermalized temperature T which accounts for the
fast, kinetic DOF which relax on timescales short com-
pared to the timescales associated with plasticity. The
typical definition of T is applicable to the vibrational
DOF which remain in thermodynamic equilibrium. The
configurational DOF constitute an enumerable set of spe-
cific potential-energy configurations of the atoms, which
correspond to low-lying minima in the potential-energy
landscape of the amorphous solid. They are often re-
ferred to as the system’s “inherent structures” [6]. An
STZ rearrangement that occurs during plastic deforma-
tion corresponds to the state of the system transitioning
from one inherent structure (local minimum) to a neigh-
boring one. In the effective-temperature STZ formalism,
a dimensionless scalar field χ = χ(X, t) is defined as

χ ≡ kBTeff

Ez
(9)

where kB is the Boltzmann factor and Ez is the STZ
formation energy. Although χ is a dimensionless form
of Teff we shall henceforth refer to it as simply “the ef-
fective temperature” for readability. Some limited at-
tempts to experimentally measure an effective temper-
ature for disordered materials have been made [58], as
well as other direct, quantitative comparisons with ex-
periments of bulk metallic glasses [59].
For a monotonically loaded, athermal amorphous sys-

tem where there are no rate-dependent processes such as
aging, which compete with the STZ-transition rates de-
scribed in Sec. I, and where we assume there to be a low
STZ density, the flow rule for the plastic component of
the rate-of-deformation tensor Dpl follows from the STZ
theory with the form,

D
pl =

{

0 , ||S̃|| < 1
ǫ0
τ0
e−1/χ

(

1− 1

||S̃||

)

F , ||S̃|| ≥ 1
(10)

where F = F(S̃) is a monotonic tensor-function of the

deviatoric Cauchy stress S̃, which is normalized in terms
of the yield stress sy. When ||S̃|| < 1 there are no plastic
rearrangements and D

pl = 0. A family of symmetric
functions of the stress has been identified as having the
correct properties for F, such as F → 0 when S̃ → 0 and
F grows linearly as S̃ → ∞ [60, 61]. For simplicity we
have chosen the form

F = −2+ ||S̃||+ exp
(

−||S̃||
)(

2+ ||S̃||
)

(11)

which has been shown to be effective in one-dimensional
continuum STZ analyses [62]. The parameter 1/τ0 is
the inherent attempt frequency of the material, which is
close to the Einstein frequency, and sets a timescale for
the “flips” or rearrangments of the STZs. The average
STZ contains an approximate number of atoms denoted
by the value of ǫ0.
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FIG. 6. The initial condition of the effective temperature in
the STZ theory χ0 using different coarse-grained representa-
tions: a) c = 50 Å, b) c = 32 Å, c) c = 16 Å, and d) c = 5 Å.

In the athermal limit the dynamical equation for the
effective temperature χ takes the form

c0χ̇ = S̃ : Dpl (χ∞ − χ) +∇ · Dχ∇χ . (12)

The first term on the RHS in Eq. 12 represents the plas-
tic work per unit time done on the configurational DOF
when ||S̃|| > 1. The parameter c0 is a specific-heat-like
quantity that relates the heat flowing into the configu-
rational DOF to the resulting increase in the effective
temperature. In flowing regions χ converges to a limit-
ing value χ∞, which represents the steady-state effective
temperature where the work done to shear the amor-
phous material no longer causes an increase in disorder.
The final term in Eq. 12 describes the diffusion of the
effective temperature through a rate-dependent diffusiv-

ity Dχ = l2
√
Dpl : Dpl with dimensions length-squared

per unit time, where the lengthscale l is approximately
the size of an STZ (on the order of a molecular length-
scale). Because Dχ is a function of the plastic rate-of-
deformation, the diffusivity is inhomogeneous and the ef-
fective temperature diffuses at different rates in different
regions of the material. For example, in regions where
the local plastic-strain rate is larger, so too is the value
of Dχ.
The initial value of the effective-temperature field χ0 =

χ0(X) characterizes the structure of the glass in the pre-
sheared state, and ideally would come from an analysis
of the atomistic information of the system’s constituents.
In the absence of this per-atom information, the form

of χ0 including the mean value and fluctuations about
the mean are usually chosen in a way to best match the
macroscopic behavior, e.g. the stress-strain curves of the
material. The ability of the fluctuations in χ0 to grow
and lead to strain localization in the form of a shear band
depends on both the mean value of χ0 and the amplitude
of the fluctuations [62, 63], which underscores the need
for χ0 to capture the structural state of the pre-sheared
glass with the appropriate level of physical detail.
Previous STZ-theory approaches that have attempted

to model the NEMD shear deformation of Lennard-Jones
glasses have relied upon postulating a value for χ0 a pri-

ori without directly extracting it from actual atomistic
data, such as the potential energies [59, 62, 64, 65]. These
STZ-effective-temperature simulations were also entirely
one-dimensional, but nonetheless have provided impor-
tant guidance for the development of more sophisticated
techniques. Although it is important to note that the
range of acceptable values of χ0 for a particular system
is significantly restricted by the nonlinear form of Eq. 12
and its stability.
A determination of χ0 from the pre-sheared glass

would in principle come from a direct calculation of the
derivative in Eq. 8. This could be achieved by enumer-
ating the set of inherent structures and considering their
density-of-states, thus determining the corresponding Sc

and Teff at a given Uc. At the moment however, such a
calculation remains computationally intractable. More-
over, in practice temperatures are usually determined
from equations of state or through a heat capacity, and
the necessity of directly measuring entropic changes is
therefore avoided. In devising a simpler procedure here
to relate effective temperature to atomic potential en-
ergy, we follow a similar approach. We note that there is
already evidence suggesting the average atomic potential
energy of a simple Lennard-Jones system [53] is linearly
related to χ .
In the context of the coarse-grained potential energies

coming from Eq. 2, an assumption of linearity allows us
to compute an effective temperature at a given α as

χMD
α = β

∑

n
gn
(

En − Eo − Eel
)

∑

n
gn

(13)

where the parameter β is a material specific constant
with units of inverse potential energy per atom and can
be related to a specific heat [53]. The reference energy
Eo corresponds to a state of no disorder in the glass,
where by definition Teff = 0. Equation 13 introduces
Eo and β as yet unknown parameters, but now with
the advantage of being able to directly relate averages
of atomic potential energy per atom to χ . We have
further shifted En by removing the effect of the linear-
elastic strain energy, since changes in χ occur only in the
presence of a non-zero plastic-strain rate. Linear-elastic
strain energy is given by W = 1

2
Cijklǫijǫkl, where Cijkl is

the Hookean-elasticity tensor, and therefore the per-atom
elastic-strain energy Eel is found by a fit to the parabolic
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portion of the system’s total potential-energy density as
a function of shear strain ǫ12. This is an approximation
that becomes an exact correction in the limit where all
elastic behavior is perfectly linear.
Figure 6 shows the result of applying Eq. 13 and the

values of Tab. III to the as-quenched configuration of
the glass, yielding coarse-grained representations of the
system before shear χMD

α (γ = 0) for different c. These
images of the initial conditions reveal how the levels of
coarse-graining affect the spatial variation of χ. The
coarser representations tend towards a smoother, more
localized field. For instance, when c = 50 Å and c = 32 Å,
the highest values of χ0 reside in the bottom left quad-
rant of the grid, and are likely sites for the growth of a
particular instability that can lead to strain localization.
The same procedure described by Eq. 13 is applied to

determine χMD
α for subsequent configurations as the sys-

tem is subjected to a state of simple shear. The left col-
umn of Figs. 7-10 shows the evolution of χMD

α at different
increments of the system’s net strain during the NEMD
shear simulation. The formation of the shear band here
proceeds in a manner similar to that depicted in Figs. 1-
4 which show the evolution of signal and noise states
under the strain criterion. As mentioned in Sec. III we
have arbitrarily chosen only one of the species, the Cu
atoms, to include in the sum in Eq. 13. We have found
however that choosing either species gives very similar
results for a particular gn, including the signature of the
shear band. This would confirm that both species con-
tain similar, relevant structural information. We note
however that while only one species is explicily consid-
ered, the Cu-Zr-interactions are still present through the
potential energies of the atoms of either species.
Recently a numerical method for simulating the de-

formation of elasto-plastic materials in the quasi-static
limit has been developed [66] by building on a mathe-
matical correspondence with the incompressible Navier-
Stokes equations. It is well-suited for a large class of
materials, which typically undergo small elastic defor-
mations and feature large elastic wave speeds, making
many plastic deformation problems intrinsically quasi-
static. In such situations, this method allows simulating
realistic loading rates, which would be prohibitively com-
putationally expensive using explicit methods [67].
Here we use the methodology of Sec. II to provide an

initial condition for the effective-temperature field and
then simulate the continuum STZ model using the two-
dimensional quasi-static numerical implementation. The
quasi-static condition requires

∇ · σ = 0 . (14)

and is equivalent to the inertial limit where σ is the
Cauchy stress tensor. This numerical approach is most
suitable for materials that can be well-described by the
additive decomposition of the rate-of-deformation tensor
into elastic and plastic parts, namely

D = D
el +D

pl , (15)
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FIG. 7. The coarse-grained effective temperature of the
NEMD shear simulation (left column) χMD

α and the effective
temperature of the STZ theory (right column) χ where the
system is coarse-grained using c = 50 Å at: a) 9.5%, b) 10.5%,
c) 15.5%, d) 27.5%, and e) 42% net strain.
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FIG. 8. The coarse-grained effective temperature of the
NEMD shear simulation (left column) χMD

α and the effective
temperature of the STZ theory (right column) χ where the
system is coarse-grained using c = 32 Å at: a) 5%, b) 9.5%, c)
10.5%, d) 15.5%, e) 27.5%, f) 42%, and g) 49.5% net strain.
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FIG. 9. The coarse-grained effective temperature of the
NEMD shear simulation (left column) χMD

α and the effective
temperature of the STZ theory (right column) χ where the
system is coarse-grained using c = 16 Åat: a) 5%, b) 9.5%, c)
10.5%, d) 15.5%, e) 27.5%, f) 42%, and g) 49.5% net strain.
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FIG. 10. The coarse-grained effective temperature of the
NEMD shear simulation (left column) χMD

α and the effective
temperature of the STZ theory (right column) χ where the
system is coarse-grained using c = 5Å at: a) 5%, b) 9.5%, c)
10.5%, d) 15.5%, e) 27.5%, f) 42%, and g) 49.5% net strain.

PARAMETERS UNIT Value

Yield stress sy GPa 0.85

STZ size ǫ0 - 10

Inverse attempt frequency τ0 ps 0.1

Elastic shear modulus µ GPa 20

Plastic-work fraction co - 0.3

Global shear rate γ̇ ps−1 10−4

Diffusivity length l Å 4.01

TABLE II. The parameters of the STZ effective-temperature
model used in all coarse-grained representations. The ‘-’ in-
dicates the parameter is dimensionless.

and is generally a good assumption when elastic strains
are small. The model can be solved by connecting the
flow rule for the plastic-strain rate to Newton’s laws for
deformable bodies by

Dσ

Dt
= C : Del = C : (D−D

pl
) (16)

where C is the Hookean-elasticity tensor and D
Dt refers to

the Jaumann objective rate. To simulate the simple shear
deformation of the NEMD results in Sec. II the velocity
v(x, t) is fixed at the top and bottom of the system in
the direction of shear by the imposed shear-strain rate

v(x1, 0, t) = γ̇L e1 v(x1,L, t) = 0 (17)

while

∂σ

∂x2

=
∂χ

∂x2

= 0 (18)

at x2 = 0 and x2 = L. These boundary conditions and
the model’s numerical implementation developed in [66]
describe a system that is periodic in the direction of shear
(x1), but not in the perpendicular direction. This is un-
like the simulation box in the NEMD simulations which
is periodic in all directions. While these differences in
boundary conditions could possibly affect the continuum
model’s ability to predict shear band formation at the
top or bottom boundaries, in all the simulations reported
here the shear band forms near the center of the system.
The values of the parameters of the effective-

temperature model are summarized in Tab. II, which are
the same across simulations of different coarse-grained
initial conditions. The value of the elastic shear modulus
µ in the STZ theory was set to match the linear-elastic
regime of the atomistic simulation where c = 50 Å, in
particular the linear-elastic portion of the stress-strain
curve shown in Fig. 11. Values for ǫ0 and sy were taken
from previous investigations of metallic glasses [67]. The
fraction of plastic work c0 was chosen to best match the
shape of the stress-strain curve of the atomistic simu-
lation where c = 50 Å. Previous studies involving far
simpler, one-dimensional analyses have indicated that c0
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FIG. 11. The average shear stress S12 of the CuZr MD sim-
ulation (dashed curve) and continuum effective-temperature
theory (solid curves) for different coarse-grained initial condi-
tions χ0.

should be on the order of unity [62], and earlier STZ-
theory simulations have reported values between 0 and
1 [66, 67]. Here we initially performed the STZ-theory
simulations using c0 = 1 and then adjusted c0 to match
the stress overshoot and the softening behavior of the
atomistic simulations. Changes in c0 adjust how slowly or
quickly χ reaches χ∞ and consequently affect the shape
of the stress-strain curve as well as the evolution of χ
itself. The lengthscale contained in the prefactor of the
diffusivity, in general, is strictly constrained by the choice
of the timestep used during the STZ-theory simulation.
Here we initially attempted values of l that were on the
order of the size of the developing shear banding, since l
is also related to the length of the interfacial region be-
tween the shear band and the material outside the band.
The value of l in Tab. II enabled the best agreement be-
tween the evolution of χ and χMD

α when c = 50 Å by
allowing the shear band to broaden (in the x2-direction)
as much as possible while inhibiting the tendency for re-
gions outside the band to disorder, a phenomenon not
observed in the molecular dynamics simulations.
The values in the mapping described by Eq. 13, β

and Eo, were chosen so that the initial condition χ0 =
χMD
α (γ = 0) effected the best agreement between the

NEMD simulation and STZ theory and vary slightly as a
function of c as summarized by Tab. III. Unlike the val-
ues of the STZ parameters which are the same for all the
STZ-theory simulations regardless of the level of coarse-
graining, β and Eo must be chosen separately for each
value of c. The choice of β and Eo was found to have
the most dramatic effect on the behavior of the model.
While the STZ parameters essentially control the rates
of the evolution of the amorphous system, the values of β
and Eo determine the initial condition and hence whether
it is even possible for shear banding to occur. Initially
β and Eo were chosen so that the mean of χ0 for each

c (Å) β Eo (eV) χ∞

50 9.5 -3.367 0.13

32 6.1 -3.371 0.12

16 2.3 -3.390 0.094

5 0.92 -3.440 0.085

TABLE III. The values of β and Eo in the potential-energy
mapping to effective temperature given by Eq. 13 and the
steady-state effective temperature χ∞ for different coarse-
grained representations defined by c.

level of coarse-graining was within the range of the mean
χ0 reported in previous work [62] and then adjusted to
best match the atomistic simulation with respect to both
the stress-strain curve and the evolution of χMD

α . The
steady-state condition for the effective temperature χ∞

similarly depends on the level of coarse-graining but is
precisely calculable once β and Eo, and therefore Eq.13,
have been determined. The set S defined in the anal-
ysis of Sec. III can be used to identify the χMD

α inside
the shear band, and the average of χMD

α in S at 50%
net strain is then taken to be χ∞. The average of this
flowing region varied only slightly for different values of
c as seen in Tab. III.

The right column of Figs. 7-10 shows the effective tem-
perature of the STZ theory evolving as the system is
sheared. Each figure illustrates the effect of a particu-
lar level of coarse-graining that is applied to the same
initial configuration of atomic potential energies. The
same grid resolution determined by the convergence cri-
teria discussed in Sec. II is used for both χ and χMD

α . At
10.5 % strain the shear band, which is readily apparent in
χMD
α of the NEMD simulation, is somewhat delayed in χ

of the continuum model. The increase in χ in the model
near the center does indicate the formation of a shear
band, but this is not continuous across the system until
about 11.5% strain, and takes slightly longer to reach χ∞

in the center of the band. Figure 12 shows the value of
χMD
α and χ along a one-dimensional slice at x1 = L/2,

and highlights the sharpest contrast among the differ-
ent coarse-grained representations and their effect on the
predictability of χ in the continuum description. Coarser
representations, i.e. c = 50 Å and c = 32 Å certainly
appear to better capture the size (width) and location
of the shear band, while finer coarse-grained representa-
tions lead to a proliferation of noise that in turn leads
to numerous individual shear bands and a subsequent
system-wide, uniform disordering that is not reflected in
the NEMD simulations. The effect of the initial con-
dition is also apparent from the stress-strain curves in
Fig. 11. The stress-strain histories further support the
notion that the coarser representations provide a more
accurate continuum picture. The stress-strain curves for
c = 50 Å and c = 32 Å exhibit a strong stress-overshoot
and subsequently a distinct softening period, which is in-
dicative of the plastic strain being accommodated within
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FIG. 12. The coarse-grained effective temperature of the
NEMD shear simulation (left column) χMD

α and the effec-
tive temperature of the STZ theory (right column) χ along
x1 = L/2 where the system is coarse-grained for: a) c = 50 Å,
b) c = 32 Å, c) c = 16 Å, and d) c = 5 Å.

some region of the system. This is in contrast to the
curves for c = 16 Å and c = 5 Å which reflect a less-
ordered structure that undergoes the more uniform dis-
ordering also seen in the Fig. 12.

V. CONCLUSIONS

We have presented a study of shear banding us-
ing NEMD simulations and a two-dimensional numer-
ical implementation of the continuum STZ effective-
temperature theory. The coarse-graining methodol-

ogy used in this work has been developed with the
phenomena-dependent focus of capturing the primary
mode of deformation of metallic glasses, shear banding.
The methodology is an attempt to identify and directly
link the atomistic descriptors of the system, e.g. the
local potential energy, to the initial condition for the
effective-temperature in the STZ model to develop a well-
informed, predictive continuum description of the plastic-
ity. Such a description would permit rapid evaluation of
material response for amorphous systems. It would fur-
ther enable quantitative performance assessment through
quantification of variability and uncertainty in material
response in an efficient manner without the need for
large-scale, computationally intensive atomistic simula-
tions.

In the STZ theory the effective temperature is the
continuum-based measure of the shear-induced disorder-
ing of a material’s structure, and as per its definition
with respect to the configurational energy and entropy
of the system, should evolve closely with the material’s
potential energy. We have found that to be the case
here, but also that the continuum model’s accuracy is
significantly dependent on how the atomic information is
coarse-grained, which affects the properties of the result-
ing initial condition and the ability to make one-to-one
comparisons between the coarse-grained NEMD and the
effective temperature theory. Our analysis indicates that
coarser-grained representations between c = 32−50 Å ap-
pear to best resolve the variations from the average in
atomic potential energy data so that an instability in
χ0 can grow, diffuse, and saturate in a way that cor-
responds accurately to the NEMD results. Indeed, the
primary conclusion of this investigation is that there ex-
ists a coarse-graining lengthscale at which the effective-
temperature description in the STZ theory becomes ca-
pable of accurately describing the mechanical response
and microstructural evolution. Below this lengthscale the
concept of effective temperature appears to beak down
and is no longer useful as a material property.

The steady-state effective temperature χ∞, which en-
ters the theory as a well-defined material-dependent
property, also supports this conclusion. When c =
32 − 50 Å, χ∞ appears to converge to a single value.
In prior work [53] χ∞ was approximated to be the effec-
tive temperature that corresponds to the glass transition
temperature Tg, and from this assumption Ez was es-
timated directly from Eq. 9, namely Ez = kBTg/χ∞.
In the case of our work here, using a reported value of
Tg ≈ 700 K [68] when c = 50 Å and χ∞ = 0.13 results in
Ez ≈ 0.45 eV, which is very similar to the prior estimate
reported in [53]. Most interesting however, is that these
computed values of Ez from the STZ theory are within
the same range as the activation barriers (0.32 eV) as-
sociated with shear band flow in recent experiments of
Vitreloy [69]. This suggests STZ creation may be the
rate-limiting step in mediating shear band flow.

Both the location and width of this flowing region
in the effective-temperature model compare well with
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the corresponding changes in χMD
α when c = 50 Å and

c = 32 Å. The difference in strain between the onset of
a fully formed shear band that is continuous and visible
across the MD system and that observed in the effective-
temperature model is approximately 5-6% as seen in
Fig. 7c-d. The results of the STZ-effective-temperature
modeling in this study are the only ones we know of in
which model validation has been derived directly from
atomistic simulation. Both the microstructural evolution
and the stress-strain response have been directly com-
pared with the results of the NEMD simulation, which
itself employs a well-established EAM potential.
Despite a good deal of measurable agreement using the

methodology presented here, this analysis is incomplete
and has left us with a number of important questions.
The optimal lengthscale for the coarse-graining, i.e. what
the value of c in gn should be, is not completely clear.
While the value of the SNR increases with c after the
shear band forms, analysis of the SNR does not provide
clear guidance by itself as to the selection of a unique
optimal c, although it does indicate that there is a mini-
mal value of c. A study of the range of the parameters β
and Eo that are critical for determining the initial condi-
tions from the coarse-grained atomistic data that lead to

shear banding would be beneficial in guiding constitutive
theory development, but also, eventually, in guiding alloy
development. Criteria for the ability of a single perturba-
tion off a flat, uniform χ0 to grow and localize into a shear
band in one-dimension have already been preformed [62].
More generalized criteria still need to be developed to
apply to the two and three-dimensional coarse-grained
atomistic data under non-idealized conditions, e.g. where
there exist fluctuations from the background with a non-
zero mean. An understanding of this sort could connect
the level of coarse-graining directly to the initial condi-
tion, and allow acceptable levels of coarse-graining which
optimize shear banding to be more clearly defined.
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