
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Stochastic lattice model of synaptic membrane protein
domains

Yiwei Li, Osman Kahraman, and Christoph A. Haselwandter
Phys. Rev. E 95, 052406 — Published 16 May 2017

DOI: 10.1103/PhysRevE.95.052406

http://dx.doi.org/10.1103/PhysRevE.95.052406


Stochastic lattice model of synaptic membrane protein domains

Yiwei Li, Osman Kahraman, and Christoph A. Haselwandter
Department of Physics & Astronomy and Molecular and Computational Biology Program,

Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA

Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with
scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In
common with other membrane protein domains, synaptic domains are characterized by low protein
copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We
study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics
at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly,
stability, and characteristic size of synaptic domains observed in experiments. We show that our
stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion
in crowded membranes. Through a combination of analytic and numerical solutions of the master
equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo
simulations, we find substantial discrepancies between mean-field and stochastic models for the re-
action dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic
receptors and scaffolds suggested by previous experiments and mean-field calculations, we show
that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple
physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed
at synaptic domains, key features of the observed single-molecule trajectories, and spatial hetero-
geneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane.
Our work sheds light on the physical mechanisms and principles linking the collective properties of
membrane protein domains to the stochastic dynamics that rule their molecular components.

PACS numbers: 87.16.-b, 87.19.lp, 87.10.Mn

I. INTRODUCTION

The stability and plasticity of synapses are thought
to play central roles in memory formation and learning
[1, 2]. In particular, neurotransmitter receptor molecules,
concentrated in postsynaptic membrane domains along
with scaffolds and other kinds of proteins [3, 4], are
crucial for signal transmission across chemical synapses
[2, 5–7]. The strength of the transmitted signal depends
on the number of receptors localized in synaptic domains
[2, 6], and regulation of the receptor number in synaptic
domains provides one mechanism for postsynaptic plas-
ticity [8–10]. With the advent of in vivo superresolu-
tion light microscopy [11–14], the multiscale properties of
synaptic domains—from the stochastic diffusion trajecto-
ries of individual synaptic receptors to the overall size and
stability of synaptic domains—can now be studied quan-
titatively [3, 4, 10, 15]. A central discovery [3, 4, 10, 15]
here is that synaptic receptors [12, 16, 17], as well as
their associated scaffolds [3, 18–20], turn over rapidly,
with individual molecules entering and leaving synaptic
domains on typical time scales as short as seconds. In
contrast, synaptic domains of a well-defined characteris-
tic size can persist over months or even longer periods of
time [21, 22], which may [2–4, 6, 8–10, 15] constitute part
of the cellular basis for memory formation and learning.

To explain the stability and characteristic size of
synaptic domains in the face of rapid molecular turnover,
a number of phenomenological models for membrane do-
main formation [23–28]—based on, for instance, balanc-
ing receptor fluxes into and out of synaptic domains or

spatially varying effective reaction and diffusion rates—
have been proposed. Through an interplay between
quantitative experiments on minimal model systems lack-
ing most of the synaptic machinery (for instance, sin-
gle transfected fibroblast cells) and theoretical modeling
it has been demonstrated [20, 29–37] that the reaction
and diffusion properties of receptors and their associated
scaffolds at the cell membrane are sufficient for the self-
assembly of stable synaptic receptor-scaffold domains of
the characteristic size observed in neurons. In partic-
ular, the presence of a presynaptic terminal is not es-
sential for the self-assembly of stable synaptic receptor-
scaffold domains. The reaction-diffusion model of synap-
tic domains [36, 37] describing these experiments ex-
plains, based on a reaction-diffusion (Turing) instabil-
ity [38] of the mean-field equations governing receptor-
scaffold reaction-diffusion dynamics, how interactions be-
tween receptors and their associated scaffolds, together
with the diffusion properties of each molecule species at
the cell membrane, are sufficient for the spontaneous for-
mation, stability, and characteristic size of synaptic do-
mains. For molecular reaction and diffusion rates con-
sistent with experimental measurements on synaptic re-
ceptors and scaffolds [20, 29–37], the reaction-diffusion
model yields [36, 37], starting from random initial condi-
tions, the self-assembly, stability, and characteristic size
of synaptic domains observed in neurons. Conversely, it
has been shown [20, 36, 37] that self-assembly of synaptic
domains can be prevented in both experiment and the-
ory through, for instance, selective modification of the
reaction properties of scaffolds.

In common with other membrane protein domains [39–
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42], synaptic domains are characterized [3, 4, 6, 12, 15–
17, 43] by low protein copy numbers (≈ 10–1000) and
protein crowding. Previous work [44–61] suggests that
the coupling between molecular noise and the nonlinear
reaction-diffusion dynamics induced by protein crowding
can lead to a rich interplay between fluctuations and de-
terministic dynamics at synaptic domains. Indeed, ex-
periments [15, 43] and theoretical modeling [23, 24, 26–
28] indicate that synaptic domains undergo collective
fluctuations that may affect synaptic signaling. In a
previous paper [62] we demonstrated that the stochas-
tic lattice model associated with the mean-field reaction-
diffusion dynamics at synaptic domains [36, 37] yields,
for molecular reaction and diffusion rates consistent with
experimental measurements on synaptic receptors and
scaffolds [20, 29–37], emergence of synaptic domains
in the presence of rapid stochastic turnover of individ-
ual molecules, provides a quantitative link between the
molecular noise inherent in reaction-diffusion processes
and collective fluctuations in synaptic domains, and al-
lows prediction of the stochastic dynamics of individual
synaptic receptors and scaffolds at the cell membrane.
In the present article we build on this previous work [62]
to provide a detailed discussion of the stochastic lattice
model of receptor-scaffold reaction-diffusion dynamics at
synaptic domains [36, 37, 62] and its relation to the corre-
sponding mean-field model. We show [62] that molecular
noise can yield substantial deviations from mean-field re-
sults for the receptor-scaffold reaction-diffusion dynamics
at synaptic domains, and that stochastic lattice models
can be employed successfully to provide quantitative in-
sights into the single-molecule and collective dynamics of
membrane protein domains [12, 39–42].

This article is organized as follows. We first summa-
rize, in Sec. II, the stochastic lattice model of receptor-
scaffold reaction-diffusion processes at synaptic domains
[37, 62], which is defined mathematically by a suitable
master equation (ME), and its relation to the corre-
sponding mean-field model [36, 37] formulated in accor-
dance with the standard formalism of chemical dynam-
ics [44–56, 63–71]. We then provide a detailed discus-
sion of the relation between stochastic and mean-field
results for the diffusion-only (see Sec. III) and reaction-
only (see Sec. IV) systems. We derive analytic solutions
of the ME for special cases of the reaction dynamics at
synaptic domains, and carry out extensive kinetic Monte
Carlo (KMC) simulations of the ME for the diffusion-
only and reaction-only systems. Allowing for an inter-
play between reaction and diffusion processes at the cell
membrane we explore, in Sec. V, collective fluctuations
in synaptic domains [15, 43], the molecular turnover at
synaptic domains measured in fluorescence recovery after
photobleaching (FRAP) experiments [6, 12, 20], and the
stochastic single-molecule dynamics at synaptic domains
[6, 12, 15–17, 31–33]. We conclude, in Sec. VI, with a
summary and discussion of our key results. Appendices A
and B provide mathematical details pertaining to our an-
alytic solutions of the ME for the reaction-only system.

II. REACTION-DIFFUSION MODEL OF

SYNAPTIC RECEPTOR-SCAFFOLD DOMAINS

In this section we summarize the stochastic lattice
model of the reaction and diffusion dynamics of synap-
tic receptor (R) and scaffold (S) molecules developed
in Refs. [36, 37, 62], which we use throughout this ar-
ticle (see Fig. 1). In this model, the membrane is dis-
cretized into membrane patches (lattice sites). We as-
sume that chemical reactions only take place among
receptors or scaffolds occupying the same lattice site,
with random hopping of receptors and scaffolds between
nearest-neighbor lattice sites. We focus here on the most
straightforward scenario of a 1D system of length L with
K patches of size a = L/K. The 2D formulation of our
model [36, 37] shows [62] similar stochastic dynamics of
synaptic domains as the 1D formulation we consider here.
We denote the hopping rates of receptors and scaffolds
at lattice site i by Dr

i /τr and Ds
i /τs, where Dr

i (t) and
Ds

i (t) model spatiotemporal variations in the receptor
and scaffold hopping rates.

Synaptic membrane domains are crowded with
molecules [3, 15], which is expected [4, 6, 16, 17, 43] to af-
fect diffusion and reaction processes at synaptic domains.
To account for molecular crowding in our model, we im-
pose [36, 37, 62] the constraint that the rates of all reac-
tion and diffusion processes that increase the receptor or
scaffold number at a lattice site i are ∝ (1−N r

i −Ns
i ),

where N r
i /ǫ

r and Ns
i /ǫ

s are the occupation numbers of
receptors and scaffolds at site i with the normalization
constants ǫr and ǫs so that, at each site, the number of
receptors and scaffolds cannot increase beyond 1/ǫr and
1/ǫs, respectively. As a result, we have 0 6 N r

i +Ns
i 6 1

for all i. Analogous phenomenological models of crowd-
ing have been employed previously in a variety of different
contexts [47, 54, 60, 61, 72]. Based on recently-developed
computational methodologies [73–79] for the description
of reaction and diffusion processes at molecular scales,
the simple model of crowding we focus on here could be
connected to more detailed molecular models of the in-
teractions between receptors and scaffolds.

In our stochastic reaction-diffusion model of synaptic
domains [36, 37, 62], the state of the system at time t
is completely characterized by the set of molecular oc-
cupation numbers N = {Nα} with α = r, s, where
N

α(t) = (Nα
1 (t), N

α
2 (t), · · · , N

α
K(t)). The stochastic dy-

namics of the system are governed by the ME [80, 81]

∂P

∂t
=
∑

m

[

W (N−m;m)P (N−m, t)−W (N;m)P (N, t)
]

,

(1)
where P (N, t) is the probability that the system is in
state N at time t and W (N;m) is the transition rate
from state N to state N + m. Unless indicated other-
wise, we use here [36, 37, 62] random initial conditions
of N satisfying 0 ≤ N r

i + Ns
i ≤ 1 for all i with periodic

boundary conditions.
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FIG. 1. Schematic of the stochastic lattice model of the re-
action dynamics of synaptic receptor and scaffold molecules
[36, 37, 62] considered in this article. To model molecular
crowding, the rates of all reaction and diffusion processes in-
creasing the molecule number at a given lattice site i, de-
lineated by vertical ticks, are taken to be ∝ (1−Nr

i −Ns
i ).

The transition rates associated with the indicated reaction
processes are given by Eq. (6) with Eqs. (15)–(23).

The total transition rateW in Eq. (1) can be written as

W = Wreact +Wdiff (2)

in our reaction-diffusion model of synaptic domains [36,
37, 62], where Wreact and Wdiff denote contributions to
W due to receptor and scaffold reaction and diffusion
processes at the cell membrane. For the receptor and
scaffold diffusion processes we have

Wdiff = W r
diff +W s

diff (3)

with Wα
diff = W

(1;α)
diff +W

(2;α)
diff , in which the W

(1,2;α)
diff de-

note the receptor and scaffold transition rates for hopping
from site i to site i± 1,

W
(1,2;α)
diff (N;m) =

1

2ǫατα

∑

i

Dα
i N

α
i (1−N r

i±1 −Ns
i±1)

δ (mi + ǫα) δ (mi±1 − ǫα)
∏

j 6=i,i±1

δ (mj) ,

(4)

where the summation runs over the entire system, δ(x) is
the Dirac-delta function, and the term (1−N r

i±1−Ns
i±1)

captures the effects of molecular crowding on receptor
and scaffold diffusion [36, 37]. We use Dirac-delta func-
tions, rather than Kronecker-delta functions, in Eq. (4)
in order to make the connection between the ME (1) and
the corresponding mean-field equations more transpar-
ent, which amounts to replacing the summation in the
ME (1) by an integral over all (continuous) m [82]. The
factor of 1/ǫα in Eq. (4) arises because we follow here
the convention [62] that Dα

i /τα is the hopping rate per
molecule.
The contribution to W due to reactions is given by

Wreact =
∑

l

W
(l)
react , (5)

in which each W
(l)
react corresponds to a particular reaction

among receptors or scaffolds. TheW
(l)
react take the general

form

W
(l)
react(N;m) =

∑

i

R
(l)
i

∏

j 6=i

δ (mj) , (6)

where the summation runs over the entire system and,
as in Eq. (4), we use Dirac-delta functions so as to allow

for continuous m in the ME (1). The R
(l)
i are dictated

by the receptor or scaffold reaction dynamics [6, 12, 16,
17, 36, 37], and we return to their specific forms below.
To derive the mean-field equations associated with our

stochastic lattice model [37] we introduce the continuum
representations Ri(t) and Si(t) of N r

i (t) and Ns
i (t), re-

spectively. Based on Eqs. (4) and (6), the transition rates
in our reaction-diffusion model can be directly extended
to the continuous occupation numbers Ri(t) and Si(t),
allowing the ME (1) to be transformed [81–84] into the
more tractable lattice Langevin equations [37]

dRi

dt
= K

(r;1)
i + η

(r)
i , (7)

dSi

dt
= K

(s;1)
i + η

(s)
i , (8)

where the K
(α;1)
i are the first moments of the contribu-

tions to W changing the receptor or scaffold distribution

in the system, and the Gaussian noise terms η
(α)
i have

zero mean and covariance

〈η
(α)
i (t1) η

(α)
j (t2)〉 = K

(α;2)
i,j δ(t1 − t2) , (9)

in which the K
(α;2)
i,j are the second moments of the con-

tributions to W changing the receptor or scaffold distri-
bution in the system.
The continuum limit of the deterministic parts of the

lattice Langevin equations (7) and (8) yields [36, 37] the
mean-field equations

∂r

∂t
= F r(r, s)− νr∇·Jr , (10)

∂s

∂t
= F s(r, s)− νs∇·Js , (11)

with all parameters determined directly by the ME (1),
where r(x, t) and s(x, t) are the continuum fields associ-
ated with Ri(t) and Si(t) in Eqs. (7) and (8) with the
noise terms set to zero,

Qi±n(t) =

∞
∑

k=0

∂kq

∂xk

∣

∣

∣

∣

x=ia

(±an)k

k!
, (12)

in which Qi ≡ Ri, Si and q ≡ r(x, t), s(x, t), the poly-
nomials Fα(r, s) in Eqs. (10) and (11) capture chemi-
cal reactions among receptors or scaffolds as in the stan-
dard formalism of chemical dynamics [44–56, 63–71], the
να = a2/2τα are the receptor and scaffold diffusion coef-
ficients, and the diffusion currents are given by

J
r = −Dr (1− s)∇r −Drr∇s− (1− r − s) r∇Dr ,

(13)

J
s = −Ds (1− r)∇s−Dss∇r − (1− r − s) s∇Ds ,

(14)
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where the Dα(x, t) denote the continuum representa-
tions [37] of Dα

i obtained via Eq. (12) with Qi ≡ Dα
i

and q ≡ Dα(x, t). The diffusion currents in Eqs. (13)
and (14) follow directly [37] from the random hopping of
receptors and scaffolds with rates Dα

i /τα together with
the constraint that the rates of diffusion processes lo-
cally increasing the molecule occupancy at a given site
i are ∝ (1−N r

i −Ns
i ), as captured by Eq. (4). Non-

linear crowding terms equivalent to those in Eqs. (13)
and (14) have been studied previously in population bi-
ology [47, 54, 72] and in the context of general mod-
els of non-Fickian diffusion [60, 61]. Membrane-bound
reaction-diffusion systems similar to Eqs. (10) and (11)
occur in a variety of different contexts [36, 37, 49, 85–88].
We use glycine receptors and gephyrin scaffolds [3, 4,

6, 15–17, 43] as a model system to fix the reaction ki-
netics and diffusion coefficients in our reaction-diffusion
model of synaptic receptor-scaffold domains. We summa-
rize here the pertinent reaction-diffusion dynamics, and
refer the interested reader to Refs. [36, 37, 62] for a more
detailed discussion of how the reaction-diffusion model
considered here relates to the experimental phenomenol-
ogy of glycine receptors and gephyrin. We first note that,
at the lowest order, receptors and scaffolds may be ran-
domly removed from the cell membrane via endocytosis
as well as randomly inserted into the cell membrane, re-

sulting in the reactions R
k1−→ Rb, Rb

k2−→ R, S
k6−→ Sb,

and Sb
k7−→ S (Fig. 1). In these expressions, R and S rep-

resent receptor and scaffold molecules at the membrane,
while Rb and Sb stand for receptor and scaffold molecules
in the cytoplasmic “bulk” of the cell [36, 37], with the kl
denoting rate constants. The resulting transition rates
are given by Eq. (6) with [37, 62]

R
(1)
i =

k1
ǫr

N r
i δ (mi + ǫr) , (15)

R
(2)
i =

k2
ǫr

(1 −N r
i −Ns

i )δ (mi − ǫr) , (16)

R
(6)
i =

k6
ǫs

Ns
i δ (mi + ǫs) , (17)

R
(7)
i =

k7
ǫs

(1 −N r
i −Ns

i )δ (mi − ǫs) , (18)

yielding the additive contributions −k1r and k2(1−r−s)
to F r in Eq. (10), and −k6s and k7(1 − r − s) to F s in
Eq. (11). The rate constants kl in Eqs. (15)–(18) [as well
as the rate constants in Eqs. (19)–(23); see below] are
scaled by 1/ǫα because we use the convention [62] that kl
denotes the rate of removal from/insertion into the cell
membrane per molecule.
Furthermore, we note [36, 37, 62] that removal of re-

ceptors or scaffolds from the cell membrane may be fa-
cilitated by some mechanism that involves a temporary
increase in the local crowding of the cell membrane,

Mb + R
k3−→ Mb + Rb and Mb + S

k8−→ Mb + Sb (Fig. 1),
where Mb denotes an auxiliary bulk molecule. Because
we account here for the effects of molecular crowding,
these reactions yield contributions to the stochastic lat-

tice model that are distinct from R
k1−→ Rb and S

k6−→ Sb,
and result in the terms [37, 62]

R
(3)
i =

k3
ǫr

(1−N r
i −Ns

i )N
r
i δ (mi + ǫr) , (19)

R
(8)
i =

k8
ǫs

(1−N r
i −Ns

i )N
s
i δ (mi + ǫs) (20)

in Eq. (6). Equations (19) and (20) imply the addi-
tive contributions −k3(1− r − s)r to F r in Eq. (10) and
−k8(1− r − s)s to F s in Eq. (11), respectively.
Finally, we note that, as discussed previously [36, 37],

key experimental features of the reaction dynamics of
glycine receptors and gephyrin for self-assembly of synap-
tic domains [20, 29–36] are [6, 12, 16, 17, 36, 37] that
gephyrin can transiently bind glycine receptors as well
as other gephyrin molecules, with experiments and the-
ory suggesting [12, 20, 36, 37, 62] that trimerization of
gephyrin is a key reaction for self-assembly of synaptic
domains. Allowing for the same order of receptor reac-
tions as scaffold reactions, these considerations suggest

[37] the reactions Rb+S
k4−→ R+S, Rb+R+S

k5−→ 2R+S,

and Sb+2S
k9−→ 3S (Fig. 1), resulting in the terms [37, 62]

R
(4)
i =

k4
ǫr

(1−N r −Ns)Nsδ (mi − ǫr) , (21)

R
(5)
i =

k5
ǫr

(1−N r −Ns)N rNsδ (mi − ǫr) , (22)

R
(9)
i =

k9
2!ǫs

(1 −N r −Ns)Ns(Ns − ǫs)δ (mi − ǫs) (23)

in Eq. (6). Equations (21) and (22) yield the additive
contributions k4(1− r− s)s and k5(1− r− s)rs to F r in
Eq. (10), and Eq. (23) implies the additive contribution
k9(1− r − s)s2/2 to F s in Eq. (11).
Unless indicated otherwise, we use here the same val-

ues of kl as in Ref. [62] (see Table I) which, as dis-
cussed in Refs. [36, 37, 62], are consistent with exper-
iments on synaptic domains formed by glycine recep-
tors and gephyrin scaffolds. Similarly, we use [62], un-
less indicated otherwise, the diffusion coefficients νr =
102νs = 10−2µm2/s, with the corresponding hopping
rates 1/τα = 2να/a

2 in Eq. (1), consistent with ex-
periments on glycine receptors and gephyrin scaffolds
[6, 12, 16, 17, 20, 31, 36, 37]. For simplicity, we set
ǫr = ǫs ≡ ǫ and Dr = Ds = 1 throughout this arti-
cle. Distinct values of ǫr and ǫs could be used to pro-
vide a more detailed model of the receptor and scaffold
numbers at synaptic domains, while spatiotemporal vari-
ations in Dr or Ds could be used [36, 37], for instance,
to model the effects of pre- and postsynaptic interactions
on receptor or scaffold diffusion. Unless indicated other-
wise, we set ǫ = 1/100 and a ≈ 80 nm so that [46, 48] the
membrane patch size is smaller than the expected typical
size of synaptic domains [20, 29–37] but large enough to
accommodate multiple receptors and scaffolds, with size
≈ 5–10 nm for glycine receptors and gephyrin [89, 90].
As discussed in Sec. IV, we obtained exact analytic so-

lutions of the ME (1) for reaction-only systems involving
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TABLE I. Unless indicated otherwise, we use here the same
reaction kinetics and values of the dimensionless rate con-
stants as in Refs. [36, 62], which correspond to model C in
Ref. [37] and are consistent with experiments on glycine re-
ceptors and gephyrin scaffolds [6, 12, 16, 17]: (m1,m2, β, µ) =
b(0.4, 10, 0.5, 0.7) and (r̄, s̄) = (0.05, 0.05), with the right col-
umn in the table showing the connection between the nota-
tion used here and in Refs. [36, 37]. As in Ref. [62], we fix
the time units in our model by adjusting the rate of receptor
endocytosis within the range of values estimated previously
[36, 37] from experiments, which correspond to characteris-
tic time scales ranging from seconds to hours [6, 12, 16], to
k1 = 1/750 s−1 so that our model reproduces the scaffold re-
covery time measured in FRAP experiments [6, 12, 20]. The
indicated rate constants enter our (stochastic and mean-field)
reaction-diffusion model of synaptic domains through Eq. (6)
with Eqs. (15)–(23).

Chemical reactions Rate constants

R
k1−→ Rb k1 = b ≈ 1.3 × 10−3 s−1

Rb
k2−→ R k2 = m1

r̄
1−r̄−s̄

≈ 3.0× 10−5 s−1

Mb +R
k3−→ Mb +Rb k3 = m1 r̄+m2s̄

r̄(1−r̄−s̄)
≈ 1.5× 10−2 s−1

Rb + S
k4−→ R + S k4 = b r̄

s̄
1

1−r̄−s̄
≈ 1.5 × 10−3 s−1

Rb +R + S
k5−→ 2R + S k5 = m2

r̄
1

1−r̄−s̄
≈ 3.0× 10−1 s−1

S
k6−→ Sb k6 = β ≈ 6.7 × 10−4 s−1

Sb
k7−→ S k7 = β s̄

1−r̄−s̄
≈ 3.7 × 10−5 s−1

Mb + S
k8−→ Mb + Sb k8 = µ

1−r̄−s̄
≈ 1.0× 10−3 s−1

Sb + 2S
k9−→ 3S k9 = µ

s̄
2

1−r̄−s̄
≈ 4.1 × 10−2 s−1

a subset of the reactions in Eqs. (15)–(23). We supple-
mented these exact analytic solutions for general reac-
tion schemes through direct numerical solutions of the
ME (1), for which we used the Euler method. Further-
more, we carried out KMC simulations of the ME (1)
[56, 63, 64] for diffusion-only (see Sec. III), reaction-only
(see Sec. IV), and reaction-diffusion (see Sec. V) systems
employing the “spatial next reaction” method described
in Ref. [91]. In our implementation of the spatial next re-
action method [91] we used Gillespie’s “direct” method
[56] to choose, at each lattice site, which receptors or
scaffolds undergo reaction or hopping processes. On this
basis we were able to track individual receptors and scaf-
folds in our KMC simulations. Finally, we numerically
solved the mean-field equations (10) and (11) using stan-
dard methods [92] with the initial conditions, bound-
ary conditions, and parameter values employed for the
ME (1).

III. PROTEIN DIFFUSION IN CROWDED

MEMBRANES

In this section we focus on diffusion-only systems de-
scribed by the ME (1) with Wreact = 0 and Dr

i = Ds
i = 1.

For such systems, Eqs. (10) and (11) imply the mean-field

diffusion equations [36, 37, 47, 54, 60, 61, 72]

∂r

∂t
= νr

[

(1− s)∇2r + r∇2s
]

, (24)

∂s

∂t
= νs

[

(1− r)∇2s+ s∇2r
]

. (25)

The nonlinear terms in the mean-field equations (24)
and (25) result from molecular crowding (steric exclu-
sion), and impede diffusion into crowded membrane re-
gions. In line with experiments and large-scale computer
simulations of crowded membranes [78, 79], the nonlinear
diffusion terms in Eqs. (24) and (25) have been shown [60]
to result in mean-square displacement curves that bear
signatures of anomalous diffusion. Below, we first con-
sider the special case νr = νs ≡ ν in Eqs. (24) and (25),
for which the total molecule concentration of receptors
and scaffolds, r+ s, obeys the standard (linear) diffusion
equation

∂(r + s)

∂t
= ν∇2(r + s) , (26)

and then discuss more complex scenarios corresponding
to νr 6= νs.

A. Identical receptor and scaffold diffusion

coefficients

In this section we focus on diffusion-only systems with
the diffusion coefficients of receptors and scaffolds be-
ing equal to each other, νr = νs ≡ ν = 0.01 µm2/s (see
Fig. 2). As described in Sec. II, we expect that νr > νs for
synaptic receptors and scaffolds [3, 10, 12, 15–20], but we
consider here the case νr = νs for completeness. As ini-
tial conditions we use adjacent step-profiles of receptors
and scaffolds, with receptors and scaffolds changing from
N r

i = 0 or Ns
i = 0 (r = 0 or s = 0) to N r

i = 1 or Ns
i = 1

(r = 1 or s = 1) [see the inset of Fig. 2(a)]. We find that,
for small enough ǫ, the mean-field equations (24) and (25)
are in quantitative agreement with averages over KMC
simulations of the underlying ME (1) with Wreact = 0
and Dr

i = Ds
i = 1. For instance, Fig. 2(a) shows excel-

lent agreement between mean-field equations and aver-
ages over KMC simulations for ǫ = 1/40. As the value
ǫ is increased, the discreteness of the molecular diffusion
processes becomes increasingly important, and the mean-
field approach begins to yield inaccurate results for the
average molecule concentrations [see Fig. 2(b)]. How-
ever, we find that even with ǫ = 1/8, which corresponds
to a maximum molecule occupancy per lattice site of only
eight molecules, the mean-field equations (24) and (25)
capture the shape of the average diffusion profiles. As ex-
pected from Eqs. (24) and (25) with Eq. (26), the tempo-
ral evolution of the total molecule concentrationN r

i +Ns
i

(r+s) takes the form of a Gaussian profile corresponding
to standard (Fickian) diffusion with diffusion coefficient
ν. In contrast, the individual receptor and scaffold con-
centration profiles do not take the form of Gaussian con-
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FIG. 2. Receptor and scaffold diffusion with νr = νs ≡ ν =
0.01 µm2/s. (a) Molecule occupancies of receptors and scaf-
folds at t = 10 s starting from the initial conditions shown
in the inset, obtained from KMC simulations of the ME (1)
with ǫ = 1/40 and a = 0.05 µm, the mean-field equations (24)
and (25) modeling diffusion under exclusion constraints, and
the standard (Fickian) diffusion equations for receptors and
scaffolds, which are given by the linear terms in Eqs. (24) and
(25). We set L = 50 µm. (b) Receptor profiles as in panel
(a), but using ǫ = 1, 1/2, 1/8, and 1/40 for the KMC simu-
lations of the ME (1). The KMC simulations were averaged
over 2000 independent realizations each.

centration profiles, with diffusion of receptor and scaffold
populations being hindered by steric constraints.

To explore the effect of molecular crowding on the dif-
fusion of individual molecules, we used KMC simulations
to compute the mean-square displacement (MSD) curves
of receptors located at different initial positions in Fig. 2
[see Fig. 3(a)]. We find that receptors initially located at
the center of a crowded membrane region show effective
hopping rates that are reduced substantially compared
to the case of free diffusion, resulting in a reduced initial
slope of the MSD. In contrast, receptors initially located
near the boundary of a crowded membrane region can
easily diffuse into membrane regions with few receptors
or scaffolds, resulting in an initial slope of the MSD that
is only reduced slightly compared to the case of free dif-
fusion. As t → ∞, all molecules have the same effec-
tive diffusion coefficient ν (1− 〈N r

i +Ns
i 〉) independent

of their initial location, where 〈N r
i + Ns

i 〉 is the average
number of molecules per lattice site in the system. Thus,
molecular crowding can initially yield spatially hetero-
geneous MSD curves that bear a signature of the initial
location of the molecule under consideration, and asymp-
totically results in a reduced effective diffusion coefficient,
with the magnitude of the reduction in the effective dif-

FIG. 3. MSD in diffusion-only systems with νr = νs ≡ ν =
0.01 µm2/s. (a) Receptor MSD obtained from KMC simula-
tions as in Fig. 2(a) but using L = 5 µm, for receptors located
initially at the positions marked by circles and squares in the
inset. The black dashed line shows the MSD implied by stan-
dard (Fickian) diffusion with no steric constraints, and the
red and magenta dashed lines show the MSD for free diffu-
sion scaled by (1− 〈Nr

i +Ns
i 〉), where 〈Nr

i + Ns
i 〉 = 0.2 is

the average molecule occupancy in the system. (b) Receptor
MSD obtained as in panel (b), but for a system composed of
only receptors and starting from homogeneous receptor distri-
butions with 〈Nr

i 〉 = 0.1, 0.3, and 0.6. The MSD curves were
obtained by averaging over 104 molecule trajectories each.

fusion coefficient governed by the value of 〈N r
i +Ns

i 〉 [see
Fig. 3(b)].

B. Distinct receptor and scaffold diffusion

coefficients

Synaptic receptors are thought to diffuse more rapidly
than their associated scaffolds [3, 10, 12, 15–20], and we
therefore focus here on the case νr > νs. Similarly as
in Sec. III A we find [62] that, provided ǫ / 1/10, the
mean-field equations (24) and (25) describing a diffusion-
only system composed of receptors and scaffolds with
νr/νs > 1 are in quantitative agreement with averages
over KMC simulations of the underlying ME (1), inde-
pendent of the particular value of νr/νs considered (see
Fig. 4). We thus find that, even in situations where
steric constraints severely limit the maximum receptor
or scaffold occupancy per membrane patch and the diffu-
sion profiles deviate substantially from Fickian diffusion,
the nonlinear mean-field diffusion equations (24) and (25)
[47, 54, 60, 61, 72] successfully predict the average con-
centration profiles implied by the underlying stochastic
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FIG. 4. Profiles of (a) receptor and scaffold occupancies and (b) the total receptor and scaffold occupancy, obtained by adding
up the curves in panel (a), at t = 10 s for νr/νs = 2, 8, 32 for the left, middle, and right panels, respectively, calculated from
KMC simulations of the ME (1) and the mean-field equations (24) and (25) as in Fig. 2(a) using νs = 0.01 µm2/s and ǫ = 1/40.
The KMC simulations were averaged over 2000 independent realizations each.

model, with all parameters in Eqs. (24) and (25) deter-
mined directly by the ME (1).

As νr/νs is increased, molecular crowding produces in-
creasingly complex receptor and scaffold concentration
profiles (Fig. 4). In particular, using adjacent step-
profiles of receptors and scaffolds as initial conditions, we
find that the slowly-diffusing scaffolds act as a partially
permeable (and dynamic) barrier to receptor diffusion
that can, for large enough νr/νs, lead to non-monotonic
receptor concentration profiles [see the right panel of
Fig. 4(a)]. This can be understood by noting that, with
the initial conditions used for Fig. 4, the slowly-varying
scaffold concentration profiles show a pronounced maxi-
mum for a sustained period of time. Equation (24) in-
dicates that membrane regions with ∇2s < 0 locally de-
press the receptor concentration profile, because steric
constraints make it unfavorable for receptors to diffuse
into membrane regions that are crowded with scaffolds.
As shown in the right panel of Fig. 4(a), a maximum
in the scaffold concentration profile can therefore result
in a local (transient) minimum in the receptor concen-
tration profile and, hence, a multimodal receptor con-
centration profile. We also note that, with increasing
νr/νs, the receptor profile becomes increasingly asym-
metric, with an increasingly pronounced tail away from
the scaffolds. As a result, the total molecule concentra-
tion profile N r

i + Ns
i (r + s) also becomes increasingly

asymmetric [see Fig. 4(b)]. As expected from Eqs. (24)
and (25), the total molecule concentration profileN r

i +Ns
i

(r+s), as well as the receptor and scaffold concentration
profiles, do not take the form of Gaussian diffusion pro-

files if νr 6= νs.

Starting from step-like initial concentration profiles of
receptors and scaffolds, we used KMC simulations to
compute the MSD curves of receptors [see Fig. 5(a)] and
scaffolds [see Fig. 5(b)] located at left, center, and right
positions in the initial molecule distributions of receptors
and scaffolds. Consistent with Fig. 3(a), we find that re-
ceptors and scaffolds initially located at the boundaries
of the crowded membrane region are least constrained by
molecular crowding, and show the largest MSDs. Recep-
tors initially located close to the center of the crowded
membrane region show the smallest initial MSDs of all
receptors, because their diffusion is hindered by receptors
in one direction and by scaffolds in the other direction. In
contrast, scaffolds close to the domain center show sim-
ilar initial MSDs as scaffolds initially located closer to
the domain boundary. This can be understood by not-
ing that, even though the diffusion of scaffolds initially
located close to the center of the crowded membrane re-
gion is hindered by both receptors and scaffolds, the rapid
diffusion of receptors soon allows scaffolds to diffuse into
membrane regions that were initially fully occupied by
receptors. Similarly as in Fig. 3, the asymptotic prop-
erties of the receptor and scaffold MSD curves in Fig. 5
are set by the receptor and scaffold diffusion constants
scaled by (1− 〈N r

i +Ns
i 〉), independent of the initial lo-

cation of receptors or scaffolds. However, the crossover
time from the initial to the asymptotic properties of the
MSD curves is sensitive to the initial conditions.
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FIG. 5. MSD curves of (a) diffusing receptors and (b) diffus-
ing scaffolds obtained from KMC simulations as in Fig. 2(a)
with ǫ = 1/40 but using L = 5 µm with νr = 0.08 µm2/s
and νs = 0.01 µm2/s, for receptors and scaffolds located ini-
tially at the positions marked by triangles, squares, and circles
in the initial molecule distributions shown in the lower-right
insets. The upper-left insets show the long-term evolution
of the MSD curves. As in Fig. 3, the black dashed lines
indicate the MSDs implied by standard (Fickian) diffusion
with no steric constraints, and the magenta dashed lines show
the MSDs for free diffusion scaled by (1− 〈Nr

i +Ns
i 〉), where

〈Nr
i + Ns

i 〉 = 0.2 is the average molecule occupancy in the
system. The MSD curves were obtained by averaging over
104 molecule trajectories each.

IV. PROTEIN REACTION DYNAMICS IN

CROWDED MEMBRANES

In this section we focus on reaction-only systems de-
scribed by the ME (1) with Wdiff = 0, and the corre-
sponding mean-field equations

dr

dt
= F r(r, s) , (27)

ds

dt
= F s(r, s) , (28)

where, as described in Sec. II, the polynomials F r(r, s)
and F s(r, s) are formulated in accordance with the stan-
dard formalism of chemical dynamics [44–56, 63–71]. For
simplicity we omit, in this section, indices labeling lat-
tice sites, and denote the receptor and scaffold numbers
by N r,s, and the corresponding mean-field receptor and
scaffold concentrations by r(t) and s(t), respectively.
Previous studies [47, 48, 53, 54, 56, 62–64] have

shown that, for finite molecule numbers, the determin-
istic mean-field descriptions used in standard models of
chemical dynamics [65–71] can fail to capture the aver-

age dynamics, as well as steady states, of the underlying
stochastic reaction processes. As illustrated below, up-
per limits on the protein copy number due to molecular
crowding, absorbing (non-fluctuating) states [53], bista-
bility [53], and amplification of noise through nonlinear
chemical reactions [48] provide specific physical mech-
anisms yielding disagreement between MEs and mean-
field equations. In Secs. IVA–IVC we consider reaction
processes among receptors or scaffolds of increasing com-
plexity, inspired by the reaction dynamics at synaptic
domains (see Sec. II). We show that it is, at least in
some special cases, practical to directly solve, either ana-
lytically or numerically, the MEs describing the chem-
ical reaction dynamics at synaptic domains. We test
the validity of these direct solutions of the MEs using
KMC simulations, and provide systematic comparisons
with solutions of the corresponding mean-field equations
describing the reaction kinetics at synaptic domains.

A. Single chemical reactions

In this section we focus on the single—linear and

nonlinear—chemical reactions Sb
k7−→ S, Sb + S

k̄8−→ 2S,

and Sb + 2S
k9−→ 3S considered in Sec. II. We investi-

gate each one of these reactions in turn. The reaction

Sb + S
k̄8−→ 2S is thereby implicit [37] in the reaction

Mb+S
k8−→ Mb+Sb discussed in Sec. II. Following Sec. II,

the mean-field equations associated with these reactions
are given by

ds

dt
= k7(1− s) , (29)

ds

dt
= k̄8(1− s)s , (30)

ds

dt
= k9(1− s)

s2

2
, (31)

with the underlying MEs

dP (Ns, t)

dt
=− k7

1−Ns

ǫ
P (Ns, t)

+ k7
1−Ns + ǫ

ǫ
P (Ns − ǫ, t) , (32)

dP (Ns, t)

dt
=− k̄8

1−Ns

ǫ
NsP (Ns, t)

+ k̄8
1−Ns + ǫ

ǫ
(Ns − ǫ)P (Ns − ǫ, t) ,

(33)

dP (Ns, t)

dt
=− k9

1−Ns

ǫ

Ns(Ns − ǫ)

2
P (Ns, t)

+ k9
1−Ns + ǫ

ǫ

(Ns − ǫ)(Ns − 2ǫ)

2
× P (Ns − ǫ, t) . (34)

We take the initial scaffold concentration at t = 0 to
be given by Ns

0 = s0 for the MEs and the mean-field
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FIG. 6. Average scaffold occupancies for (a) Sb
k7−→ S with Ns

0 = 0, (b) Sb + S
k̄8−→ 2S with Ns

0 = 0.2, and (c) Sb + 2S
k9−→ 3S

with Ns
0 = 0.1 obtained from the mean-field equations (29)–(31), the general analytic solutions of the MEs (32)–(34) for the

mean jump times in Eq. (40) with Eqs. (36)–(38), and KMC simulations of the MEs (32)–(34). We set k7 = k̄8 = k9 = 1 s−1.
The KMC simulations were averaged over 105 independent realizations each.

equations, which then uniquely specifies the solutions of
Eqs. (29)–(31) and Eqs. (32)–(34), respectively. Note
that Eqs. (32)–(34) exhibit an absorbing state at Ns = 1
with P = 1 for Ns = 1 and P = 0 otherwise, with
Eqs. (33) and (34) also exhibiting an absorbing state at
Ns = 0, and a further absorbing state at Ns = ǫ in
Eq. (34). All transition rates that would allow the system
to exit an absorbing state are, by definition, equal to zero.
Fluctuations are therefore completely suppressed in an
absorbing state, independent of the value of ǫ considered.
The steady states of the mean-field equations (29)–(31)
are given by s = 0 or s = 1.
The MEs (32)–(34) can be solved analytically, as fol-

lows. We first note that Eqs. (32)–(34) correspond to
chains of Markov processes that irreversibly transform a
system with Ns

0/ǫ scaffold molecules into a system with
1/ǫ scaffold molecules. The longest possible chain of re-
actions is obtained with Ns

0 = 0, for which

Ns = 0
α0−→ Ns = ǫ

α1−→ ...
αC−1

−−−→ Ns = 1 , (35)

where C = 1/ǫ and the rates αi, in which i =
0, 1, . . . , C − 1, are obtained from the first terms on the
right-hand sides of the MEs (32)–(34):

αi =k7
1− iǫ

ǫ
, (36)

αi =k̄8
(1− iǫ)

ǫ
iǫ , (37)

αi =k9
(1− iǫ)

ǫ

iǫ(iǫ− ǫ)

2
. (38)

The probability distribution of jump times t between two
consecutive states i and i+ 1 of the Markov processes in
Eq. (35) is given by the distribution of waiting times of
a Poisson process with rate αi,

Pi→i+1(t) = αie
−αit . (39)

Equation (39) with Eqs. (36)–(38) allows direct calcula-
tion of the probability distribution of jump times between
arbitrary states in Eq. (35) (see Appendix A). However,
to calculate the mean jump time between two arbitrary
states in Eq. (35) it is sufficient to note from Eq. (39)
that the mean jump time from state i to state i + 1 is
given by 〈t〉i→i+1 = 1/αi, implying a mean time

〈t〉p→q =

q−1
∑

i=p

1

αi
(40)

to reach a state q with scaffold occupancy Ns = qǫ start-
ing from an initial state p = Ns

0/ǫ (see Appendix B).
We find that the mean jump times predicted by

Eq. (40) with Eqs. (36)–(38) are in quantitative agree-
ment with averages over KMC simulations of the cor-
responding MEs (32)–(34), for all values of ǫ considered
here (see Fig. 6). To quantify the extent to which stochas-
tic and mean-field results are in agreement with each
other in Fig. 6 we calculate, for each time point avail-
able from the MEs (32)–(34) in Fig. 6, the difference be-
tween average stochastic and deterministic results, divide
this difference by the corresponding mean-field result,
and average the resultant percentage difference between
stochastic and mean-field results over all time points in
Fig. 6 associated with a given reaction and value of ǫ.
For ǫ ' 1/5 we find discrepancies ' 10% between the
mean-field equations (29)–(31) and the MEs (32)–(34).
The disagreement between Eqs. (29)–(31) and Eqs. (32)–
(34) becomes increasingly pronounced with increasing or-
der of the reaction. For instance, for the linear reaction

Sb
k7−→ S, ǫ / 1/200 gives a discrepancy / 0.5% between

the mean-field and master equations, while the reaction

Sb + 2S
k9−→ 3S requires ǫ / 1/5000 for mean-field and

master equations to be in similarly good agreement. In
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particular, for the linear reaction Sb
k7−→ S the ME (32)

yields, for large enough ǫ, a more rapid temporal evo-
lution of the system than the corresponding mean-field
equation (29) [see Fig. 6(a)]. This can be understood by
noting that the ME allows for discrete jump processes
with the system reaching the state Ns = 1, on aver-
age, in a finite amount of time given by Eq. (40), while
the mean-field solution only reaches s = 1 as t → ∞.
The same argument holds true for the nonlinear reactions
in Fig. 6 [see Figs. 6(b) and 6(c)]. However, for these
nonlinear reactions we also find that, for a substantial
portion of the trajectory of the system, the mean jump
time in the MEs (33) and (34) is increased compared to
the corresponding mean-field results implied by Eqs. (30)
and (31). These results illustrate that, already for very
simple reaction dynamics, the molecular noise inherent in
scaffold (and receptor) reaction dynamics can have subtle
effects on average system properties if steric effects pro-
hibit maximum molecule occupancies greater than hun-
dreds of molecules, as is often the case for proteins in cell
membranes.

B. Competing chemical reactions

In this section we study minimal reaction dynamics
with competing chemical reactions increasing and de-
creasing the molecule number in the system. As model
systems we use some of the key scaffold reactions at
synaptic domains (see Sec. II). Reaction schemes with
competing chemical reactions may, on the one hand, ex-
hibit absorbing states in which all fluctuations are sup-
pressed. On the other hand, competing chemical reac-
tions may also yield fluctuating steady states of the ME
with a mean that, for ǫ > 0, does not necessarily coin-
cide with the steady state implied by the corresponding
mean-field model. We first consider reaction schemes for
which the mean-field model predicts steady state(s) with
0 < s < 1, while the ME yields absorbing state(s) at
Ns = 0 or Ns = 1. Consistent with previous work [53]
we find that absorbing states can yield breakdown of the
mean-field approach. We then consider reaction schemes
with competing chemical reactions for which the MEs ex-
hibit fluctuating steady states and no absorbing states.
We find quantitative agreement between mean-field pre-
dictions and averages over the underlying MEs for linear
reaction schemes, independent of the value of ǫ consid-
ered. However, we also find that the mean-field approach
can break down, for ǫ > 0, even for very simple nonlinear
reaction schemes exhibiting fluctuating steady states.

1. Absorbing states

Consider a system composed of scaffolds undergoing

the reactions S
k6−→ Sb and Sb + S

k9−→ 2S discussed in
Sec. II. Following Sec. II, the corresponding mean-field

FIG. 7. (a) Average scaffold occupancies for the reaction

scheme S
k6−→ Sb and Sb + S

k9−→ 2S obtained from the mean-
field equation (41) and KMC simulations of the ME (42).
The inset shows the average negative slopes of the average
scaffold occupancies obtained from the ME (42) for ǫ = 1/400,
1/300, 1/200, and 1/100, estimated from KMC data starting
at the global maxima of the scaffold occupancies. The KMC
simulations were averaged over 2000 independent realizations
each. (b) Selected individual KMC trajectories for ǫ = 1/100
and corresponding mean-field solution as in panel (a). We
set k6 = 1 s−1 and k9 = 1.3 s−1, and used an initial scaffold
occupancy Ns

0 = 0.04.

equation is given by

ds

dt
= −k6s+ k9(1− s)s , (41)

with the underlying ME

dP (Ns, t)

dt
=−

k6
ǫ
[NsP (Ns, t)− (Ns + ǫ)P (Ns + ǫ, t)]

−
k9
ǫ
[(1−Ns)NsP (Ns, t)

+ (1−Ns + ǫ) (Ns − ǫ)P (Ns − ǫ, t)] .
(42)

Equation (41) yields, for k9 > k6, a stable steady state
at s = 1 − k6/k9 and an unstable steady state at s = 0,
while Eq. (42) implies an absorbing state at Ns = 0 with
P = 1 for Ns = 0 and P = 0 otherwise.
Direct solution of Eq. (41) for k9 > k6 confirms that,

provided s > 0 initially, the mean-field solution ap-
proaches the stable steady state s = 1− k6/k9 as t → ∞
[see Fig. 7(a)]. KMC simulations of Eq. (42) show that,
initially, the average Ns also tends to approach the sta-
ble steady state of the mean-field model [Fig. 7(a)]. Over
time, however, fluctuations gradually carry the average of
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the stochastic system, with ǫ > 0, away from the steady
state of the mean-field system and towards the absorbing
state. This can be seen quite clearly by following individ-
ual stochastic trajectories of the system, which can get
irreversibly locked into the absorbing state Ns = 0 [see
Fig. 7(b)]. Thus, the asymptotic behavior of the mean-
field equation (41) is dominated by its stable steady state
at s = 1 − k6/k9, while the asymptotic behavior of the
underlying stochastic system is dominated by the absorb-
ing state at Ns = 0. As ǫ is increased, averages over
the ME (42) approach the absorbing state increasingly
rapidly, with the magnitude of the average slope increas-
ing exponentially with decreasing maximum molecule oc-
cupancy (decreasing 1/ǫ) [see inset in Fig. 7(a)]. We find
that, depending on the value of ǫ considered, it can take
a substantial amount of time until the absorbing state
is reached in our KMC simulations of the ME (42). For
instance, with ǫ = 1/400 and k6 and k9 both being of the
order of 1 s−1, only ≈ 3% of the 2000 KMC trajectories
in Fig. 7(a) are absorbed by Ns = 0 for t / 4000 s.
As a second example of a system with competing chem-

ical reactions exhibiting an absorbing state, consider the

reactions Mb+S
k8−→ Mb+Sb and Sb+S

k̄8−→ 2S (see also
Sec. IVA). Following Sec. II, the corresponding mean-
field equation is given by

ds

dt
= −k8(1 − s)s+ k̄8(1− s)s , (43)

with the ME

dP

dt
=−

k8
ǫ

[

(1 −Ns)NsP (Ns, t)

− (1 −Ns − ǫ)(Ns + ǫ)P (Ns + ǫ, t)
]

−
k̄8
ǫ

[

(1 −Ns)NsP (Ns, t)

− (1 −Ns + ǫ)(Ns − ǫ)P (Ns − ǫ, t)
]

. (44)

The ME (44) has two absorbing states, at Ns = 0 and
Ns = 1. For k8 6= k̄8, the mean-field equation (43) ex-
hibits steady states at s = 0 and s = 1, with the steady
state s = 0 (s = 1) being unstable (stable) for k8 < k̄8,
and vice versa for k8 > k̄8. For k8 = k̄8, the right-hand
side of the mean-field equation (43) is identical to zero,
with any initial condition s(0) = s0 corresponding to a
steady state of the system.
Comparing KMC simulations of the ME (44) with so-

lutions of the mean-field equation (43) we find that, for
k8 = k̄8, the mean-field equation (43) is in quantita-
tive agreement with averages over the ME (44), inde-
pendent of the initial conditions used [see the left panel
of Fig. 8(a)]. However, the average scaffold concentra-
tion fails to capture the asymptotic properties of indi-
vidual KMC trajectories which, for long enough times,
are absorbed by either Ns = 0 or Ns = 1, and hence
do not fluctuate about the average scaffold concentra-
tion [see the right panel of Fig. 8(a)]. For k8 6= k̄8, we
find that the mean-field equation (43) fails to capture av-
erages over the ME (44) with ǫ > 0 obtained via direct

FIG. 8. Scaffold occupancies for the reaction scheme Mb +

S
k8−→ Mb + Sb and Sb + S

k̄8−→ 2S obtained from the mean-
field equation (43) and KMC simulations or direct numeri-
cal solutions of the ME (44) for (a) k8 = k̄8 = 1.0 s−1 and
(b) k8 = 1.0 s−1 and k̄8 = 1.1 s−1. The left panels show
mean scaffold occupancies, with the KMC simulations aver-
aged over 2×104 independent realizations each, and the right
panels show selected individual KMC trajectories of the sys-
tem, together with the corresponding mean-field results. We
use the same labeling conventions in panel (b) as in panel (a).

numerical solution of the ME (44) and KMC simulations
[see the left panel of Fig. 8(b)]. Similarly as for k8 = k̄8,
the properties of individual stochastic trajectories of the
system are dominated, at long times, by the absorbing
states Ns = 0 or Ns = 1 rather than the average scaf-
fold concentration [see the right panel of Fig. 8(b)]. We
have confirmed the results of our KMC simulations and
our numerical solutions of the ME (44) through analytic
solution of the ME (44) at steady state. Our results il-
lustrate [53] how, for ǫ > 0, absorbing states can yield
breakdown of the mean-field reaction dynamics at synap-
tic domains, and produce pronounced discrepancies be-
tween individual stochastic trajectories of the system and
ensemble averages.

2. Fluctuating steady states

In this section we focus on linear and nonlinear scaffold
reaction dynamics with no absorbing states but (fluctuat-
ing) steady states. We first consider the linear reactions

S
k6−→ Sb and Sb

k7−→ S discussed in Sec. II, yielding the
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mean-field equation

ds

dt
= −k6s+ k7(1− s) , (45)

with the stable steady state s = k7/ (k6 + k7), and
the ME

dP (Ns, t)

dt
=−

k6
ǫ
[NsP (Ns, t)− (Ns + ǫ)P (Ns + ǫ, t)]

+
k7
ǫ

[

(1−Ns + ǫ)P (Ns − ǫ, t)

− (1−Ns)P (Ns, t)
]

. (46)

To analytically determine the steady-state probability
distribution(s) of the ME (46), P∞(Ns), we generalize
the generating-function approach for the solution of MEs
described in Ref. [80] to allow for steric constraints. To
this end, we define a generating function

G(ŝ) =

1/ǫ
∑

n=0

ŝnP∞ (Ns) , (47)

where Ns = nǫ and we only include terms corresponding
to 0 ≤ Ns ≤ 1 because, by definition, P∞(Ns) = 0
outside this range. The generating function in Eq. (47)
satisfies the following identities:

ŝ
dG(ŝ)

dŝ
=

1/ǫ
∑

n=0

nŝnP∞ (nǫ) , (48)

dG(ŝ)

dŝ
=

1/ǫ
∑

n=0

(n+ 1)ŝnP∞ ((n+ 1)ǫ) . (49)

It then follows that

ŝ

ǫ
G(ŝ)− ŝ2

dG(ŝ)

dŝ
=

1/ǫ
∑

n=0

(

1

ǫ
− n+ 1

)

ŝnP∞ ((n− 1)ǫ) ,

(50)
where we have used that, by definition, P∞(Ns) = 0 for
Ns < 0. Setting the left-hand side of the ME (46) equal
to zero, multiplying the right-hand side by ŝn, summing
all terms from n = 0 to n = 1/ǫ, and employing the
identities in Eqs. (48)–(50), we find that, in the steady
state(s) of Eq. (46), the generating function obeys

dG(ŝ)

dŝ
=

1

ǫ

k7
k6 + k7ŝ

G . (51)

Equation (51) has the unique solution

G(ŝ) =

(

k6 + k7ŝ

k6 + k7

)
1
ǫ

(52)

satisfying the normalization constraint G(1) = 1. Hence,
Eq. (46) admits only one steady-state probability distri-
bution. To determine the form of this distribution we
note from Eq. (47) that

P∞(nǫ) =
1

n!

dnG(ŝ)

dŝn

∣

∣

∣

∣

ŝ=0

. (53)

Equations (52) and (53) imply that the steady-state
probability distribution associated with Eq. (46) takes
the form of a binomial distribution,

P∞(Ns) =
1
ǫ !

n!
(

1
ǫ − n

)

!

(

k7
k6 + k7

)n

(

1−
k7

k6 + k7

)
1
ǫ
−n

, (54)

where n = Ns/ǫ. Equation (54) shows that the mean
scaffold occupancy at steady state is given by 〈Ns〉 =
k7/ (k6 + k7), which is identical to the steady-state value
of s predicted by the mean-field equation (45) indepen-
dent of the value of ǫ in Eq. (46). As exemplified by
Eq. (54), fluctuating steady states allow, in contrast to
absorbing states, fluctuations about the mean molecule
occupancy. As expected from the above considerations,
solution of the mean-field equation (45), the average Ns

implied by Eq. (54), and averages over KMC simulations
of the ME (46) yield, even for ǫ = 1, identical results for
the steady state of the system [see Fig. 9(a)]. We also
find that the mean-field model yields quantitative agree-
ment with KMC simulations of the ME (46) for transient
regimes of the system, independent of the value of ǫ con-
sidered [Fig. 9(a)].
The two most straightforward nonlinear versions of the

reaction scheme considered above are S+Mb
k8−→ Sb and

Sb
k7−→ S, and S

k6−→ Sb and Sb + S
k̄8−→ 2S (see Sec. II).

However, both of these reaction schemes exhibit absorb-
ing states, which makes them unsuitable for the purposes
of the present discussion. Instead, to explore the prop-
erties of nonlinear fluctuating steady states in a simple

model system, we consider the reactions 2S
k
−→ 2Sb and

Sb
k7−→ S. The first of these reactions may not be rel-

evant for synaptic domains [36, 37], but may occur in
other contexts [50, 66–69]. Following similar steps as in
Sec. II, we find that the mean-field equation associated
with this reaction scheme is given by

ds

dt
= k7(1− s)− ks2 , (55)

yielding a stable steady state at

s =
−k7 +

√

k7(4k + k7)

2k
, (56)

with the second steady state of Eq. (55) lying outside the
physically relevant range 0 ≤ s ≤ 1. The underlying ME
is given by

dP (Ns, t)

dt
=
k7
ǫ

[

(1−Ns − ǫ)P (Ns − ǫ, t)

− (1−Ns)P (Ns, t)
]

−
k

2!ǫ

[

Ns (Ns − ǫ)P (Ns, t)

− (Ns + 2ǫ) (Ns + ǫ)P (Ns + 2ǫ, t)
]

. (57)
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FIG. 9. Fluctuating steady states. Average scaffold occu-

pancies for (a) S
k6−→ Sb and Sb

k7−→ S obtained from the
mean-field equation (45), the steady-state distribution of the
ME (46) in Eq. (54), and KMC simulations of the ME (46),

and (b,c) 2S
k
−→ 2Sb and Sb

k7−→ S obtained from the mean-
field equation (55), direct numerical (steady-state) solutions
of the ME (57), and KMC simulations of the ME (57). In
panel (c), the steady-state scaffold occupancy in Eq. (56) im-
plied by the mean-field equation (55), s ≈ 0.095, is indicated
by a horizontal dashed line. For panel (a) we set k6 = 1 s−1

and k7 = 2 s−1, and for panels (b) and (c) we set k = 100 s−1

and k7 = 1 s−1. For all panels we used an initial scaffold
occupancy Ns

0 = s0 = 0. All KMC simulations were averaged
over 2× 104 independent realizations each.

We ascertain the properties of the ME (57) using direct
numerical solutions of Eq. (57) as well as KMC simu-
lations. We find quantitative agreement between direct
numerical solutions of the ME (57) and KMC simula-
tions for all values of ǫ considered here [see Fig. 9(b)].
For ǫ ' 1/10, however, the mean-field equation (55) fails
to predict the average scaffold concentrations implied by
the ME (57) [Fig. 9(b)]. As ǫ is decreased, averages
over the steady-state scaffold occupancies implied by the
ME (57) approach the steady-state value of s in Eq. (56),
with good agreement between stochastic and mean-field

results for ǫ / 1/10 [see Fig. 9(c)].

C. Reaction kinetics at synaptic domains

In this section we consider the complete model of the
reaction kinetics at synaptic domains described in Sec. II,
which exhibits coupled, nonlinear reactions among re-
ceptors or scaffolds. We have shown previously [62] that,
for a maximum molecule occupancy per membrane patch
1/ǫ ≈ 100, which is the regime of ǫ relevant for cell mem-
branes (see also Sec. II), the mean-field equations (10)
and (11) fail to capture the temporal evolution as well as
steady-state values of the average receptor and scaffold
concentrations implied by the ME (1), with the mean-
field system approaching its steady state approximately
one order of magnitude slower than the stochastic sys-
tem. We have confirmed these conclusions using direct
numerical solutions of the ME (1), which we find to be
in quantitative agreement with KMC simulations of the
ME (1) (see Fig. 10).
To further explore the stochastic reaction dynamics at

synaptic domains, we follow individual stochastic trajec-
tories of the system (see Fig. 11). Inspection of individ-

FIG. 10. Average (a) receptor and (b) scaffold occupancies in
a reaction-only system with the reaction kinetics at synaptic
domains described in Sec. II (see Table I) [36, 37, 62], ob-
tained from direct numerical solutions of the ME (1), KMC
simulations of the ME (1), and the mean-field equations (10)
and (11) versus scaled time t̃ = t/τ , with τ = 1.0 × 104 s
and τ = 5.0× 105 s for the stochastic and mean-field models,
respectively. The inset in panel (b) shows how the average
scaffold occupancies implied by the ME (1) change with ǫ.
All KMC simulations were averaged over 2×104 independent
realizations each.
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FIG. 11. Individual stochastic trajectories of (a) receptor and
(b) scaffold occupancies in a reaction-only system with the
reaction kinetics at synaptic domains described in Sec. II (see
Table I) [36, 37, 62], obtained from the KMC data in Fig. 10.

ual stochastic trajectories shows that, even in the steady
state of the system, the receptor and scaffold occupancies
can undergo large fluctuations, with the fluctuations in
the receptor occupancy being particularly pronounced.
To quantify the correlation between receptor and scaf-
fold fluctuations, we calculate the receptor-scaffold cor-
relation function in the steady-state of the stochastic sys-
tem,

Cr,s(t̄) =

tmax
∫

tmin

dt [N r(t)− 〈N r〉] [Ns(t+ t̄)− 〈Ns〉] ,

(58)

in which we set tmin = 1.0× 104 s and tmax = 1.3× 105 s,
〈N r,s〉 are the average receptor and scaffold occupan-
cies in the time interval [tmin, tmax] implied by our KMC
simulations, and we employ periodic boundary condi-
tions when computing Ns(t). We selected the value
tmin = 1.0×104 s in Eq. (58) so that, for all the values of
ǫ considered here, the average receptor and scaffold occu-
pancies in Fig. 10 have reached their steady-state values
at t = tmin.
For all the values of ǫ considered here, we find that

the time of maximum correlation in Eq. (58) occurs for
t̄ > 0 (see Fig. 12). This indicates that, consistent with
the roles of receptors and scaffolds as “inhibitors” and
“activators” of increased molecule occupancies [36, 37],
fluctuations increasing the scaffold occupancy trigger in-
creased receptor occupancies. In turn, increased receptor
occupancies tend to inhibit increased receptor as well as

FIG. 12. Receptor-scaffold correlation function in Eq. (58) for
(a) ǫ = 1/100, (b) ǫ = 1/200, and (c) ǫ = 1/500 in a reaction-
only system with the reaction kinetics at synaptic domains
described in Sec. II (see Table I) [36, 37, 62], obtained from
KMC simulations of the ME (1) as in Fig. 10. The yellow and
green curves show Cr,s(t̄) computed for single KMC trajecto-
ries, while the black curves show the average Cr,s(t̄) obtained,
as in Fig. 10, from 2×104 independent realizations each. The
vertical dashed lines in the main panels and insets indicate
the locations of the global maxima of Cr,s(t̄) at t̄ = Tmax.

scaffold occupancies [36, 37], with fluctuations decreas-
ing the scaffold occupancy precipitating decreased recep-
tor occupancies. Taken together, Figs. 11 and 12 thus
suggest that small fluctuations in the scaffold occupancy
can trigger large changes in the receptor occupancy, with
the feedback between receptor and scaffold occupancies
effectively amplifying receptor fluctuations. Figure 12
also suggests that the time of maximum correlation be-
tween fluctuations in the receptor and scaffold occupan-
cies grows with decreasing ǫ. Finally, we note that cal-
culation of the power spectrum [44, 45] of the fluctuat-
ing receptor and scaffold occupancies obtained from our
KMC simulations does not yield a characteristic (non-
zero) frequency of receptor and scaffold fluctuations.
The KMC trajectories in Fig. 11 suggest that, for large
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FIG. 13. Statistical properties of the steady-state receptor
and scaffold occupancies implied by the stochastic reaction
dynamics at synaptic domains described in Sec. II (see Ta-
ble I) [36, 37, 62]. (a) Marginal steady-state probability dis-
tributions of the receptor occupancy for the indicated values
of ǫ. (b) Average (left panel) and mode (right panel) of the
steady-state receptor and scaffold occupancies versus 1/ǫ, ob-
tained from the respective marginal steady-state probability
distributions. The grey regions show the approximate range of
ǫ for which the receptor and scaffold probability distributions
are bistable. For such values of ǫ, we use the global maximum
as the mode. The steady-state values of r and s implied by
the mean-field equations (10) and (11), r = s = 0.05, are
indicated by a vertical dashed line in panel (a) and by hori-
zontal dashed lines in panel (b). All KMC simulations were
averaged, from tmin = 1.0 × 105 s to tmax = 4.5 × 105 s, over
104 independent realizations each.

enough ǫ, the steady-state receptor occupancy is bistable,
fluctuating between N r ' 0.8 and a value of N r close
to zero. To further quantify the fluctuations in the re-
ceptor occupancy, we used our KMC data to estimate
the steady-state probability distribution of the recep-
tor occupancy, marginalized over the scaffold distribu-
tion, for different values of ǫ [see Fig. 13(a)]. Consistent
with Fig. 11 we find that, for the value ǫ ≈ 1/100 rele-
vant for synaptic domains [62], the receptor occupancy
is bistable, with maxima at N r ≈ 0 and N r ≈ 0.8. As
ǫ is decreased below ǫ ≈ 1/300, we find a unique maxi-
mum (mode) of the probability distribution. However,
even for ǫ ≈ 7.8 × 10−6, which would correspond to
a “well-mixed” membrane compartment holding up to
≈ 1.28 × 105 receptors or scaffolds, we find that both
the averages [see Fig. 13(b)] and modes [see Fig. 13(c)]
of the steady-state receptor and scaffold probability dis-
tributions do not coincide with the steady-state receptor
and scaffold occupancies implied by the mean-field equa-

FIG. 14. Occurrence probabilities of individual chemical reac-
tions for the reaction dynamics at synaptic domains in Sec. II
(see Table I) [36, 37, 62] versus 1/ǫ. The occurrence probabil-
ities were computed at steady state using KMC simulations
of the ME (1) by calculating, for the time interval [tmin, tmax]
with tmin = 1.0 × 105 s and tmax = 2.0 × 105 s, the ratio of
the occurrence number of a particular reaction and the total
occurrence number of all the (receptor and scaffold) reactions
in the system. The KMC simulations were averaged over 104

independent realizations.

tions (10) and (11), with the disagreement being more
pronounced for receptors than scaffolds.
The above results show that for, ǫ > 0, the ME (1) and

the corresponding mean-field equations (10) and (11) can
yield qualitatively and quantitatively different results for
the reaction kinetics at synaptic domains discussed in
Sec. II [36, 37, 62]. We further characterize the depen-
dence of the solutions of the ME (1) on ǫ by calculat-
ing the occurrence probabilities of the different chemical
reactions comprising the reaction dynamics at synaptic
domains (see Table I), as a function of ǫ (see Fig. 14).
For the receptors we find that, as ǫ is decreased, the

occurrence probabilities of the reactions R
k1−→ Rb and

Rb+R+S
k5−→ 2R+S tend to decrease compared to the

occurrence probabilities of the other reactions changing
the receptor number in the system. For the scaffolds we
find that, as ǫ is decreased, the occurrence probability

of the reaction S
k6−→ Sb tends to decrease compared to

the occurrence probabilities of the other reactions chang-
ing the scaffold number in the system. As further dis-
cussed in Sec. V, calculation of the occurrence probabili-
ties of receptor and scaffold reactions across synaptic do-
mains permits insights into possible physical mechanisms
underlying spatially heterogeneous reaction dynamics at
synaptic domains [25, 27, 62, 93].

V. STOCHASTIC REACTION-DIFFUSION

DYNAMICS AT SYNAPTIC DOMAINS

In this section we consider the full reaction-diffusion
dynamics at synaptic domains (see Sec. II). We first
study, and contrast, the collective properties of synap-
tic domains obtained from our stochastic and mean-field
models of receptor-scaffold reaction-diffusion dynamics
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at synaptic domains. We then use our stochastic lat-
tice model to compute the occurrence probabilities of re-
ceptor and scaffold reactions across synaptic domains.
We find that the reaction-diffusion processes at synaptic
domains give rise to characteristic locations of receptor
and scaffold insertion and removal at synaptic domains.
Next, we use our stochastic lattice model to study global
receptor and scaffold turnover at synaptic domains [62],
and make comparisons to the results of FRAP experi-
ments [6, 12, 20]. Finally, we show [62] that our stochastic
lattice model of the reaction-diffusion dynamics at synap-
tic domains yields single-molecule trajectories consistent
with experimental observations [6, 12, 15–17, 31–33], and
allows prediction of the time scale of receptor trafficking
between membrane regions inside and outside synaptic
domains.

A. Collective properties of synaptic domains

KMC simulations of the ME (1) show that the
stochastic reaction-diffusion dynamics considered here
(see Sec. II) yield [62], starting from random initial
conditions, in-phase receptor and scaffold domains [see
Fig. 15(a)]. Using the same values of the reaction and
diffusion rates as in the ME (1), the mean-field equa-
tions (10) and (11) yield self-assembly of stable receptor-
scaffold domains of a similar characteristic wavelength
≈ 8.5 µm as found in our KMC simulations [Fig. 15(a)],
which is also consistent with the linear stability analysis
of the mean-field equations (10) and (11) [36, 37]. Simi-
larly as in 2D systems, where the reaction and diffusion
rates used here yield [36, 37, 62] synaptic domains of
a similar characteristic size as observed in experiments
[20, 29–36], the 1D patterns obtained from both the
ME (1) and the mean-field equations (10) and (11) are ir-
regular, with substantial variation in the spacing between
individual domains. Furthermore, the ME (1) yields, for
ǫ ≈ 1/100, substantial fluctuations in the size and lo-
cation of synaptic domains, over a time scale of several
hours. Consistent with the results on the reaction-only
system in Sec. IVC, we find that, for ǫ ≈ 1/100, do-
main formation proceeds more rapidly in the stochastic
lattice model than in the mean-field model [62], by ap-
proximately one order of magnitude. Thus, the molecu-
lar noise inherent in receptor and scaffold reaction and
diffusion processes accelerates the self-assembly of synap-
tic domains.
Consistent with our mean-field model [36, 37], we find

[62] that the ME (1) yields scaffold profiles across synap-
tic domains that tend to be more narrow than receptor
profiles [Fig. 15(a)]. Scaffold domains are therefore more
sharply defined than receptor domains, and it is conve-
nient [62] to specify domain boundaries in our stochastic
lattice model by placing a threshold on the scaffold oc-
cupancy. We first remove small-scale fluctuations in the
scaffold occupancy using a Savitzky-Golay filter [94] (or-
der 5, frame size 25), and then apply a threshold N̄s on

FIG. 15. Self-assembly of synaptic domains. (a) Synap-
tic domains obtained from the ME (1) via KMC simulation
(upper panels) and the mean-field equations (10) and (11)
(lower panels) with the reaction-diffusion dynamics described
in Sec. II using ǫ = 1/100. The left and right panels show the
receptor and scaffold occupancies with maximum occupan-
cies (Nr

i , N
s
i ) = (0.79, 0.55) (KMC) and (r, s) = (0.46, 0.15)

(mean field). The curves in the upper panels delineate the
domain boundaries obtained using a threshold N̄s = 0.08 on
the scaffold occupancy of membrane patches. (b) Average
receptor and scaffold numbers per synaptic domain, and av-
erage number of domains in the system in the upper panels
of (a), versus N̄s. The shaded blue (red) area shows the stan-
dard deviation of the receptor (scaffold) number per synaptic
domain, while the shaded green area shows the minimum and
maximum of the domain number. All data was extracted from
the KMC results shown in the upper panels of (a).

the scaffold occupancy of membrane patches to automate
detection of domain boundaries. We fix the value of N̄s

by examining how the average receptor and scaffold num-
bers per synaptic domain, as well as the average number
of synaptic domains in the system, change as N̄s is var-
ied [see Fig. 15(b)]. For small enough N̄s, we obtain a
single domain in the system encompassing all receptors
and scaffolds, yielding the global maxima of the aver-
age receptor and scaffold numbers per domain, and the
global minimum of the average domain number. As N̄s is
increased, the average domain number tends to increase
rapidly, because of the many small, transient domains
produced by the noise in the system. Concurrently, we
find a drop in the average receptor and scaffold num-
bers per synaptic domain. The average domain number
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peaks for a value of N̄s yielding a maximum number of
small, transient domains, at which point we also find lo-
cal minima in the average receptor and scaffold numbers
per synaptic domain. As N̄s is increased further, small,
transient domains are increasingly filtered out, producing
a drop in the average domain number and an increase in
the average receptor and scaffold numbers per synaptic
domain. We find that the average scaffold number per
synaptic domain peaks at N̄s ≈ 0.08. Beyond this lo-
cal maximum, the average scaffold number per synaptic
domain only decreases gradually with increasing N̄s. At
around N̄s ≈ 0.08 we also find a local maximum in the
average receptor number per synaptic domain, as well as
a marked decrease in the rate at which the average do-
main number decreases with increasing N̄s [Fig. 15(b)].
These results suggest that N̄s = 0.08 provides a suitable
threshold for quantifying the boundaries of the stochastic
reaction-diffusion patterns implied by our KMC simula-
tions of the ME (1), which is also confirmed by direct
inspection of our KMC data [Fig. 15(a)].
Using N̄s = 0.08 we find that the mean values and

standard deviations of the receptor and scaffold num-
bers per synaptic domain are given by 745 ± 355 and
226 ± 108 for the KMC data in Fig. 15(a), respectively,
with pronounced fluctuations in the in-domain receptor
and scaffold population numbers, over a time scale of
hours [see Fig. 16(a)]. In analogy to the receptor-scaffold
correlation function defined for the reaction-only system
in Eq. (58), we quantify the fluctuations in Fig. 16(a) by
calculating the correlation function of the receptor and
scaffold populations in a given synaptic domain,

CD
r,s(t̄) =

tmax
∫

tmin

dt
[

ND
r (t)− 〈ND

r 〉
] [

ND
s (t+ t̄)− 〈ND

s 〉
]

,

(59)

where the ND
r,s(t) denote the in-domain receptor and scaf-

fold numbers at time t. The averages 〈ND
r,s〉 are evaluated

over the time window tmin ≤ t ≤ tmax. We choose tmin

and tmax to correspond to the lifetime of a given synaptic
domain at the membrane. In marked contrast to the re-
sults for the reaction-only system in Fig. 12, which yield
a time of maximum correlation between fluctuations in
the receptor and scaffold occupancies of the order of min-
utes, we find that the global maximum of CD

r,s(t̄) occurs
at |t̄| < 1 s [see Fig. 16(b)]. Thus, our KMC simulations
of the ME (1) suggest that diffusion strongly diminishes
the time of maximum correlation between fluctuations
in the receptor and scaffold populations at synaptic do-
mains.
We now turn our focus to the occurrence probabili-

ties of receptor and scaffold reactions across synaptic do-
mains. In particular, we consider the synaptic domain
delineated by black boundaries in Fig. 15(a), and first
average the corresponding receptor and scaffold profiles
over the lifetime of this domain [see Fig. 17(a)]. We com-
pute, across the synaptic domain, the densities of all re-
actions inserting (removing) receptors and scaffolds into

FIG. 16. Fluctuating receptor and scaffold numbers in synap-
tic domains. (a) Receptor and scaffold numbers for the
synaptic domain delineated by black domain boundaries in
Fig. 15(a) versus time using N̄s = 0.08. The horizontal
dashed lines and shaded areas indicate the averages and stan-
dard deviations of the receptor and scaffold numbers per
synaptic domain, which we obtained from the domains in the
upper panels of Fig. 15(a). (b) Receptor-scaffold correlation
function CD

r,s(t̄) in Eq. (59) for the domain delineated by black
domain boundaries in Fig. 15(a) versus correlation time t̄, us-
ing tmin = 1 h and tmax = 40 h. The vertical dashed lines in
the main panel and inset in panel (b) correspond to t̄ = 0.

(from) the membrane, and average these densities over
the lifetime of the domain. We denote the resultant re-
action densities by φ+

R,S (φ−
R,S), which we normalize by

the total number of receptor and scaffold reactions that
occurred for the spatial region and time interval consid-
ered here [see Fig. 17(b)]. We find that φ+

R and φ±
S trace

the approximate domain profile with the maxima in φ+
R

and φ±
S occurring close to the domain center, which also

shows the largest concentration of receptors and scaffolds
[Fig. 17(a)]. In contrast, φ−

R shows a local minimum at

the domain center, with local maxima of φ−
R occurring

just outside the synaptic domain. This model prediction
is consistent with experimental observations [93] suggest-
ing that receptors are removed from the membrane in
membrane regions adjacent to synaptic domains.

To further investigate the origin of the aforementioned
qualitative differences in the profiles of φ+

R and φ±
S , and

φ−
R, across synaptic domains, we consider the occurrence

probabilities of each individual receptor and scaffold re-
action across synaptic domains [see Fig. 17(c)]. We find
that the two dominant reactions for the receptors are
Rb + R + S → 2R + S and Mb + R → Mb + Rb, while
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FIG. 17. Occurrence probabilities of receptor and scaffold re-
actions across synaptic domains. (a) Average receptor and
scaffold profiles for the synaptic domain delineated by black
domain boundaries in Fig. 15(a). (b) Average densities of
reactions inserting (removing) receptors and scaffolds into
(from) the membrane, φ+

R,S (φ−

R,S). The average width of
the domain is indicated by shaded regions. (c) Average reac-
tion densities as in panel (b), but for each individual reaction
in the reaction-diffusion model considered here (see Sec. II).
All the results in panels (b) and (c) were obtained from the
domain delineated by black domain boundaries in Fig. 15(a),
by averaging from t = 1 h to t = 40 h in Fig. 15(a). The aver-
age reaction densities were normalized by the total number of
receptor and scaffold reactions that occurred for the spatial
region and time interval considered here.

Sb + 2S → 3S and S → Sb are dominant for the scaf-
folds. In particular, φ−

R is mainly set by the reaction

Mb +R → Mb +Rb, which shows a similar profile as φ−
R.

Steric constraints reduce the effective rate of the reac-
tion Mb + R → Mb + Rb in crowded membrane regions,
yielding a local minimum of the occurrence probability of
Mb+R → Mb+Rb at the domain center. However, recep-
tors diffuse rapidly, and can therefore readily leave synap-
tic domains. As a result, a substantial number of recep-
tors are removed via the reaction Mb +R → Mb +Rb in

the (less crowded) membrane regions adjacent to synap-
tic domains, producing local maxima of the occurrence
probability of Mb + R → Mb + Rb and, hence, φ−

R
close to the domain boundaries. Note that the reaction
Mb + S → Mb + Sb, which is the scaffold reaction analo-
gous to Mb+R → Mb+Rb, does not produce pronounced
local maxima of φ−

S close to the domain boundaries. This
can be understood by noting that scaffolds diffuse less
rapidly than receptors, and are therefore less likely to
diffuse into less crowded membrane regions with a large
effective rate of Mb + S → Mb + Sb.

B. Molecular turnover

Synaptic domains have been observed [3, 4, 10, 12, 15–
20] to be in a dynamic steady state, with rapid turnover
of individual receptors and scaffolds. To study, in our
stochastic lattice model, receptor and scaffold turnover
at synaptic domains we proceed [62] as in FRAP ex-
periments [6, 12, 20], and label all receptors and scaf-
folds inside a synaptic domain at a given time. The
fraction of unlabeled receptors and scaffolds inside the
synaptic domain as a function of time, monitored starting
from the time when the receptors and scaffolds inside the
synaptic domain were labeled, then provides a measure
of global molecular turnover at synaptic domains (see
Fig. 18). The time scale in our reaction-diffusion model
is set [36, 37] by the rate of receptor endocytosis. We ad-
just [62] the rate of receptor endocytosis within the range
of values suggested by experiments [6, 12, 16, 36, 37] to
k1 = 1/750 s−1 (see Table I) so that, consistent with
FRAP experiments [6, 12, 20], ≈ 30% of scaffolds, but
> 95% of receptors, are replaced, on average, within
5 min. We find that, on average, > 99% of receptors
(scaffolds) are replaced within ≈ 7 min (≈ 80 min).
Single realizations of receptor and scaffold turnover at
synaptic domains [62] trace closely, in our model, the
corresponding results obtained by averaging over several

FIG. 18. Fractions of unlabeled receptors and scaffolds versus
time, obtained from the synaptic domain delineated by black
domain boundaries in Fig. 15(a) by labeling all the receptors
and scaffolds initially localized inside the synaptic domain.
Averages were taken over ten realizations corresponding to
different times in Fig. 15(a).
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realizations (Fig. 18).

C. Single-molecule dynamics

In agreement with experiments [3, 4, 6, 12, 15–17, 43],
our reaction-diffusion model predicts [62] that recep-
tors initially localized in synaptic domains tend to leave
synaptic domains via diffusion, while scaffolds typically
stay localized within synaptic domains over their lifetime
at the membrane. Following the trajectories of individ-
ual receptors from insertion into the membrane until re-
moval from the membrane, we find that receptors tend
to exchange, via diffusion, between the inside and out-
side of synaptic domains over their lifetime at the mem-
brane [see Fig. 19(a)]. In particular, our KMC simula-
tions of the ME (1) imply that receptors traffick along
the membrane between the inside and outside of synap-
tic domains over a time scale of seconds to minutes [see
Fig. 19(b)], which is consistent with the switching times
between intra- and extra-synaptic membrane regions typ-
ically found in single-molecule experiments on receptor
diffusion at synaptic domains [6, 12, 15–17, 31–33].

VI. SUMMARY AND CONCLUSIONS

In neurons, neurotransmitter receptors are concen-
trated in membrane regions associated with postsynaptic

FIG. 19. Receptor trafficking along the membrane between
the inside and outside of synaptic domains. (a) Repre-
sentative trajectories of individual receptors (blue and or-
ange curves) inserted inside the synaptic domain delineated
by black domain boundaries in Fig. 15(a). Receptors are
tracked at the membrane from insertion until removal. Do-
main boundaries are indicated by green curves. (b) Receptor
switching times between the inside (in) and outside (out) of
synaptic domains for the diffusion trajectories along the mem-
brane in panel (a).

domains [1–7], which are enormously complex molecu-
lar assemblies. Experiments on minimal systems devoid
of the molecular machinery commonly associated with
postsynaptic domains [1, 2]—such as single transfected
fibroblast cells—have shown [20, 29–36] that receptor-
scaffold interactions, together with the diffusion proper-
ties of each molecule species at the cell membrane, are
sufficient for the formation, stability, and characteristic
size of synaptic domains observed in neurons. The ob-
served self-assembly of synaptic domains of a stable char-
acteristic size can be understood [36–38] based on mean-
field models of receptor-scaffold reaction-diffusion pro-
cesses at the cell membrane. However, mean-field models
cannot capture how the rapid stochastic dynamics of in-
dividual synaptic receptors and scaffolds [6, 16, 17, 31–34]
relate [3, 4, 15, 43] to the observed collective properties of
synaptic domains. In particular, experiments [15, 43] and
theoretical modeling [23, 24, 26–28] suggest that synaptic
domains undergo collective fluctuations that may affect
synaptic signaling.

In this article we have provided a detailed discussion
of a stochastic lattice model of receptor-scaffold reaction-
diffusion processes at the cell membrane [36, 37] that
yields [62] emergence of synaptic domains in the pres-
ence of rapid stochastic turnover of individual molecules.
Based on the reaction and diffusion properties of synap-
tic receptors and scaffolds suggested by previous ex-
periments and mean-field calculations [20, 29–37], we
have shown previously [62] that this stochastic lattice
model provides a simple physical mechanism for collec-
tive fluctuations in synaptic domains [15, 43], the molec-
ular turnover observed at synaptic domains [6, 12, 20],
key features of the observed single-molecule trajecto-
ries [6, 12, 15–17, 31–34], and spatially inhomogeneous
receptor and scaffold lifetimes at the cell membrane
[25, 27, 93]. We have confirmed here these conclu-
sions [62], and expanded and elaborated upon our previ-
ous results, using a combination of KMC simulations of
our stochastic lattice model of receptor-scaffold reaction-
diffusion processes at synaptic domains, and analytic and
numerical solutions of the ME governing our stochastic
lattice model.

For the diffusion-only system we find that, even for
1/ǫ = 8, which corresponds to a maximum molecule
occupancy per lattice site of only eight molecules, the
average results of KMC simulations are in quantita-
tive agreement with the corresponding mean-field model
[36, 37, 47, 54, 60, 61, 72] of nonlinear diffusion in
crowded membranes. A possible origin for this agree-
ment between the stochastic lattice model and the mean-
field model, even for large ǫ, is that, in the diffusion-
only system, the molecule number is conserved, which
constrains the fluctuations in the stochastic system [95].
The ME (1) with Wreact = 0 and the corresponding
mean-field equations (10) and (11) with F r = F s = 0
[36, 37, 47, 54, 60, 61, 72] produce non-Gaussian and,
in some cases, even non-monotonic diffusion profiles. In
particular, compared to Fickian diffusion, crowding tends
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to yield less disperse molecule distributions [62], with
the slowly-diffusing scaffolds acting as an effective bar-
rier to the dispersal of the more rapidly diffusing recep-
tors [3, 4, 6, 15–17, 31–34]. Calculation of the MSD of
individual receptors and scaffolds shows that, at finite
times, the MSD bears a signature of the initial distri-
bution of the receptors and scaffolds in the system. As
the system approaches its steady state, with a homoge-
neous distribution of receptors and scaffolds, we recover
the characteristics of the MSD associated with standard
Fickian diffusion, provided that the diffusion coefficient is
rescaled by a factor accounting for the average molecular
crowding in the system.

As discussed in Sec. II, for synaptic domains formed by
glycine receptors and gephyrin, a physically reasonable
choice for the value of ǫ is ǫ ≈ 1/100 [62] so that, for a size
aP ≈ 5–10 nm of glycine receptors and gephyrin [89, 90],
the membrane patch size a ≈ 80 nm is smaller than
the expected typical size of synaptic domains [20, 29–
37]. As ǫ → 0, one generally expects that averages
over the ME (1) coincide with the solutions of the cor-
responding mean-field equations (10) and (11) [36, 37].
As summarized above, agreement between stochastic lat-
tice model and mean-field model is already obtained, for
the diffusion-only system, with ǫ ≈ 1/10. In contrast,
for the reaction-only system we find that, for physically
relevant values of ǫ, averages over the stochastic lattice
model do, in general, not coincide with solutions of the
corresponding mean-field equations. Exceptions to this
conclusion are provided by purely linear reaction schemes
with only a single linear reaction or competing linear re-
actions yielding a fluctuating steady state of the system
(and no absorbing state). Indeed, our exact analytic solu-
tions of the ME show that, in the case of competing linear
reactions with a fluctuating steady state, agreement be-
tween ME and mean-field equations can even be obtained
with ǫ = 1, which corresponds to a maximum molecule
occupancy per membrane patch of only one molecule.

Consistent with previous theoretical studies of stochas-
tic reaction-diffusion systems [47, 48, 53, 54, 56, 62–64],
we find that molecular noise generally plays a central
role in the reaction dynamics at synaptic domains. In
particular, for the nonlinear reactions thought to be rele-
vant for synaptic domains (see Sec. II) we find, for physi-
cally relevant values of ǫ, disagreement between solutions
of the ME (1) with Wdiff = 0 and the corresponding
mean-field equations (10) and (11) with νr = νs = 0
[36, 37, 47, 54, 60, 61, 72]. For instance, trimerization
of scaffolds, Sb + 2S → 3S, is found [12, 20, 36, 37, 62]
to be crucial for the self-assembly of stable synaptic do-
mains composed of glycine receptors and gephyrin. Even
in a very simple reaction scheme, in which only this sin-
gle reaction is considered, a value ǫ / 1/5000 is required
to produce reasonable agreement between the stochas-
tic model and the mean-field model. Such a value of
ǫ implies a membrane patch size a ≈ 71aP ≈ 350–
710 nm for glycine receptors and gephyrin [89, 90]. The
assumption of a well-mixed system is not expected to

be warranted over such large membrane patch sizes, re-
sulting in breakdown of the mean-field approach [65–71]
even for single (nonlinear) chemical reactions. In ad-
dition to the amplification of noise through nonlinear
chemical reactions with steric constraints [48, 62], illus-
trated by Sb + 2S → 3S, we also [53] find that absorb-
ing (non-fluctuating) states and bistability provide physi-
cal mechanisms yielding disagreement between stochastic
and mean-field models of the reaction dynamics at synap-
tic domains. In the case of competing absorbing states
we find that the mean-field model can produce quantita-
tive agreement with averages over the stochastic model
while failing to reproduce the asymptotic properties of
individual realizations of the stochastic system, with dis-
tinct stochastic trajectories of the system being trapped
in distinct absorbing states.

Comparing stochastic and mean-field results for the
complete reaction dynamics at synaptic domains (see
Sec. II) we find [62] that, for ǫ ≈ 1/100, the mean-field
equations (10) and (11) with νr = νs = 0 fail to capture
the temporal evolution as well as steady-state values of
the average receptor and scaffold occupancies implied by
the ME (1) with Wdiff = 0, with the average stochas-
tic dynamics being approximately one order of magni-
tude faster than the mean-field dynamics. Calculation
of the marginal steady-state probability distribution of
the receptor occupancy shows that one origin for this
discrepancy between stochastic and mean-field solutions
lies, for ǫ ' 1/300, in the bistability of the stochastic
system. For ǫ / 1/300, we find a single mode of the
marginal steady-state probability distribution of the re-
ceptor occupancy. However, our KMC simulations show
that, even for ǫ ≈ 7.8 × 10−6, the averages as well as
the modes of the receptor and scaffold occupancies can
disagree substantially with mean-field results. We find
that, in our stochastic model, the receptor and scaffold
occupancies can both undergo large fluctuations, with the
fluctuations in the receptor occupancy being particularly
pronounced. Calculation of the receptor-scaffold corre-
lation function shows that, consistent with the roles of
receptors and scaffolds as inhibitors and activators of in-
creased molecule concentrations [36, 37], fluctuations in-
creasing (decreasing) the scaffold occupancy tend to lead
to an increase (a decrease) in the receptor occupancy,
with the time of maximum correlation between receptor
and scaffold fluctuations being of the order of minutes.
We find that the time of maximum correlation between
receptor and scaffold fluctuations tends to increase with
decreasing ǫ.

Finally, we considered in this article the receptor-
scaffold reaction-diffusion dynamics at synaptic domains
suggested by previous experiments and mean-field calcu-
lations [20, 29–37]. We find that, starting from random
initial conditions, the stochastic lattice model described
by the ME (1) yields [62] spontaneous formation of in-
phase receptor and scaffold domains with a characteristic
wavelength consistent with the corresponding mean-field
results implied by Eqs. (10) and (11). We have shown
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previously [36, 37, 62] that, in 2D, the mean-field equa-
tions (10) and (11) and the corresponding ME (1) yield,
for the reaction and diffusion rates suggested by experi-
ments [20, 29–37] and used here (see Sec. II), synaptic do-
mains of a similar characteristic size as observed in exper-
iments on neurons and transfected fibroblast cells [20, 29–
36]. Consistent with our results for the reaction-only
system, we find [62], for ǫ ≈ 1/100, that molecular noise
accelerates synaptic domain formation by approximately
one order of magnitude compared to mean-field dynamics
while producing, over a time scale of several hours, sub-
stantial fluctuations in the size and location of synaptic
domains. These results illustrate the potential impor-
tance of stochastic effects [15] when describing synaptic
domains. We also find that, consistent with experimental
observations [15, 43], the molecular noise induced by the
underlying reaction and diffusion dynamics of synaptic
receptors and scaffolds can produce [62] collective fluc-
tuations in synaptic domains. Calculation of the cor-
relation function of the in-domain receptor and scaffold
population numbers shows that, in contrast to our re-
sults for the reaction-only system, the reaction-diffusion
system only yields a very short time of maximum corre-
lation between receptor and scaffold fluctuations. Thus,
our results suggest that diffusion strongly diminishes the
correlation time between fluctuations in the receptor and
scaffold populations at synaptic domains [15, 43].

We find [62] that, in both our mean-field and stochastic
models, scaffold profiles across synaptic domains tend to
be more narrow than receptor profiles. Scaffold domains
therefore tend to be more sharply defined than receptor
domains, and we quantify [62] domain boundaries in our
stochastic lattice model by placing a threshold on the
scaffold occupancy per membrane patch. Our stochastic
lattice model allows us to compute the occurrence proba-
bilities of receptor and scaffold reactions across synaptic
domains. We find that, even though the reaction rates in
our reaction-diffusion model are constant, the occurrence
probabilities of the receptor-scaffold reactions considered
here can be strongly inhomogeneous across synaptic do-
mains. In particular, we find that the occurrence prob-
abilities of reactions decreasing/increasing the scaffold
number, and increasing the receptor number, trace the
approximate domain profile, with maxima close to the
domain center. In contrast the occurrence probability of
reactions decreasing the receptor number is minimal at
the domain center, and shows local maxima just outside
the synaptic domain. Thus, our model predicts that re-
ceptors tend to be removed from the cell membrane in
membrane regions adjacent to synaptic domains, which
is consistent with experimental observations [93].

As discussed in Sec. V, our stochastic lattice model
provides a simple explanation for spatial heterogeneity
in the occurrence probabilities of receptor and scaffold
reactions across synaptic domains [25, 27, 93] in terms of
steric constraints on the receptor and scaffold membrane
patch occupancies, together with the reaction-diffusion
instability [36–38] of the model discussed here. Similarly,

we have shown previously [62] that our stochastic lattice
model provides a simple physical mechanism for distinct
receptor and scaffold lifetimes at the membrane inside
and outside synaptic domains [25, 27, 93]. We also find
[62] that, based on the reaction and diffusion properties
of synaptic receptors and scaffolds suggested by previ-
ous experiments and mean-field calculations [20, 29–37],
the stochastic lattice model discussed here can yield the
turnover times of receptor and scaffold populations ob-
served at synaptic domains [6, 12, 20], and predicts [62]
single-molecule trajectories consistent with experimental
observations [6, 12, 15–17, 31–33].
Many essential cellular processes rely on the organi-

zation of membrane proteins into membrane protein do-
mains [39–42]. Membrane protein domains are character-
ized [3, 4, 6, 12, 15–17, 39–43] by low protein copy num-
bers (≈ 10–1000) and protein crowding. Using synap-
tic membrane protein domains [3, 4] as a model system,
we have studied here in detail a stochastic lattice model
[62] of protein reaction-diffusion processes in crowded cell
membranes. Our stochastic lattice model links the molec-
ular noise inherent in reaction-diffusion processes to col-
lective fluctuations in synaptic domains, and allows pre-
diction of the stochastic dynamics of individual synaptic
receptors and scaffolds. We find that molecular noise can
yield substantial deviations from mean-field results, and
that stochastic lattice models can be employed success-
fully to provide quantitative insights into single-molecule
and collective dynamics of membrane protein domains
[12, 39–42]. We focused here on the most straightfor-
ward scenario of a 1D system, which already captures
[62] the basic phenomenology of the observed fluctuations
at synaptic domains. Generalization of our KMC simu-
lations to 2D systems, which can be handled efficiently
[62] with the computational approach [91] we use here,
will allow more detailed and quantitative model predic-
tions pertaining to, for instance, the stochastic trajecto-
ries of individual synaptic receptors and scaffolds at the
cell membrane, which can now be directly measured [11–
14] in experiments [6, 12, 15–17, 31–34]. Our work sheds
light on the organizational principles linking the collec-
tive properties of biologically important supramolecular
structures, such as synaptic membrane protein domains,
to the stochastic dynamics that rule their molecular com-
ponents.
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Appendix A: Probability distribution of jump times

in a chain of Poisson processes

For completeness, we compute here the probability dis-
tribution of jump times between arbitrary states in the
chain of Poisson processes in Eq. (35). We first note that

Pi→i+2(t) =

∫

dt′Pi→i+1(t
′)Pi+1→i+2(t− t′) . (A1)

Taking the Laplace transform

P̃i→j(s) ≡ L [Pi→j(t)] (s) =

∞
∫

0

dte−stPi→j(t) , (A2)

the convolution in Eq. (A1) can be conveniently repre-
sented in the form

P̃i→i+2(s) = P̃i→i+1(s)× P̃i+1→i+2(s) . (A3)

From Eq. (39) we have

P̃i→i+1(s) =

∞
∫

0

αie
−(αi+s)tdt =

αi

αi + s
, (A4)

which implies that

P̃i→i+2(s) =
αi

αi + s

αi+1

αi+1 + s
. (A5)

Transforming Eq. (A5) back by using an inverse Laplace
transform, one obtains

Pi→i+2(t) = L−1
[

P̃i→i+2(s)
]

(t)

=
αiαi+1

αi+1 − αi

(

e−αit − e−αi+1t
)

. (A6)

Following similar steps as outlined above, the probability
distribution of jump times for an n-step jump can be

expressed as an n-fold convolution, resulting in

Pi→i+n(t) =L−1





i+n−1
∏

j=i

αj

αj + s



 (t)

=

(

∏

i

αi

)

∑

i

e−αit

∏

j 6=i (αj − αi)
, (A7)

which provides the probability distribution of jump times
between arbitrary states in the chain of Poisson processes
in Eq. (35).

Appendix B: Mean jump time in a chain of Poisson

processes

In this appendix we formally derive the expression in
Eq. (40) for the average jump time from a state p to
a state q, 〈t〉p→q, in the chain of Poisson processes in
Eq. (35). Consider the mean jump time from state i to
state i+ 2 in Eq. (35):

〈t〉i→i+2 =

∞
∫

0

dt tPi→i+2(t)

=

∞
∫

0

dt t

t
∫

0

dt′Pi→i+1(t
′)Pi+1→i+2(t− t′)

=

∞
∫

0

dt′Pi→i+1(t
′)

∞
∫

t′

dt tPi+1→i+2(t− t′)

=

∞
∫

0

dt′Pi→i+1(t
′)

∞
∫

0

dt (t′ + t)Pi+1→i+2(t)

=

∞
∫

0

dt′ (t′ + 〈t〉i+1→i+2)Pi→i+1(t
′)

= 〈t〉i,i+1 + 〈t〉i+1,i+2 , (B1)

where we used that
∫∞

0
dtPj→j+1(t) = 1. Decomposing

an arbitrarily long sequence of jump processes into pairs
of jump processes and using Eq. (B1), Eq. (40) follows
from Eq. (39). Using Eq. (A7), Eq. (40) can also be
derived directly from the probability distribution of jump
times for an n-step jump in Eq. (35).
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