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We investigate with experiments and novel mapping the structure of a hexagonally ordered fil-
ament bundle that is held near its ends and progressively twisted around its central axis. The
filaments are free to slide relative to each other and are further held under tension-free boundary
conditions. Measuring the bundle packing with micro x-ray imaging, we find that the filaments
develop the helical rotation Ω imposed at the boundaries. We then show that the observed struc-
ture is consistent with a mapping of the filament positions to disks packed on a dual non-Euclidean
surface with a Gaussian curvature which increases with twist. We further demonstrate that the
mean inter-filament distance is minimal on the surface which can be approximated by a hemisphere
with an effective curvature Keff = 3Ω2. Examining the packing on the dual surface, we analyze the
geometric frustration of packing in twisted bundles and find the core to remain relatively hexago-
nally ordered with inter-filament strains growing from the bundle center, driving the formation of
defects at the exterior of highly twisted bundles.

I. INTRODUCTION

Twisted bundles of filaments are widely encountered in
ropes, yarns, animal tissue, and bacterial flagella [1–6].
A twisted geometry has been shown to lead to strength-
ening in materials ranging from textiles to carbon nan-
otube bundles [7, 8], rich timber in spider silk [9, 10],
and resonances in photonic crystal fibers [11]. Despite
their broad use, the organization of constituent quasi-
1D filaments in twisted bundles remain a long-standing
and unsolved problem, even for the simplest case of fila-
ments with uniform circular cross sections. Long appre-
ciated by textile scientists [2, 7, 12], the packing problem
can be viewed from the perspective of a 2D planar tran-
sect through the bundle, i.e., parallel, untwisted bundles
appear as constant diameter circle packings, and hence,
permit uniform, hexagonal close packing. In contrast,
application of twist inclines filaments with respect to the
plane, leading to planar sections filled with apparently
non-circular elements [13–15], whose shape and orienta-
tion vary throughout the packing [16].

From the geometric perspective of packing variable-
shape elements in the 2D plane, it is intuitive that im-
posing twist to an initially close-packed array requires the
packing to deform to avoid overlaps. Far less obvious is
how precisely the local and global features of the packing
evolve with progressively increasing twist. Spacing be-
tween quasi-1D filaments is characterized by distance of
closest separation, dependent on both shape and orienta-
tion of filaments. The local constraints of non-overlap are
easily formulated in the plane normal to a given filament:
center-to-center separation to all neighbors must not be
less than the diameter, d, in this plane. Without re-
sorting to variable shape elements, the relative variation
of the reference plane and the local filament orientation
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throughout the bundle makes it impossible to represent
the contact structure of the entire bundle simply in that
plane.

Remarkably, a recently developed approach shows that
inter-filament distances are instead more straightfor-
wardly represented by mapping filament positions onto
a non-Euclidean surface [3, 16]. This dual surface has
azimuthal symmetry and a positive Gaussian curvature
proportional to the square of bundle twist. The geodesic
distances between points on the dual surface are equiva-
lent to separations between corresponding helical curves
in the bundle. Thus, the packing of constant-diameter
disks on this dual surface properly encodes both the lo-
cal and global constraints imposed by non-overlap in 3D
twisted, multi-filament bundles within a single 2D man-
ifold. To date, this geometric mapping has been ex-
ploited to understand complex patterns of topological
defects [17–19] and morphological selection [20] favored
in models of cohesive ground-states of twisted bundles.
However, a physical demonstration of a filament bun-
dle which actually tests the underlying assumptions of
the geometric mapping of inter-filament contact to our
knowledge has never previously been accomplished.

Here, we develop new experiments to understand the
evolution of a nominally hardcore repulsive bundle with
twist imposed and test the mapping equivalence by per-
forming x-ray tomography of the filament shapes and
positions throughout the 3D structure. Rather than
groundstate or equilibrium structure, our interest is in
the collective deformation of the filament packing as
the bundle is progressively twisted starting from a par-
allel, closed-packed hexagonal arrangement. We first
show that the specific pattern of collective deforma-
tion in twisted bundles is a consequence of the non-
trivial constraints on the inter-filament spacing imposed
by non-parallel orientation of the filaments. We then
demonstrate that the mapping of filament positions onto
the quasi-hemispherical surfaces accurately encodes the
inter-filament contact distances. These experiments ver-
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FIG. 1. (a) A schematic of a fiber bundle held within two
hexagonal clamps that are twisted through a prescribed an-
gle α. Bundle transects obtained with x-ray scanning corre-
sponding to (b) α = 0◦, (c) α = 129◦, and (d) α = 176◦.

ify that mechanically-imposed longitude twist of a bundle
introduces geometric frustration to the lateral packing of
filament, require non-equal spacing of filaments for any
finite measure of twist.

II. EXPERIMENTAL SYSTEM

A schematic of the experimental system is shown in
Fig. 1(a). The bundle consists of hollow polypropy-
lene rods arranged initially in a hexagonal lattice such
that the bundle sides corresponds to nine filaments.
The filaments have circular cross sections with diameter
d = 3.1 ± 0.06 mm, thickness t = 0.2 ± 0.01 mm, length
L = 150 mm. The bending or flexural modulus of the
filament is measured as discussed in Appendix A with
a standard 3-point bending test apparatus and found to
be 3.3 GPa. The stretching modulus of the filament used
is immeasurably high on this scale and therefore the fil-
aments can be treated as inextensible. The bundle is
held together near its ends by two clamps with a hexag-
onal cross section in which the filaments fit snuggly. The
clamps are cast out of vinylpolysiloxane with Young mod-
ulus of 384 kPa which allows the bundle cross section to
expand as it is twisted. The clamps, separated by dis-
tance Lc/d = 36, are then further mounted inside rigid
circular end caps of a circular cylinder. A twist is applied
by keeping the bottom fixed and rotating the top clamp
through a prescribed angle α as shown in Fig. 1(a). The
filaments are allowed to slide freely relative to each other
as they bend by adding a layer of talc. Thus, the fila-
ments do not experience any significant stretching along
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FIG. 2. (a-c) Reconstructed filament bundles color coded
according to the tilt angle θ of the filament shown in the color
bar. The maximum tilt angle θmax = 0◦ (a), θmax = 20◦ (b),
and θmax = 30◦ (c). (d) θ as a function of the helical radius
ρ binned in d/2 intervals. The lines are linear fits. (e) The
average helical rotation Ω as a function of the helical radius
ρ binned in d/2 intervals. The bars correspond to the root
mean square of Ω measured for filaments in that bin, and the
horizontal dashed lines to the mean values Ωm.

their length as no tension is applied at the ends.

III. MEASUREMENT OF BUNDLE
STRUCTURE

We probe the internal structure of the fiber bundle
with a Varian Medical Systems micro focus x-ray Com-
puted Tomography instrument by scanning a central re-
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FIG. 3. Disks plotted on a surface given by Eq. 1 for (a) θmax = 20◦ and (b) θmax = 30◦. (c,d) The probability distribution
function (PDF) of distances shown in the legend. ∆ff and ∆dd are observed to be similar, and distinct from the PDF of ∆pp

for both (c) θmax = 20◦ and (d) θmax = 30◦.

gion of the bundle away from the clamps. Each scan
consists of 148 transects equally spaced along the bundle
axis z and separated by 0.0226d. Fig. 1(b) shows a sam-
ple transect before twist is applied, and Fig. 1(c-d) show
examples for progressively higher α. While the filament
cross sections appear circular before twist is applied, it
can be noted that they appear increasing elliptical as the
filaments tilt in response to twist. To quantify the posi-
tion and orientation of individual fibers, we first locate
the intersection of each filament in a horizontal slice us-
ing a segmentation algorithm implemented in MATLAB.
Then, the cross section of each filament is fitted to an
ellipse to extract its center, and then tracked from one
slice to the next to determine the coordinates of its cen-
tral axis [21]. These points are then fitted with a helix
characterized by its radius ρ and helical rotation Ω as
discussed in Appendix B.

We then use those parameters to reconstruct the fiber
bundle corresponding to the length between the clamps
in Figs. 2(a-c). Each filament is denoted with a color
corresponding to the angle θ subtended by the filament
with the bundle axis according to the color bar. Fig. 2(d)
shows a plot of θ measured as a function of ρ binned in
d/2 intervals. For a given imposed α, we observe that
θ increases linearly from 0 at the center of the bundle
to the filaments furthest from the center. In the case of
the three bundles shown in Figs. 2(a-c), we measure the
angle of tilt of the 48 filaments in the outer most layer
and find the maximum tilt angle θmax = 0◦, 20.5± 1.4◦,

and 28.8±1.9◦, respectively. For simplicity of annotation,
we round up the values of these angles to be θmax = 0◦,
20◦, and 30◦.

We plot the measured helical rotation Ω as a function
of ρ binned in d/2 intervals in Fig. 2(e). We find that Ω is
indeed constant for each imposed twist with mean helical
rotation Ωmd = (5.0 ± 0.6) × 10−2 for θmax = 20◦, and
Ωmd = (6.8±0.6)×10−2 for θmax = 30◦. To understand
these mean values, one can calculate the helical rotation
by assuming that all filaments in the bundle are twisting
through the same angle α over the length Lc. Then, Ω =
α/Lc. This implies that Ωd = 4.7× 10−2 and 7.4× 10−2

for α = 129◦ and α = 176◦, respectively. These values
can be noted to be in agreement with the measured values
within experimental error.

Thus, one concludes that the filaments self-organize
to have roughly the same helical rotation, implying that
filaments maintain neighbor contacts along their length,
which is presumably favored in a compact bundle. An
important assumption the mapping model [3] is that Ω
for the twisted filament bundle is constant and the struc-
ture in any bundle transect is the same as in any other
transect to within a rotation. Our system gives at least
one example of an experimental realization where this
assumption is true.
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IV. DUAL NON-EUCLIDEAN SURFACE

To understand the disruption of hexagonal packing in
the 2D planar section with twist, we now analyze the
bundle using the mapping to the non-Euclidean surface
given by [16]:

X(ρ, φ) = ρ cos θ(ρ)
(

cosφx̂+ sinφŷ
)

+ z(ρ)ẑ , (1)

where x̂, ŷ and ẑ are Cartesian directions, φ is the az-
imuthal coordinate, and

cos θ(ρ) = 1/
√

1 + (Ωρ)2. (2)

The radial distance ρ is mapped to an arc-distance mea-
sured from the top of “dome-like” surface, with a profile
that satisfies

∂z/∂ρ = −
√

1− cos6 θ(ρ), (3)

which can be integrated to further obtain z(ρ) in Eq. 1.
From Eqs. (2) and (3) it is straightforward to show
for small-ρ (near to the center of the bundle) z(ρ) '
−
√

3/2|Ω|ρ2, such that the radius of curvature at ρ→ 0

is rs(ρ → 0) = |d2z/dρ2|−1 = |Ω|/
√

3, or equiva-
lently the dual surface has a positive Gaussian curva-
ture Keff = 3Ω2 at its center. Intuitively, the positive
curvature of this surface can be linked to the fact that
tilted outer filaments subtend a larger distance along the
azimuthal distance (by a factor 1/ cos θ(ρ)) than they
would if not tilted. Like the shortening of “latitudes” a
distance ρ from the pole of a globe, there is increasing
“less room” available from filaments placed at further ρ
from the bundle center than there would be in a parallel
bundle.

Fig. 3(a) and Fig. 3(b) show the surfaces correspond-
ing to θmax = 200 and θmax = 300. The tangent planes
of this curved surface match the distance constraints of
packing helical filaments in the bundle normal to their
backbone orientation. Hence, equal diameter d disks
placed at mapped filament positions represent the con-
tact structure of circular filaments of the same diameter,
consistent with the apparent close-contact of neighbor-
ing disks on both surfaces. We first quantitatively test
the distance representation of the non-Euclidean surface,
and then exploit the mapping to analyze and understand
features of the deformation pattern.

V. TESTING THE PACKING EQUIVALENCE

The equivalence between the twisted bundle packing
and the disk packing on a curved surface presumes that
the minimum distance between two nearest neighbor fila-
ments in the bundle determined by center-to-center pack-
ing ∆ff maps onto the geodesic distance normalized by
the filament diameter, ∆dd, measured between equivalent
points on a 2D surface of specific curved geometry. We

first test this quantitatively by comparing the probabil-
ity distribution function (PDF) of ∆ff and PDF of ∆dd

(where both distances are normalized by the filament di-
ameter) in Fig. 3(c) for θmax = 200 and in Fig. 3(d) for
θmax = 300. In calculating ∆dd, we assume the specific
surface shape predicted by Eq. (1). In both cases, we
find that the PDFs match within experimental errors,
demonstrating that the perpendicular distance between
filaments indeed correspond to a mapped packing of disks
on the non-Euclidean surface. To contrast with the dis-
tributions obtained if the distance between the filaments
is measured in the planar transect ∆pp, we observe that
those PDFs are distinct. One clearly observes that PDF
of ∆pp is qualitatively shifted to larger separations, indi-
cating that this perspective fails to provide an accurate
measure of true inter-filament spacing.

Next, we confirm that the shape given by the surface
in Eq. (1) provides the optimal accuracy in describing
inter-filament spacing. Specifically, we consider mapping
filament positions to surfaces of variable positive Gaus-
sian curvature. We further confirm that the surface given
by Eq. 1 indeed corresponds to the minimum separation
between the filaments by mapping them on to surfaces
which have smaller as well as greater Gaussian curva-
ture. To simplify the calculations, we approximate the
non-Euclidean surface given by Eq. 1 with sphere of ra-

dius rs = K
−1/2
eff as shown in Fig. 4(a). We map filament

centers to spheres of variable radii rs and calculate the
agreement of inter-element spacing through the parame-
ter

δ2(rs) =
1

N

N∑
i=1

N−1
i

Ni∑
j=1

(∆ij
ff −∆ij

dd)
2 , (4)

where j labels each of the Ni neighbors of ith filament
in the bundle, N is the total number of filaments in the
bundle and ∆ij

dd is determined according to the geodesic
distances on the sphere of radius rs. We plot δ2 as a
function of the Gaussian curvature Keff = r−2

s of the
corresponding sphere in Fig. 4(b) for each θmax. Here,
Keff is scaled by the corresponding Ω in order to col-
lapse the data on to a single curve. We observe that δ2

has a minimum at Keff/Ω
2 = 3, in precise agreement

with the Gaussian curvature predicted by the geomet-
ric mapping calculated and reported in Ref. [16]. This
demonstrates that not only does the mapping of filaments
to a positively-curved surface provide a quantitatively
more accurate description of inter-filament spacing than
the naive view in the planar cut, but that the specific
relationship between bundle twist Ω and positive sur-
face curvature implied by Eq. (1) is required to capture
the metric constraints in helically twisted, multi-filament
packings.
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FIG. 4. (a) Comparison of Eq. 1 (solid surface) with spherical
approximation for θmax = 30◦ (mesh) for θmax = 30◦. (b) δ2

as a function of the Gaussian curvature Keff is observed to
reach a minimum when Keff/Ω

2 = 3 for both twist angles
consistent with the quasi-hemispherical mapping.

VI. PACKING ORDER AND STRAIN

An illustration of the discrepancy between the dis-
tance representation of the planar cut of the bundle and
of the mapped packing on the curved surface, can be
made through a comparison of the mean strain of inter-
filament distances. We define a nearest neighbor strain
εn = (〈∆〉−1), where 〈..〉 corresponding to averaging over
the nearest neighbors, and ∆ is computed either using
∆pp, or instead, on the curved surface described by Eq.
(1), using ∆dd. We compare εn in the planar transect
in Fig. 5(a,b) with those on the non-Euclidean surface
in Fig. 5(c,d). A 3D view can be found in the corre-
sponding animated GIFs included in the Supplementary
Documentation [22].

While this mapping onto the surface shows that the
filaments remain more-tightly packed than might appear
while viewing a planar transect, it can be nonetheless
noted that true inter-filament strains, develop increas-
ingly in the outer layers of the filament bundles. One
observes in both cases that the strains predicted from fil-
ament positions in the 2D planar cut (Fig. 5a-b) consis-
tently overestimate the inter-filament strains measured
in 3D, or equivalently, between the mapped positions
on the non-Euclidean surface (Fig. 5c-d). These strains
are the unavoidable consequence of geometric frustra-
tion encountered when packing lattices on surfaces with
non-zero Gaussian curvature [23, 24], and equivalently in
twisted bundles.

To understand the nature of frustration on positively-

curved (e.g. spherical) surfaces, consider an annular ring
of elements a distance r from the center of an initially
flat 2D lattice, which contains roughly dN(r) ' 2πρ0 dr
elements, where ρ0 is the areal density. Forcing the lat-
tice onto a spherical surface of radius Rs while maintain-
ing the same distance from the center leads to a reduc-
tion of the perimeter of the annulus (the latitude at r)
to `(r) ' 2πr(1 − r2/6R2

s). Hence, if the same dN(r)
are forces to occupy this annulus, the lattice is put un-
der a compression in the hoop direction, and one which
grows in magnitude with the distance from the center as
∼ (r/Rs)

2. If the lattice elements resist compression, like
the nominally incompressible cross-section of filaments in
these experiments, then some expansion outward is re-
quired to remove, or mitigate overlaps. This is outward
expansion, or aspiration, is precisely what is observed
in the cross-section of bundles in Figs. 1(c) and (d),
where outer filament radii expand by 6% and 9%, for
θmax = 20◦ and 30◦, respectively. Thus, the incompress-
ible lattice packing responds to imposing of twist, by an
outward expansion removes that overlaps along the hoop
direction, at the expense of breaking contacts between
radially-separated neighbors, a deformation pattern visi-
ble in the “true strain” maps of Fig. 5(c),(d).

While low to modest twist bundles result in rela-
tively distributed patterns of inter-filament strain (as
in Fig. 5c), larger twists ultimately disrupt the quasi-
triangular packing, leading to the formation of localized
defects at the bundle exterior. Previous theory [18] and
simulations [25] of the inter-filament stresses in twisted
cohesive bundles, as well as the analogous problem of
crystalline order on spherical caps [26, 27], has shown
that large-N groundstates favor a similar development
of lattice defects with dislocations decorating their outer
compressive regions of the bundle above a critical twist.
In the present athermal system defect motion is expected
to be kinetically inhibited (e.g. by the Peierls bar-
rier [28]). Nonetheless, the localized deformations high-
lighted by large strains in Fig. 5(d) may then be evidence
of incipient dislocations gliding in from the bundle sur-
face to relax geometrically imposed compression, a pos-
sible mode of bundle plasticity.

VII. CONCLUSIONS

We find that the structure of twisted elastic observed
is consistent with a theoretical approach which postu-
lates the equivalence between a packing of twisted fila-
ments and a packing of disks on a non-Euclidean sur-
face, a valuable tool for understanding the complex local
and global constraints of packing imposed by twist. Our
results further show the robustness of the approach be-
cause the filaments in the experiments have finite elas-
ticity and residual friction. Perhaps most non trivial is
the fact that the approach applies to bundles that are
held together and twisted mechanically only at the their
ends, and yet naturally, adopt the constant-pitch config-
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FIG. 5. Planar transect of the bundle corresponding to (a)
θmax = 20◦ and (b) θmax = 30◦ in a plane perpendicular to
the bundle axis labeled according to the strain εn. (c,d) The
corresponding disk packing on the dual surface given by Eq. 1
viewed from above. εn is observed to be significantly lower by
comparison.

urations underlying the strict mapping from 3D spacing
to a 2D non-Euclidean surface. Applying the mapping
to the experimental data, we were able to calculate the
pattern of inter-filament strains and show that the core
of the bundle largely preserves the hexagonal symmetry,
which is less apparent from deformation pattern of the
planar transect.

Further, by examining the constraints imposed by the
incompressibility of the filaments, we are able to explain
the resulting expansion of the outer bundle with increas-
ing twist. This study gives the first experimental evi-
dence of how the non-trivial constraints contact between
extended and flexible elements lead to new responses as-
sociated with imposition on geometric frustration into an
initially unfrustrated packing. Future work will build on
this work to develop and analyze the precise nature of
the collective response of the initially unfrustrated pack-
ing to the imposition of geometric frustration through
bundle twist, and further the mechanical work needed to
bend filaments and reorganize their packing upon twist.
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FIG. 6. (a) A schematic of the 3-point flexural test system.
(b) The measured load versus deflection graph can be de-
scribed by a linear fit.

Appendix A: Measurement of the flexural modulus

Fig. 6(a) shows a schematic diagram of the standard
three point test used to determine the flexural modu-
lus of the filaments. A single filament is placed on two
support pins which are arranged orthogonal to the axis
of the rod. The weight of the filament is negligible be-
cause no observable deflection due to gravity is observed.
We obtained the load-versus-deflection curve, shown in
Fig. 6(b), by gradually increasing the deflection in steps
of 1 mm and measuring the corresponding load with a
Mark-10 force sensor.

Then, the flexural or bending modulus of elasticity is
obtained by using the definition

B =
L3

48I

F

D
, (A1)

where, F is the applied load, D is the deflection, L is the
filament length which is similar to the distance between
the supports, and I is the momentum of inertia of the
filament about its axis. For a hollow filament with an

inner radius r1 and an outer radius r2, I = π
4 (r2

4 −
r1

4). From the fit, we obtain the flexural modulus to be
3.3 GPa.

Appendix B: Filament shape

The measured position of the center of each filament
obtained from x-ray images in 148 horizontal cross sec-
tions connected by solid black lines is shown in Fig. 7.
The data is fitted with a helix with radius ρ and helical

FIG. 7. Helical fit to experimental data corresponding to
θmax = 30◦. The color of the helix which is extended beyond
the data for clarity corresponds to the angle θ that the fila-
ment subtends with the vertical axis of the filament bundle.

rotation Ω given by the following parametric equations

x = xc + ρ cos t, (B1)

y = yc + ρ sin t, (B2)

z = z0 +
1

Ω
t, (B3)

Where, x, y and z are Cartesian coordinates of the helix
which evolve with parameter t. A two step algorithm, im-
plemented in MATLAB, is used to fit the data in which,
we first find the parameters xc, yc and ρ for the best
fitting circle in the x − y plane, and then fit z0 and Ω.
Each line is denoted with a color corresponding to the
local twist angle θ of the filaments.


