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We present a statistical-mechanical model for the behavior of intertwined DNAs, with a focus
on their torque and extension as a function of their catenation (linking) number and applied force,
as studied in magnetic tweezers experiments. Our model produces results in good agreement with
available experimental data, and predicts a catenation-dependent effective twist modulus distinct
from what is observed for twisted individual double-helix DNAs. We find that buckling occurs near
to the point where experiments have observed a kink in the extension versus linking number, and that
the subsequent “supercoiled braid” state corresponds to a proliferation of multiple small plectoneme
structures. We predict a discontinuity in extension at the buckling transition corresponding to
nucleation of the first plectoneme domain. We also find that buckling occurs for lower linking
number at lower salt; the opposite trend is observed for supercoiled single DNAs.

I. INTRODUCTION

Double-helix DNA molecules are sufficiently flexible,
with a thermal persistence length A ≈ 50 nm, that they
often become intertwined around one another in the cell.
An important example of this intertwining occurs in vivo
at the end stages of DNA replication [1–4] due to the
remnant linking of the strands of DNA in the parental
double helix. Mathematicians often refer to a pair of in-
tertwined filaments as a “2-ply” or a “2-braid” [5]; below
we will describe such structures simply as braided DNAs
[6, 7].

Braided DNAs have also been studied in precise single-
molecule manipulation experiments. Most such experi-
ments have used “magnetic tweezers” to apply a constant
force to a particle to which two double-helix DNAs are
attached; the opposite ends of the DNAs are tethered to
a surface [8–11] (Figure 1). The resulting double tether
can have a controlled force applied to it using a magnetic
field gradient, while at the same time, the total linking
number of the two double-helix molecules can be adjusted
by rotating the magnetic field so as to rotate the mag-
netic particle. As a result, one can study the extension of
the two DNAs as a function of inter-DNA linking number
(often called “catenation number”, or Ca). Experiments
of this type have been used to study removal of DNA
catenations by type-II topoisomerases (enzymes which
change DNA topology by cutting one double helix and
then passing the other double helix through the resulting
gap) [9, 10, 12–14]. Braided DNAs have also been used to
study the decatenation activity of type-I topoisomerases
[15, 16], as well as the double-helix segment-exchange ac-
tivity of site-specific DNA recombinases [17–19].

Understanding these kinds of DNA-topology-changing
enzyme experiments depend on the understanding of
the physical properties of the DNA braids, but this has
lagged behind our understanding of the simpler problem
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of a single twisted stretched double helix [20–28]. The
reason for this is that braided DNAs are a more complex
physical situation than a single supercoiled DNA; as a
result, while there have been prior theoretical studies of
helically intertwined DNAs [6, 11, 29–33], those works
have not quantitatively analyzed the buckling (“braid
supercoiling”) behavior that one would expect as cate-
nation number is increased. While it has been assumed
that the experimentally observed change in the slope of
braid extension versus catenation number corresponds to
the onset of braid supercoiling [9–11], the precise loca-
tion and nature of braid buckling have not been theoret-
ically understood. Two factors that make the problem
of braided DNAs distinct from the mechanics of a sin-
gle twisted DNA under tension are first, the lack of an
intrinsic braid twist elastic modulus, and second, the de-
pendence of the braid mechanics on the distance between
the tethering points of the two double helices [9–11].

In this paper, we present the first complete theory of
the mechanics of braided DNAs, treating the initial inter-
twining and the supercoiled-buckling behavior in a uni-
fied way. As is the usual situation in experiments [9–11],
we treat the case of braids of nicked DNAs (double he-
lices with a break in one of the strands, such that the
broken strand can freely swivel around the intact one)
to avoid the further complexity of the constraint of the
double-helix linking number change on top of that of the
catenation number. As a result, our model treats pos-
itive and negative catenations equivalently, a symmetry
observed in experiments to a remarkable degree [9–11].
We consider various salt concentrations, DNA lengths,
and intertether distances, with a focus on comparing our
results to the analogous behavior of supercoiled single
DNAs.

The layout of the paper is as follows. Sec. II contains
detailed description of the mathematical model, where we
study the braid Hamiltonian in the thermodynamic limit
(Sec. II A). Free energies corresponding to a tethered
braid and thermal averaging of fluctuations are discussed
in Sec. II B and Sec. II C respectively. The results and
predictions are contained in Sec. III, where we study
braids at physiological salt (Sec. III A), as well as the
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FIG. 1. (a) Schematic of a DNA braid under torsional stress, showing coexistence of straight and plectonemically buckled
states. The individual dsDNAs are able to swivel around their contact with the wall, keeping the dsDNAs from twisting. (b)
Two duplex DNAs (dark and gray shaded) helically braided in a right-handed manner on the surface of a cylinder of radius R
oriented parallel to the ẑ-axis, viewed from two angles. The orthonormal triad (̂tio, t̂i⊥r, t̂i⊥θ), where i ∈ {1, 2} is shown for
one of the curves. t̂1o is in the direction of the tangent to the helix, t̂1⊥r is oriented radially inward, and t̂1⊥θ ≡ t̂1o × t̂1⊥r.
The projection of the triad on the ẑ axis is a constant dependent on the helix parameters (Eq. 3).

effect of varying salt concentration (Sec. III B) and other
finite-size effects (Sec. III C and III D).

II. MODEL

We build a free energy model for braids considering
double-helix DNAs as electrically charged semi-flexible
polymers residing in an ionic solution. We define β =
1/kBT , and use T = 290 K for all numerical computa-
tions.

Figure 1 shows how we view braided DNA structure.
The ends of two nicked DNA molecules are tethered to a
fixed wall and a rotating bead respectively, such that the
intertether distance on either end is d. This scenario is
similar to the setup for tweezer experiments [8–11]. The
beads used in experiments are large enough to safely as-
sume no leakage of catenation number via looping of the
DNA over the beads. By applying a constant force to the
rotationally constrained bead it is possible to study DNA
braids in a fixed force and fixed catenation ensemble.

A. The Hamiltonian

We express the Hamiltonian H associated with two
nicked double-helix DNA molecules of length L, held at
a fixed inter-DNA linking or catenation number and un-
der a constant applied force f ẑ as an integral over the
arc length scaled by A, where the thermal bending per-
sistence length of DNA A sets the order of magnitude of

thermal deformations:

βH =

L/A∫
0

dξ

[
1

2

(∣∣∣∣dt̂1

dξ

∣∣∣∣2 +

∣∣∣∣dt̂2

dξ

∣∣∣∣2
)

− βAf

2
ẑ · (̂t1 + t̂2) + U(r1, r2)

]
, (1)

where ξ is the dimensionless arc length; ri(ξ) and ti(ξ) ≡
(1/A)(∂ri/dξ), are respectively the position vector and
the tangent of the i-th braiding strand for i ∈ {1, 2}.
The first term in the integrand containing the sum of the
squares of the local curvature of the two strands corre-
spond to elastic bending energy of the two double helices.
The second term containing the external force f ẑ corre-
sponds to the entropic elasticity of the two chains, and
the electrostatic part of the Hamiltonian is represented
by U(r1, r2). Since we only consider nicked double-helix
DNAs, there are no DNA-twist-energy terms in the above
Hamiltonian, and we neglect the triangular end regions
(Figure 1) till Sec. II B.

Two catenated elastic rods, many persistence lengths
long, under a high stretching force form coaxial helices.
We take the average shape of the braiding strands to be
that of a regular helix oriented parallel to the direction of
the external force f ẑ (Figure 1), and propose a perturba-
tive expansion of the braid Hamiltonian (Eq. 1) around a
mean-field solution parameterized by radius R and pitch
2πP of the helix.

We expand the tangent vectors t̂i (i ∈ {1, 2}) in Eq. 1
about a mean-field direction tio:

t̂i =

[
1− t2

i⊥
2

+O(t4
i⊥)

]
t̂io + ti⊥, (2)
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where ti⊥ = ti⊥r + ti⊥θ. We introduce two rotating
right-handed orthonormal triads: (̂tio, t̂i⊥r, t̂i⊥θ), where
i ∈ {1, 2} (Figure 1), such that the unit vector t̂io points
along the tangent to the mean-field helix correspond-
ing to the i-th strand, t̂i⊥r points along the radially-
inward direction, and t̂i⊥θ ≡ t̂io × t̂i⊥r. Note that the
ẑ-projection of the basis vectors depend only on the helix
parameters:

ẑ · t̂io = cos δ, ẑ · t̂i⊥θ = sin δ, ẑ · t̂i⊥r = 0, (3)

where δ ≡ arctan(R/P ), is the braiding angle.
The derivatives of the orthonormal basis with respect

to normalized arc length ξ are given by the following
equations:

d

dξ

 t̂io
t̂i⊥r
t̂i⊥θ

 =

 0 κ 0
−κ 0 κa
0 −κa 0

 t̂io
t̂i⊥r
t̂i⊥θ

 , (4)

where κ ≡ AR/(R2 + P 2), is the total mean-field cur-
vature per unit persistence length of the strands and
a ≡ P/R. The above set of equations (Eq. 4) are also
known as the Frenet-Serret formulas. We neglect any
space-varying component of the mean-field helix curva-
ture [30, 34–36], which is a good approximation in the
thermodynamic limit of long braids.

Using the above equations, the square of the local cur-
vature is written as∣∣∣∣dt̂idξ

∣∣∣∣2 = (1− t2
i⊥)κ2 +

∣∣∣∣dti⊥dξ
∣∣∣∣2 + 2κt̂i⊥r ·

dti⊥
dξ

, (5)

where we have neglected O(t3
i⊥) terms.

Physical micromanipulation experiments on DNA have
been performed in varied concentrations of aqueous
buffers, whereas ≈ 100 mM Na+ or K+ is the physio-
logically relevant range of salt. Counterion condensation
on the negatively charged DNA backbone (2e− per base
pair) results in a screened Coulomb potential over a char-
acteristic length scale called the Debye screening length,
λD ≈ 0.3 nm/

√
M for M molar univalent salt. DNA-

DNA repulsion over a few screening lengths is that of
the Debye-Hückel type, i.e., the electrostatic potential
decays exponentially at large distances and diverges like
the Coulomb potential at distances shorter than λD.

The electrostatic potential due to a close proximity
of two parallel DNAs has been shown to be described
by Debye-Hückel interaction of uniformly charged rods
[37, 38]. For helically wrapped DNA chains, also the case
for plectonemes in single supercoiled DNA an empirical
modification of the parallel rod potential has been shown
to account for the enhancement due to helical bends in
the structure [39]. Furthermore, there is an electrostatic
contribution from the self interaction of the braiding he-
lices, for which we propose an empirical form that agrees
with the numerical solution of the Debye-Hückel-type self
interaction (Appendix A). The total electrostatic poten-
tial energy per unit length A of the braid, in kBT units
is given by

U(R,P ) = ζK0

(
2R

λD

)
Z(a) +

ζc1λ
2
D

R2a2(1 + c2a2)
, (6)

where a = cot δ and Z(a) ≡ 1 +m1/a
2 +m2/a

4.

The first term in Eq. 6 is the electrostatic interaction
potential between the braiding strands and Z is the cor-
rection factor for helix curvature with m1 = 0.828 and
m2 = 0.864 [39]. The second term corresponds to the
self-electrostatic energy of a helix, where c1 = 0.042, and
c2 = 0.312, are chosen to closely match the numerical
solution [Figure 6]. ζ ≡ 2A`Bν

2, is the amplitude of
the Debye-Hückel potential, where `B = e2/(εkBT ), is
the Bjerrum length of the solution with dielectric con-
stant ε and ν is the effective linear charge density of the
double-helix DNA, which is a parameter used to satisfy
the near-to-surface boundary conditions for the far-field
Debye-Hückel solution [21, 25, 37–40]. We use `B = 0.7
nm corresponding to water at 290 K; numerical values
of the effective charge ν and the Debye screening length
λD, used for various salt concentrations are given in Ta-
ble I. The bending persistence length of DNA A is also
known to slightly modify on changing the salt concentra-
tion [41, 42], but we neglect such small changes as they
are inconsequential to our qualitative results.

We approximate the total braid electrostatic poten-
tial as the average potential arising from self and mutual
repulsion of two coaxial helices, and consider radial fluc-
tuations in the braid in the asymptotic limit of parallel
chains. We consider small uniform deviations in the braid
radius Aw(ξ) such that,

w(ξ) =

∫ ξ

0

1

2
[t1⊥r − t2⊥r]dξ̄

= t̂1⊥r

∫ ξ

0

1

2
[t1⊥r + t2⊥r]dξ̄, (7)

where ti⊥r are given by Eq. 2 and we assume the bound-
ary condition w(0) = 0. The above definition of normal-
ized radial deformations w(ξ) assumes a parallel config-
uration of the two strands. We define the electrostatic
part of the Hamiltonian as:

U(r1, r2) ≡ U(R+Aw(ξ), P )

= U0 + gw + ηw2 +O(w3), (8)

where U0 ≡ U(R,P ), is given by Eq. 6. g ≡ A∂U/∂R,
and η ≡ (A2/2)(∂2U/∂R2), where η is the effective elec-
trostatic modulus of uniform radial deformations in the
braid. The first term gives the mean electrostatic energy
per unit length A of braid with fixed radius and pitch,
while the subsequent terms are corrections for small uni-
form derivation in braid radius. We neglect expansion
of the electrostatic potential in the pitch of the braid
because the fluctuations in the pitch are predominantly
controlled by the external tension.

Now, we expand the total Hamiltonian (Eq. 1) to the
quadratic order in transverse-tangent fluctuations:
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βH = (L/A)
[
κ2 − 2µ+ U0

]
+

L/A∫
0

dξ

[
κ

{
t̂1⊥r ·

dt1⊥

dξ
+ t̂2⊥r ·

dt2⊥

dξ

}
− (µ/a)(t1⊥θ + t2⊥θ) + gw

]

+
1

2

L/A∫
0

dξ

[∣∣∣∣dt1⊥

dξ

∣∣∣∣2 +

∣∣∣∣dt2⊥

dξ

∣∣∣∣2 + (µ− κ2)
(
|t1⊥|2 + |t2⊥|2

)
+ 2ηw2

]
+O(t3

1⊥, t
3
2⊥), (9)

where µ ≡ (βAf cos δ)/2, is the dimensionless effective
tension in each strand of the braid. The first term, asso-
ciated with t̂io (i ∈ {1, 2}) component of the tangent vec-
tors is the leading order term that gives the total mean-
field energy of the braid.

We represent the real-space components of the
transverse-tangents as a sum over dimensionless Fourier
modes q:

tj⊥k(ξ) =
A

L

∑
q

eiqξ t̃j⊥k(q), (10)

where i =
√
−1, j ∈ {1, 2} and k ∈ {r, θ}. We set the

reference of the fluctuation free energy by setting the
amplitude of zero-momentum transverse fluctuations to

zero: t̃j⊥k(0) = 0, where j ∈ {1, 2} and k ∈ {r, θ}. The
contribution from zero momentum is accounted for by
the mean-field parameters, and this boundary condition
precludes order-mean-field perturbations. Also, subject
to the zero-momentum boundary condition, the second
term in Eq. 9 (terms linear in tj⊥k) vanishes.

The third term in Eq. 9, containing quadratic trans-
verse tangents, accounts for the free energy contribution
due to Gaussian fluctuations of the two braided strands
about their average helical shapes. We write the third
term as a sum over the Fourier modes q:

β∆H =
1

2

∑
q

ω†Mω, (11)

where ω(q) is a 4× 1 column vector and M(q) is a 4× 4
Hermitian matrix such that,

Mω =
A

L


q2 + µ+ κ2a2 + 1

2ηq
−2 2iqκa 1

2ηq
−2 0

−2iqκa q2 + µ+ κ2(a2 − 1) 0 0
1
2ηq
−2 0 q2 + µ+ κ2a2 + 1

2ηq
−2 2iqκa

0 0 −2iqκa q2 + µ+ κ2(a2 − 1)




t̃1⊥r
t̃1⊥θ
t̃2⊥r
t̃2⊥θ

 . (12)

Now, we compute the fluctuation free energy in the
limit of zero curvature (κ→ 0), which simplifies the con-
figuration to that for two fluctuating parallel chains and
makes the problem analytically tractable. Also, note that
in our scheme to include fluctuations in the electrostatic
part of the Hamiltonian (Eq. 7) we have already assumed
zero curvature.

We construct the canonical partition function for two
fluctuating parallel strands:

Z =
∏
q

∫
dt̃1⊥r

∫
dt̃1⊥θ

∫
dt̃2⊥r

∫
dt̃2⊥θ e

− 1
2ω

†Mω

=
∏
q

(2πL/A)2q√
(q2 + µ)3(q4 + µq2 + η)

, (13)

and obtain the fluctuation correction to the mean-field

free energy from the partition function:

− ln Z

L/A
=

3

2

√
µ+ η1/4 cos

(
1

2
tan−1

√
4η

µ2
− 1

)
, (14)

where we drop constants dependent on only the ultravio-
let cutoff. The RHS of Eq. 14, which is real and positive
for all positive values of µ and η gives the fluctuation free
energy per unit length A of the braid. There are four de-
grees of freedom for transverse fluctuations in a stretched
braid; three of them (̂t1⊥θ, t̂2⊥θ, and one in t̂1⊥r where
there is no relative displacement between the strands) are
controlled solely by the external tension, as seen in the
first term of Eq. 14. The second term accounts for the
fluctuations in t̂1⊥r that correspond to displacement of
the two strands relative to one another, and is controlled
by both the external tension and the electrostatic forces.

Fluctuations in the radius of the braid (σR) (Appendix
B) decrease with increasing electrostatic modulus of ra-
dial fluctuations (η): σR ∼ η−3/8 (Eq. B.3), which im-
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plies a scaling of the fluctuation free energy with the

radial fluctuations: − ln Z ∼ σ
−2/3
R . A similar scaling

relation appears for the confinement entropy of a worm-
like chain trapped in a rigid cylindrical tube, where the
confinement entropy scales with the radius of the tube:
∆F ∼ 〈R〉−2/3 [43]. Theoretical studies of supercoiled
DNA have used the confinement entropy scaling to ac-
count for strand undulations in a plectoneme structure
[21, 27]. Again in the context of plectonemic DNA, the
scaling ansatz was modified: for Gaussian fluctuations of
a worm-like chain trapped in a potential well, the average
radius 〈R〉 could be replaced by the radial fluctuation σR,
which was then chosen to be the Debye length of the so-
lution [28, 39, 44]. Indeed, we find that σR of the free en-
ergy minimized braid is of the order of the Debye length
(Figure 7b, Table I). The existing literature on plectone-
mic and braided DNAs, to the best of our knowledge uses
the confinement entropy scaling approach to account for
strand undulations [21, 27–33, 39]. Our calculations treat
fluctuations systematically and without a scaling ansatz,
and produce the previously assumed scaling behavior.

B. Mean-field theory

In this section, we develop the free energy expressions
for a tethered braid (Figure 1), where the total length of
each of the braiding molecules is partitioned into a force-
extended state (straight phase), and a plectonemically
buckled state (plectoneme phase). The plectoneme state
also consists of a braid “end loop”, a teardrop-shaped
loop at the end of every plectoneme structure (Figure 1).

The amount of catenation per helical repeat of the
DNA molecules is defined as the catenation density in
braids, σc ≡ Ca/Lk0 (Lk0 = L/h, where L is the contour
length of each DNA and h = 3.6 nm, is the length of
one helical repeat of double-helix DNA). Total catenation
(Ca) is divided between the straight phase (Cas) and the
plectoneme phase (Cap), which are further redistributed
between twist and writhe as dictated by minimization of
the total free energy.

1. Straight braid

The length of each double helix in the straight phase Ls
is divided into two parts: (1) the helical intermolecular

wrappings of length Lb, such that Lb = 2πCas

√
R2
s + P 2

s ,
where Rs and 2πPs are respectively the radius and the
pitch of the helical interwounds; and (2) the end regions
of length Le (Le = Ls − Lb), which do not contain any
inter-molecular links and connect the helical wrappings
to the tethered points (Figure 1). The mean-field energy
of the straight braid is obtained using the leading order
term in the expansion of the Hamiltonian (the first term

in Eq. 9):

βEs = Lb

[
AR2

s

(R2
s + P 2

s )2
−βf cos δs +

1

A
U0(Rs, Ps)

]
− βfLe cosφ. (15)

The first term (with the brackets) corresponds to the heli-
cal region of the straight phase, which is a sum of free en-
ergy contributions from elastic bending, force-extension,
and electrostatic repulsion respectively. Here δs is the
braiding angle (tan δs = Rs/Ps) in the straight phase.
The second term contains the force-extension free energy
of the end regions, where φ is the opening angle at the
end of the braid (sinφ = d/Le, where d is the intertether
distance, see Figure 1). Note that for a given length
(Ls) and catenation (Cas), the radius (Rs) and the pitch
(2πPs) of the braid are the only free parameters in the
free energy of the straight phase, minimizing which we
obtain the equilibrium state (Table I).

The fluctuation correction to the mean-field free energy
in the straight phase is obtained from Eq. 14,

β∆Fs =
Lb
A

[
3

2

√
µs + η1/4

s cos

(
1

2
tan−1

√
4ηs
µ2
s

− 1

)]

+ Le

√
2βf cosφ

A
. (16)

The first term (with the brackets) corresponds to the
fluctuation contribution to the free energy of the he-
lically wrapped section of the straight phase, where
µs = µ(Rs, Ps) and ηs = η(Rs, Ps) (Eq. 8 and 9). The
second term corresponds to the worm-like-chain fluctu-
ations of the end regions and is obtained by plugging
µ = (βAf cosφ)/2 and η = 0 in Eq. 13.

2. Plectonemically buckled braid

The plectonemic braid is a buckled structure where the
braid centerline writhes around itself (Figure 1). Buck-
ling achieves a lower energy state by the release of torque
in the braid, due to an increase in the writhe contribu-
tion to the total linking number. Total writhe in the
plectoneme formed of superhelical wrappings of the braid
with total double helix length Lp, superhelix opening an-
gle α, and superhelical radius Rp is given by

Wrp = Lp cos δp
sin 2α

4πRp
, (17)

where δp is the helix angle of the braid in the plectoneme
[21, 39, 45].

As mentioned above, every plectoneme domain is ac-
companied by a finite-sized loop-shaped structure where
the braid bends back (Figure 1). The braid end loop
presents an energy cost to nucleation of a plectoneme
domain; thermodynamically, the situation is similar
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to plectoneme nucleation in supercoiled single DNAs
[26, 27, 46, 47]. The equilibrium size of the end loops
Γ is obtained by separately minimizing the elastic energy
cost of forming them:

βEΓ = 2
εA

Γ
+ βfΓ, (18)

where the first term is the bending energy contribution,
and the second term is the work done in decoupling the
plectoneme end loop from the external tension f [26, 27].
We use ε = 16, corresponding to a “teardrop” geometry
of the loop [48–50]. Minimizing EΓ (Eq. 18) yields,

Γ =

√
2εA

βf
. (19)

Considering the writhe contribution of an end loop to be
unity (WrΓ ≈ 1), the total catenation in the plectoneme
phase (Cap) made up of m domains is partitioned into the
twist (Twp), containing the local twisting of the braid,
and the writhe (Wrp), reflecting the overall structure of
the plectoneme.

Cap = Twp + Wrp +mWrΓ

= (Lp +mΓ)
sin δp
2πRp

+ Lp cos δp
sin 2α

4πRp
+m, (20)

where Rp is the radius of the braid in the plectoneme
state. Considering a simple geometric picture of closely-
packed braids, we set the plectoneme superhelical ra-
dius to be twice the braid radius in the plectoneme:
Rp = 2Rp. As a simplifying assumption, we ignore local
structural rearrangements in the plectoneme that may
lead to spatially-varying mean-field superhelical radii.

The mean-field free energy of the plectoneme phase is
given by

βEp =(Lp +mΓ)

[
A sin4 δp
R2
p

+
1

A
U0(Rp, Pp)

]

+ Lp

[
cos δp

A sin4 α

4Rp
2 +

2

A
U0(Rp,Pp)

]
+m

√
2εβAf − ln Ω(m), (21)

where the first bracketed term is the sum total of elastic
bending energy and electrostatic energy of the braid in-
side the plectoneme, obtained from the mean-field term
in Eq. 9. The second bracketed term is the energy contri-
bution from elastic bending and electrostatic repulsion in
the superhelix, where 2πPp and 2πPp are the braid pitch
and the superhelical pitch in the plectoneme respectively.
The factor of 2 multiplying the superhelix electrostatic
term is because the length of the superhelix is half of
that of the DNA length in the plectoneme while the ef-
fective charge is two times that of the double helix. The
third term corresponds to the elastic energy of m braid
end loops (Eq. 18), and finally, the logarithm term is the

free energy associated with the configuration entropy of
m loops. The origin of this entropy is from the following
two sources: (1) sliding of a plectoneme domain along the
braid contour, and (2) exchange of DNA length among
the plectonemic domains. We define the arc length corre-
sponding to unit twist in the braid (

√
R2 + P 2 ∼ 10 nm,

see Table I) as the characteristic length distinguishing
these energetically degenerate but structurally distinct
states. The total number of such states (Ω) for a plec-
toneme phase constituted of m domains (where m ≥ 1)
can be written as a product of two combinatorial factors
[27]:

Ω(m) =
(2πCas)

m

m!
× (2πTwp)

m−1

(m− 1)!
, (22)

where the first term corresponds to the sliding entropy
of m loops (2πCas is the total number of possible plec-
toneme nucleation sites) and the second term is the num-
ber of distinct configurations associated with the ex-
change of DNA length among the domains. Note, for
a plectoneme of given length (Lp), catenation (Cap) and
number of domains (m), the total free energy has two
free parameters (namely, δp, α and Rp constrained by
Eq. 20) that determine the equilibrium structure (Table
I).

Similar to the straight braid case (Eq. 16), the fluc-
tuation free energy correction to the mean-field energy
of the braid in the plectoneme is obtained from Eq. 14
using µp = µ(δp) and ηp = η(δp, α):

β∆Fp =
(Lp +mΓ)

A

[
3

2

√
µp

+ η1/4
p cos

(
1

2
tan−1

√
4ηp
µ2
p

− 1

)]
. (23)

The above expression gives the total free energy asso-
ciated with worm-like-chain fluctuations in the braiding
strands forming the plectoneme structure.

C. Thermal averaging: partition function

In an ensemble of fixed catenation and fixed force,
the total free energy of the braid can be obtained by
minimizing the sum total of the straight and the plec-
toneme phase energy. We thermally average over states
with all possible plectoneme lengths and number of do-
mains, where the free energy in each state is minimized
with respect to the partition of the total linking number,
thus ensuring torque balance between the two structural
phases. The free energy of the braid for each fixed Lp
and m is obtained via numerical minimization over Cas
(Eq. 15, 16, 21 and 23),

F (Lp,m) = min
Cas

(Es + ∆Fs + Ep + ∆Fp) . (24)
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The above minimization is constrained by conservation
of total catenation (Ca = Cas + Cap) and total DNA
length (L = Ls +Lp +mΓ). The states described by Eq.
24 for all possible values of Lp and m are then thermally
averaged over to construct a partition function:

Z(Ca, f) = e−βF (0,0) +
∑

m=1,2...

L−d∑
Lp=∆

e−βF (Lp,m), (25)

where the first term is the purely straight phase, and the
second term corresponds to a sum over all possible co-
existence states. The sum over Lp in Eq. 25 is done nu-
merically using a ∆ = 1 nm mesh. An averaging scheme
as described above takes into account various thermally
accessible equilibrium states which allow the possibility
of torque fluctuations in the fixed catenation ensemble.
A similar approach was taken in Ref. [27] to study su-
percoiled single DNAs.

Equilibrium values of the end-to-end distance (z), the
torque in the braid (τ), and the size of the helical wrap-
pings in the straight phase (Lb) are obtained from the
partition function (Eq. 25):

〈z〉 = − 1

Z

[
∂F (0, 0)

∂f
e−βF (0,0)

+
∑
m

∑
Lp

∂F (Lp,m)

∂f
e−βF (Lp,m)

]
, (26)

〈βτ〉 = − 1

2π

∂ lnZ
∂Ca

, (27)

〈Lb〉 = 2π〈Cas〉
√
〈Rs〉2 + 〈Ps〉2. (28)

Now, the average values of the pure-state free variables X
and the coexistence-state free variables Y are computed
from Eq. 25 as follows,

〈X〉 =
1

Z

[
Xe−βF (0,0) +

∑
m

∑
Lp

X e−βF (Lp,m)

]
, (29)

〈Y 〉 =
1

Z
∑
m

∑
Lp

Y e−βF (Lp,m), (30)

where X ∈ {Rs, Ps,Cas} and Y ∈ {δp, α, Lp,m}.

III. RESULTS

A. Braids at 100 mM salt

Figure 2a shows the comparison of theoretically-
predicted extension curves for various forces: 1.25 (lowest
curve), 2, 3 and 4 pN (highest curve) with experimental
observation for 2 pN (filled circles) at 100 mM univalent
salt concentration [11]. The size of the intertether dis-
tance d being comparable to the length of the braiding
molecules results in a sharp decrease in extension when

the first catenation is added. The decrease is due to the
formation of the first helical bend in the braid along with
the end-regions from the zero-catenation parallel config-
uration. The extension shortening is used to estimate
the intertether distance by simply using the Pythagorean
theorem [9–11]. Notably, the intertether distance d is a
parameter that has not been controlled in experiments
to date.

Further addition of catenation decreases the end-to-
end extension of the braid (Figure 2a) due to double he-
lix length being passed from the end-regions to the heli-
cally wrapped section. The size of the helically-wrapped
straight braid increases with catenation and reaches a
maximum just before the onset of buckling (Figure 2d).
Elastic bends in the braiding double helices generate tor-
sional stress, which increases non-linearly with catena-
tion (Figure 2b); this nonlinearity has been seen in pre-
vious models of the straight braid [11, 29, 30]. When the
torque reaches a critical value, which mainly depends on
thermodynamic parameters such as the external force,
nucleation of the first plectonemically buckled domain
becomes energetically favorable.

The onset of buckling can be identified as a knee in
the extension plots (Figure 2a), past which DNA length
is passed into the force-decoupled buckled phase (Eq.
21), resulting in a steeper decrease of the end-to-end ex-
tension. The torque in the braid shows a small non-
monotonic “overshoot” at the buckling transition, and
continues to increase with a small slope in the coexistence
phase. In the coexistence region, the writhe contribu-
tion to the total linking number reduces torsional strain
in the braid. The abruptness of the buckling transition
owes to the finite-energy cost to nucleating a plectoneme
domain, vis-à-vis the plectoneme end loop. The coexis-
tence phase at 100 mM salt is characterized by multiple
domains of plectoneme (Figure 2c), where the number
of domains is equal to the equilibrium number of plec-
toneme end loops. The total size of the plectoneme phase
increases after the buckling transition (Figure 2d), where
DNA length is transferred to the buckled region from the
straight phase.

Higher external tension lowers the total energy of the
straight braid (Eq. 15 and 16), resulting in a higher
end-to-end extension at a given catenation (Figure 2a).
The stabilization of the straight phase upon increasing
force has an effect of delaying the buckling transition,
i.e, buckling occurs at a higher value of catenation. The
torque is higher in both the straight and the buckled
braid under larger external tension (Figure 2b).

Stretched, supercoiled single DNAs at 100 mM salt also
show a buckling transition separating a force-extended
phase from a plectoneme-coexistence phase [21, 42, 51],
although the mechanical response of braids is fundamen-
tally different than that of supercoiled DNAs. The torque
in a supercoiled single DNA increases linearly with the
linking number [46, 52], as opposed to a non-linear in-
crease in braids (Figure 2b). The linearity of torque in
supercoiled single DNA arises from a constant effective
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FIG. 2. DNA braids at 100 mM monovalent salt under various forces, the shaded arrows show the direction of increasing force.
Theoretical predictions are for ≈11 kb (L = 3.6 µm) long double helices, tethered 1.5 µm (d = 0.42L) apart. Catenation (Ca)
and catenation density (σc = Ca/Lk0) are plotted on the top and the bottom x-axes respectively. (a) Relative end-to-end
distance (left y-axis) or extension (right y-axis) versus catenation. Lines are theoretical predictions for 1.25 (lowest curve),
2, 3 and 4 pN (highest curve) force, while filled circles are experimental data at 2 pN [11]. The change in slope of the lines
corresponds to plectonemic buckling transition, which is at a higher catenation for larger external tension due to increased
stability of the force-coupled straight state. The kink at the onset of buckling transition is related to the plectoneme-nucleation
cost presented by the braid end loop. (b) Torque in the braid shows a non-linear increase in the straight phase, and continues
to increase in the coexistence phase but with a much weaker slope. The torsional stress is released in the coexistence phase due
to the contribution from plectoneme writhe (Eq. 17). (c) Number of plectonemic domains versus catenation, showing that the
buckled phase is characterized by multiple plectoneme domains. Nucleation of new domains causes the increase of torque in
the coexistence phase, as opposed to a constant torque expected in the case of a single plectoneme domain. (d) Plot of the size
of the straight-phase helical region 〈Lb〉 (left y-axis, solid gray curves) and the size of the plectoneme region 〈Lp +mΓ〉 (right
y-axis, dashed black curves) as a function of catenation. Lb increases in the straight phase with catenation till the buckling
point, after which Lb decreases as DNA length is passed into the plectoneme phase, also seen in the increase in the total size
of the plectoneme.

twist modulus in the double helix (C ∼ ∂τ/∂σsc ≈ 100
nm [22, 42, 46]), which is attributed to the strong base-
pairing interactions holding the DNA strands together.
Conversely, braids are soft structures (the two braiding
molecules are not attached to each other), where twist-
stiffening occurs as the catenation is increased, making
the twist modulus of braids a quantity that depends on
catenation as well as external parameters like the salt
concentration (Sec. IIIB).

B. Effect of salt concentration

Lowering the ionic strength of the solution causes an
increase in excluded volume of the double-helix DNA

in the solution, due to less screening of the negative
charges on the double-helix backbone. At low salt, the
Debye length (λD) of the solution increases, causing the
Coulomb-repulsion effect to propagate a longer distance
before it is cut off, thus increasing the effective diameter
of the double helix.

Figure 3a shows braid extension curves under various
salt concentrations (10, 50, 100 and 500) mM at 2 pN
force. The buckling transition occurs at a lower catena-
tion for lower salt concentrations. The larger effective
DNA diameter increases the braid radius at lower salt
conditions (Table I), which destabilizes the straight phase
and consequently causes buckling at a lower catenation
number. The predicted trend of buckling with varying
salt has been observed experimentally [11]. The total
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FIG. 3. Effect of salt concentration on ≈11 kb (L = 3.6 µm) DNA braids under 2 pN force. The tether points are 1.5 µm
(d = 0.42L) apart. Theoretical curves are plotted for (0.01, 0.05, 0.1 and 0.5) M salt concentrations, where the shaded arrows
show the direction of increasing salt concentration. Catenation (Ca) and catenation density (σc ≡ Ca/Lk0) are plotted on
the top and the bottom x-axes respectively. (a) Relative end-to-end extension (left y-axis) or extension (right y-axis) versus
catenation shows smaller extension and buckling at a lower catenation for lower salt concentrations. Low salt increases the
effective DNA diameter, which effectively increases the twist elasticity of the braid, thereby decreasing the stability of the
straight phase. The filled circles (0.1 M) and open squares (0.01 M) are experimental data reproduced from Ref. [11]. (b)
Torque in the braid shows a non-linear increase in all salt conditions. Also, twist stiffening occurs faster for braids at lower
salt concentration due to the larger radius of the braid. The critical buckling torque, being a thermodynamic variable does not
vary significantly with the salt concentration. (c) The number of plectoneme domains versus catenation or catenation density,
showing nucleation of multiple domains of plectoneme at lower salt concentrations, while a single plectoneme state is favored
at higher salts. Smaller excluded diameter of the braid at higher salt makes the superhelical bending in the plectoneme phase
favorable over nucleation of new domains. (d) The size of the straight phase helical wrappings 〈Lb〉 (left y-axis, solid gray
curves) and the size of the plectonemic phase 〈Lp+mΓ〉 (right y-axis, dashed black lines) versus catenation. Lb increases faster
for lower salt concentrations due to larger braid radii (Table I).

length of DNA for 10 mM and 100 mM experimental
data sets [11] differ slightly (∼ 0.2 µm); we renormalized
the length of the 10 mM case (open squares) to be close
to that of the 100 mM data (filled circles) for comparison
in Figure 3a.

As the salt concentration is increased, the average
number of superhelical turns per plectoneme domain in-
creases, i.e., the average size of each plectoneme domain
increases. This effect is directly related to the decrease in
DNA excluded volume at higher salt concentrations (Ta-
ble I), which stabilizes the superhelical bends in a braid
plectoneme.

In the supercoiled single DNA case, the opposite trend
is observed, where lowering the salt concentration of the
solution makes plectonemic buckling occur at a higher
supercoiling density [47]. In stretched supercoiled DNA,

the stability of the force-extended phase is unaltered by
changing the ionic strength, but the supercoiled plec-
toneme phase (containing intra-molecular writhes) is rel-
atively destabilized on decreasing the salt concentration,
again due to the increase in effective diameter of the dou-
ble helix, resulting in the observed trend of buckling at
a lower linking number for higher salt concentrations.

The torque in the braid plotted as a function of the
catenation (Figure 3b) shows a non-linear increase and a
small non-monotonic overshoot at the buckling transition
at all salt conditions. For a given catenation, the torque
is higher for lower salt concentrations due to effective
“swelling” of the braid. The torsional stress in the braid
decreases with increasing salt, a trend also observed in
supercoiled DNAs [42]. At 2 pN, we find nucleation of
multiple domains of plectonemes at lower salt concentra-
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TABLE I. Debye-Hückel parameters (the Debye length λD and the effective linear charge density ν of the double helix [39]) and
the average values of the minimized free parameters for L = 3.6 µm, d = 0.42L and f = 2 pN under various salt concentrations.
Comparison of the braid parameters for the straight (Ca=10) and the buckled phase (Ca=60). Rs and 2πPs are the radius and
the pitch of the straight braid respectively, while δp and α are the braid helix angle and the superhelix angle in the plectoneme
state respectively.

Salt conc. Debye length Effective charge Straight braid (Ca=10) Buckled braid (Ca=60)
(M) λD (nm) ν (nm−1) 〈Rs〉 (nm) 〈Ps〉 (nm) 〈Rs〉 (nm) 〈Ps〉 (nm) 〈δp〉 (◦) 〈α〉 (◦)
0.01 3.0 1.97 7.1 15.7 4.9 7.8 33.9 33.5
0.05 1.34 4.33 4.5 13.4 3.4 6.6 28.3 29.4
0.1 0.95 6.24 3.6 12.3 2.8 5.9 25.8 27.5
0.5 0.42 26.6 2.3 10.8 1.9 5.3 19.4 21.0

tions (<500 mM, see Figure 3c), while single plectoneme
domain is favored at higher salt concentrations (≈ 500
mM). At lower salts, larger braid diameter increases the
energy associated with superhelical bending of the braid
in the plectoneme, making the formation of looped struc-
tures of braid favored over a superhelical structure, con-
sequently favoring formation of multiple domains of plec-
toneme. We also find that the multiple domain structure
of the plectoneme is favored at higher forces, e.g., at 500
mM salt and forces > 3 pN more than one domain of
plectoneme is energetically favorable. Post buckling, nu-
cleation of plectoneme domains per added linking number
is similar at lower salt concentrations, seen as the con-
stant slopes in 10, 50 and 100 mM cases in Figure 3c.
The length of the straight phase helical section increases
faster for lower salt conditions due to the larger radius
of the braid. The total size of the helical wrappings in
the straight phase peaks at the buckling transition, after
which double helix length is transferred into the growing
plectoneme phase (Figure 3d).

At high salt concentrations (> 500 mM), we find a re-
versal of the above-mentioned trend with salt, i.e., buck-
ling transition occurs at a lower catenation for increasing
salt (Figure 8). It may be possible to experimentally ob-
serve this effect, although we caution that at such high
salt concentrations the applicability of the Debye-Hückel
theory is questionable at best.

C. Effect of the intertether distance

The intertether distance d between the two braided
molecules affects the critical catenation, i.e., the cate-
nation at which buckling occurs (Figure 4a). Braiding
molecules with larger d makes a helix with a larger as-
pect ratio (ratio of radius to pitch of the helix), which
causes a steeper increase of the torque in the braid (Fig-
ure 4b). In effect, the twist modulus of the braid is larger
for larger intertether distances and causes buckling at a
lower catenation (Figure 4a). The torque at which a
braid buckles is a thermodynamic property dependent
on the external force and remains roughly the same on
changing the intertether distance (Figure 4b) or the salt
conditions (Figure 3b).

As mentioned before, the difference in extension be-
tween the states Ca = 0 and 1 is dependent on the in-
tertether distance, but the two intertether distances at
the two ends of the braid need not be the same. In fact,
these distances being uncontrolled parameters in exper-
iments, are almost never equal. Now, the theoretically
predicted extension plots are a characteristic of the arith-
metic mean of the intertether distances at the two ends
of the braid; although, not surprisingly, the structure of
the braid depends on the specific values of the two in-
tertether distances (Figure 9a). In the case of unequal
intertether distances, we find that the end-region associ-
ated with the larger intertether distance is bigger in size,
i.e., the helically wrapped region of the braid does not
form at the center of the structure but is pushed towards
the end with the smaller intertether distance.

We also find that the energy cost of fluctuations in the
relative size of the two end regions, i.e., small displace-
ment of the entire helical section away from the equilib-
rium position are O(kBT ), hence permissible, especially
in the regime of low catenation (Figure 9b). The en-
ergy cost increases with increasing catenation, reflecting
the sliding of the helical section is energetically expensive
when the torque in the braid is higher. Such behavior of
a braid may be possible to probe in braiding experiments
done on DNA molecules labeled along their length with
fluorescent tags.

D. Braiding short DNA molecules

Braiding DNA molecules shorter than ≈3 kb in size
shows the same qualitative trends of extension decrease
with catenation and formation of multiple buckled do-
mains past the critical catenation density, as seen for
larger molecules. However, due to the small size of the
molecules and hence the smaller number of fluctuation
states, discrete nucleation of buckled domains may be
observed as steps in the extension plot (Figure 5a). The
torque also shows multiple overshoots associated with
nucleation of new buckled domains (Figure 5b and 5c).
Similarly, a step-like behavior can be seen in the length
transfer between the straight and the plectoneme phase.
The discrete jumps in extension or torque are masked
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FIG. 4. Effect of the intertether distance for braids with ≈6 kb (L = 2 µm) long DNAs under 2 pN force at 100 mM salt. The
shaded arrows show the direction of increasing intertether distance d = 0.1L, 0.25L, 0.35L and 0.5L, where the top and the
bottom x-axes show catenation (Ca) and catenation density (σc ≡ Ca/Lk0) respectively. (a) Variation of relative extension (left
y-axis) or extension (right y-axis) with catenation in the braid. Larger intertether distance results in a larger initial jump in the
extension and lowering of the critical catenation density. (b) The torque in the braid is higher for larger intertether distances.
The increase of torque per unit catenation or effective twist modulus of the braid is also higher for larger intertether distance,
resulting in buckling at a lower catenation. However, the critical value of torque at which buckling occurs is a bulk property of
the braid and remains roughly the same for various intertether distances, ≈ 30 pN-nm at 2 pN external force. (c) The average
number of plectonemes as a function of catenation showing the formation of multiple domains at all intertether distances. (d)
The size of the helical straight braid (left y-axis, solid gray curves) and the total plectoneme length (right y-axis, dashed black
curves) as a function of catenation. For braids with larger intertether distance, buckling occurs at relatively smaller size of the
straight braid helical section due to the larger size of the triangular end regions (Figure 1).

by thermal fluctuations in longer molecules (& 4 kb or
1.3 µm). Similarly, at lower forces, large fluctuations
make the average extension of the braid decrease more
uniformly (Figure 5a).

IV. CONCLUSION

We have presented a statistical-mechanical theory for
the mechanics of a DNA braid, or a pair of catenated
DNAs, as a function of catenation number and applied
force (Figure 2). Our results are in good quantitative
agreement with available data, and make a number of
predictions for future experiments, including the non-
linear nature of the torque associated with DNA in-
terwinding. A novel feature of DNA braids is a twist-
dependent twist rigidity (Figure 2b) that arises from the
lack of an intrinsic elastic twist stiffness for two catenated
DNAs.

For the first time, we have quantitatively described
the onset of the post-buckled state of the braid, and we
find that the post-buckled “supercoiled” state is actu-
ally composed of many small buckled structures, each
terminated by a small “end loop” (Figure 2c). This sit-
uation is reminiscent of the many-plectoneme state for
a supercoiled single DNA at low salt [27, 28, 53]; how-
ever, for braids, this multi-buckled-structure state occurs
for a broader range of salt concentrations (<0.5 M, see
Figure 3c). The reason for the prevalence of the multi-
buckled state is simply that the braided DNAs are rela-
tively bulky, mimicking the effect of the larger excluded
diameter that drives the multi-plectoneme state for single
twisted DNAs. Inside the braid, there are electrostatic
interactions between the two DNAs that force it to in-
crease in radius, driving an increase in effective braid
twist modulus as salt concentration is reduced (Figure
3b). This gives rise to a decrease of catenation number re-
quired for the onset of buckling as the salt concentration
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FIG. 5. Braiding ≈2 kb (L = 0.65 µm) DNA at 100 mM Na+ with forces f = 1.25, 2, 3 and 4 pN, where the shaded arrows show
the direction of increasing force. The intertether distance is 0.26 µm (d = 0.4L), where the top and the bottom x-axes show
catenation and catenation density (σc ≡ Ca/Lk0) in the braid. (a) Relative extension (left y-axis) or extension (right y-axis)
versus catenation for short DNA molecules. (b) Torque vs catenation shows multiple discrete “overshoots”, corresponding to the
nucleation of new plectoneme domains. (c) Number of plectoneme domains vs catenation. The appearance of new plectoneme
domains coincides with the steps in the extension or overshoots in the torque. (d) The size of the straight-phase helical region
〈Lb〉 (left y-axis, solid gray curves) and the size of the plectoneme phase 〈Lp +mΓ〉 (right y-axis, dashed black curves) versus
catenation, where steps are associated with the formation of finite-length braid end loops. The successive nucleation events are
smoothed out by thermal fluctuations in braids made up of long DNA molecules (& 4 kb).

is decreased (Figure 3), the opposite of the trend observed
for individual twisted double-helix DNAs. For the same
reason, braid extension at fixed catenation number and
force decreases with decreasing salt concentration (Fig-
ure 3a), again distinct from what is observed for twisted
double-helix DNAs.

Under physiological conditions (100 mM salt), past the
buckling transition point, the proliferation of new buck-
led domains leads to a decrease in the average size of each
domain, i.e., the average number of superhelical turns in
a plectoneme domain decreases as the catenation is in-
creased in the buckled braid. Now, an increase in the
salt concentration, followed by a decrease in the DNA
excluded volume (Table I) results in a decrease of the
curvature energy associated with the superhelical bends
in a plectoneme. Consequently, at high salt (≈ 0.5 M),
the average number of superhelical turns per domain in-
creases past the buckling point, leading to the formation
of long superhelical structures instead of the appearance
of multiple buckled domains (Figure 3).

We also find that the mechanics of the braid and its

buckling behavior are sensitive to the distance between
the tethered DNA ends (Figure 4). Increased intertether
distance leads to lower extensions (Figure 4a), higher
torques, and buckling at lower catenation number (Figure
4b). We note that as the intertether distance is changed
at a fixed force, the torque at the buckling point is nearly
constant, e.g., roughly 30 pN·nm at a force of 2 pN (Fig-
ure 4b).

The nucleation of the braid end loop at the buckling
transition can likely be observed experimentally, possi-
bly as a discontinuity in the extension versus catenation
(Figure 2a) or dynamic switching of extension or as an
overshoot in the torque versus catenation plots (Figure
2b). When the torsional stress in the braid is close to the
critical buckling torque, the buckled state, separated by
the nucleation energy cost becomes thermally accessible,
resulting in equilibrium fluctuations between the straight
and the buckled phase. Experimental studies [46, 47] on
supercoiled single DNAs under torsional constraint have
observed the discrete nucleation of the first plectoneme
domain, which is associated with the abrupt nucleation
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of the plectoneme end loop. This abrupt transition has
also been analyzed theoretically [26–28, 54], discussing
the trends of the magnitude of the extension disconti-
nuity with varied external force, salt concentration and
contour length of the duplex DNA.

This paper qualitatively improves the way that fluctu-
ations of the duplex DNAs in the braid around their aver-
age helical shape are accounted for. Instead of the semi-
quantitative scaling-like approach taken in prior works
[20, 21, 28, 30, 32, 39], we systematically analyze the fluc-
tuations of the DNAs around their average helical shape;
we find that these fluctuations are small enough that it
makes sense to think of the conformation of the braid
as a helix (Figure 7), rather than the more disordered
structure implicitly assumed in prior works.

As mentioned before, we assume spatially-uniform
mean-field curvature in the braiding helices, and the in-
troduction of a space-varying component to the helical
curvature will be an interesting addition to the model.
The effect of the spatially-varying helical pitch has been
studied for loaded plies at zero temperature [34–36] as
well as for straight DNA braids [30, 31]. Variable pitch
solutions for many persistence-lengths long braided he-
lices feature a constant helical angle inside the braid,
which is smaller than the end angle that connects the
helices with the end regions [30]. We note that we deter-
mine the end angle φ from free energy minimization, and
we indeed find that an end angle larger than the helical
angle δ is energetically favored, consistent with the effect
observed in Ref. [30].

It may be interesting to study short braided DNAs (≈
2 kb or 650 nm) because we find that for molecules of that
short length, the successive addition of small buckled do-
mains leads to a series of buckling transitions (Figure
5), possibly observable as steps in the extension. This
is directly related to less thermal fluctuations in smaller
DNA molecules. The effect of variable curvature is more
prominent in short braids, which may provide additional
fluctuations that further mask discrete jumps in exten-
sion for short DNA braids.

We also present a comprehensive treatment of the elec-
trostatic effects (Appendix A) in helical braids, which
will be useful for other problems where two DNAs are
wrapped around one another.
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Appendix A: Self-electrostatic energy of DNA braids

The minimum energy state of a charged rod in an ionic
solution is the straight configuration, such that the elec-
trostatic repulsion between the length elements of the
rod is minimized. External work has to be done against
the electrostatic repulsion to keep the rod bent in a helix
shape, which is stored as the self energy. Prior theoretical
works on braids [6, 30] as well as supercoiled single DNA
plectonemes [20, 27, 28, 39] ignore the Debye-Hückel self
energy of helically intertwined DNAs. In the following,
we numerically compute the self energy in braids and pro-
pose an empirical fit function. We find that the energy
contribution from Debye-Hückel-type self-interaction of
the coaxial helices increases for helices with higher as-
pect ratio (ratio of radius to pitch), and is non-negligible
for braids under 2 pN force at 100 mM monovalent salt
concentration (Figure 6c and 6d).

We parameterize the helical arc length by a rotation
angle u such that the distance ρ between any two points
on the helix is given by,

ρ(u) =
√

2R2(1− cosu) + P 2u2 ≡ 2Rϕ(u), (A.1)

where R and 2πP are radius and pitch of the helix re-
spectively; we define ϕ =

√
(1− cosu)/2 + P 2u2/4R2.

The authors of Ref. [39] used a similar parameterization
scheme to study the enhancement of electrostatic inter-
action energy between two helically intertwined strands
of a plectoneme as a function of the helix angle.

We write Ψs, the total self-electrostatic potential for a
braid of length L by integrating the spherically symmet-
ric solution of the Debye-Hückel equation:

βΨs =
`Bν

2

2

L∫
−L

ds1

L∫
−L

ds2

[
e−ρ(u)/λD

ρ(u)
− e−ρ(u→0+)/λD

ρ(u→ 0+)

]
.

(A.2)

Now, the self-electrostatic potential per unit length A of
the braid is given by Us ≡ Ψs/(L/A), such that

βUs =
ζ

2

∞∫
0

du

[√
1 + a2

e−wϕ(u)

ϕ(u)
− 2

u
e−

wu
2

√
1+a2

]
,

(A.3)

where a ≡ P/R, is the inverse of the aspect ratio of the
helix, and w ≡ 2R/λD, is the scaled diameter of the
helix. We have defined ζ = 2A`Bν

2, where `B is the
Bjerrum length and ν is the effective linear change den-
sity in inverse-length units (Eq. 6 and Table I). We have
shifted the reference of the free energy to subtract the
contribution of the self-electrostatic energy of a straight
rod.

We numerically evaluate the self-energy integral (Eq.
A.3) for a range of practically relevant values of w and
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FIG. 6. (a) Comparison of numerical evaluation (points) of Us (Eq. A.3) with the proposed empirical solution (Eq. A.4) (solid
lines) with ζ = 1, c1 = 0.042 and c = 0.312, as a function of w for various values of a = 1, 3, 6 and 9. (b) Us versus a for
w = 2, 5, 7 and 10 showing that the empirical function is a good fit to the numerical solution. (c) Plot of the total electrostatic
potential U per unit braid length A (Eq. A.5) with (dashed lines) and without (solid lines) the self-interaction component (the
second term in Eq. A.5 containing the self interaction can be set to zero by putting c1 = 0) versus braid radius (R) over a
range of braiding angles δ = 15◦, 30◦ and 45◦ (Table I). We used ζ = 2700 (corresponding to 100 mM Na+, Table I), c2 = 0.312
and c1 was chosen to be either 0 (only neighbor interaction plot, solid lines) or 0.042 (neighbor and self interaction plot, dashed
line). (d) Comparison of the self and the neighbor components of the total electrostatic potential as a function of braiding
angle δ for braid radii R = 2, 3 and 4 nm. The self-energy contribution is non-negligible in braids with radii & 3 nm, which is
the case . 2 pN at 100 mM salt (Figure 7a).

a, and propose the following empirical function that cap-
tures the behavior of the self-energy functional,

βUs =
ζ

w2

[
4c1

a2 + c2a4

]
. (A.4)

Figure 6a and 6b shows the comparison between the
numerically evaluated value of the integral (Eq. A.3)
and the empirical fit-function (Eq. A.4) with ζ = 1,
c1 = 0.042 and c2 = 0.312.

Finally, we write the electrostatic potential energy per
unit length A of braid with radius R and helix angle δ:

βU(R,P ) =ζK0

(
2R

λD

)
(1 +m1 tan2 δ +m2 tan4 δ)

+
ζc1λ

2
D tan4 δ

R2(c2 + tan2 δ)
. (A.5)

The first term is the interaction potential with m1 =
0.828, m2 = 0.864 [39], and the second term is the self-
energy contribution, where c1 = 0.042 and c2 = 0.312.

Figure 6c and 6d shows the comparison between the
self and the interaction energy component of the total
electrostatic potential for various braid radii (R) and

braiding angles (δ). For typical values of the braiding
angle ≈ 25◦ (Table I), the self-energy contribution be-
comes significant in braids with radius & 3 nm, which
corresponds to to . 2 pN stretching tension on the braid
at 100 mM Na+ (Figure 7a).

Appendix B: Radial fluctuations

The average energy corresponding to radial fluctua-
tions for each wavenumber q can be obtained from the
fluctuation Hamiltonian (Eq. 9),

〈|̃t1⊥r(q) + t̃2⊥r(q)|2〉 =
2q2L

A(q4 + µq2 + η)
. (B.1)



15

0 1 2 3 4 5 6 7
Radius R (nm)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Pr
ob

ab
ili

ty
 P

(R
)

6 kb DNAs  100 mM Na+

Ca = 12

1 pN

2 pN
3 pN(a)

0 2 4 6 8
Force f (pN)

0

1

2

3

4

Ra
di

al
 fl

uc
tu

at
io

ns
 σ
R

 (n
m

)

6 kb DNAs  100 mM Na+

Ca = 12

(b)

0

1

2

3

4

Av
er

ag
e 

ra
di

us
 〈 R〉

 (n
m

)

FIG. 7. Radial fluctuations in braid with L = 2 µm, d = 800nm and Ca= 12. (a) Probability distribution of braid radii (Eq.
B.4), plotted for applied forces of 1 pN (dot-dashed line), 2 pN (solid line) and 3 pN (dashed line). Note the broadening of the
distribution at lower forces indicating higher fluctuations. R = 1 nm corresponds to the excluded radius of the DNA molecules
due to self avoidance, included while calculating the average radius via free energy minimization but not explicitly taken into
account in plotting Eq. B.4. (b) Variation of the standard deviation of the radial distribution σR (black open squares) and the
average value of the radius 〈R〉 (shaded filled circles) with the external tension (f) on the braid. The dashed lines correspond to
best-fit equations: σR = σ0(βAf)−0.35 and 〈R〉 = R0(βAf)−0.13, where σ0 = 2.4 nm and R0 = 5.2 nm. The exact power laws
depend on the catenation in the braid, however, both the average value and the fluctuations in braid radius always decrease
with increasing force.

Now, the two-point correlation function associated with
radial undulations can be computed as follows,

〈w(0)w(∆ξ)〉 =
A

L

∞∫
−∞

dq

2π
eiq∆ξ

〈|̃t1⊥r(q) + t̃2⊥r(q)|2〉
4q2

=

∞∫
−∞

dq

4π

eiq∆ξ

q4 + µq2 + η
, (B.2)

where ∆ξ is the distance between the two points. Note,
the two-point correlation of radial fluctuations decays
exponentially with the distance between the points:
〈w(0)w(∆ξ)〉 ∼ exp(−k∆ξ), where k ∼ O(

√
µ), which

is typical of Gaussian fluctuations.
We obtain the radial fluctuations in the braid from the

zero-distance behavior of the above correlation function:

σ2
R = A2〈|w(0)|2〉

=
A2

8
η−3/4

[
cos

(
1

2
tan−1

√
4η

µ2
− 1

)]−1

, (B.3)

where σR is the fluctuation in braid radius. The radial
probability distribution:

P (R) =
1√

2πσ2
R

exp

[
− (R− 〈R〉)2

2σ2
R

]
. (B.4)

Figure 7a shows the probability distribution of braid ra-
dius for various forces. Higher forces result in a smaller
average radius of the braid with less radial fluctuations.
Figure 7b shows the variation of the mean and the fluc-
tuation in braid radius for various forces at 100 mM salt.
Radial fluctuations decrease with increasing force and are
much smaller than the average value of the radius, sug-
gesting small fluctuations of the braiding strands about
their average shape.

Appendix C: Braids at high salt concentration

We find that the position of the buckling transition
varies non-monotonically with the concentration of
univalent salt in the solution. The amount of cate-
nation at which the braid buckles increases with the
salt concentration in the range 0.01 to 0.5 M, while
decreases for higher salts (>0.5 M) (Figure 8a). We
use ν = (47.8, 78.1) nm−1 corresponding to (0.75, 1) M
salt concentrations respectively [39]. We also find that
for 2 pN force at salt concentrations ≈ 0.5 M single
domain plectoneme is favored over multiple domains,
but multiple domains are again favored for > 0.5 M salt
(Figure 8b). However, at salt concentrations above a few
hundred millimolars, the Debye length of the solution
is smaller than the DNA radius (Table I), which is an
extreme limit of the mean-field Debye-Hückel theory.

Appendix D: Intertether distance

For a braid with unequal intertether distances d1 and
d2, we define a dimensionless parameter ε such that

ε =
`1

`1 + `2
, (D.1)

where the total length in the end-regions Le (Eq. 15)
is divided into `1 and `2 corresponding to the two end-
regions. Hence, ε = 1/2 indicates the scenario of a braid
with symmetric end-regions. Figure 9a shows the min-
imized total free energy (Eq. 15 and 16) versus ε for
three pairs of intertether distances, keeping the arith-
metic mean of the distances the same in all three choices.
The extension plots are a characteristic of the arithmetic
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FIG. 9. Effect of the intertether distance. (a) Comparison of the free energy versus ε (Eq. D.1) for braids with various choices
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mean, but the relative sizes of the end-regions depend on
the particular choice of d1 and d2. The end-region as-
sociated with the larger of the two intertether distances
contains more length of double-helix DNA.

Figure 9b shows minimized free energy versus ε for
a braid with symmetric ends but various catenations.
The stiffness of the potential near the equilibrium value

of ε increases with increasing catenation in the braid.
This suggests the possibility of fluctuation in the relative
sizes of the end-regions, which would be higher for lower
catenations and becomes energetically expensive in the
regime of tight braid or braid with high catenation den-
sity. It may be possible to directly visualize the sliding
of the braid helical intertwines in a braiding experiment
using DNA molecules labeled with fluorescent tags.
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