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Abstract 

  

In this paper, we developed a novel multiscale model combining social-force based pedestrian movement 
with a population level stochastic infection transmission dynamics framework. The model is then applied 
to study the infection transmission within airplanes and the transmission of Ebola virus through casual 
contacts. Drastic limitations on air-travel during epidemics, such as during the 2014 Ebola outbreak in 
West Africa, carry considerable economic and human costs. We use the computational model to evaluate 
the effects of passenger movement within airplanes and air-travel policies on the geospatial spread of 
infectious diseases. We found that boarding policy by an airline is more critical for infection propagation 
compared to deplaning policy. Enplaning in two sections resulted in fewer infections than the currently 
followed strategy with multiple zones. In addition, we found that small commercial airplanes are better 
than larger ones at reducing number of new infections in a flight. Aggregated results indicate that 
passenger movement strategies and airplane size predicted through these network models can have 
significant impact on an event like 2014 Ebola epidemic. The methodology developed here is generic and 
can be readily modified to incorporate impact from outbreak of other directly transmitted infectious 
diseases.       
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I. INTRODUCTION 

Commercial air travel enables rapid transmission of infectious diseases across the globe. Travelers are 
in close proximity to each other and are susceptible to infection spread in common spaces such as airport 
boarding areas, lounges, security lines and within commercial airplanes. In addition, air travel brings 
together people from different geographic regions with different levels of vulnerability and receptivity 
due to variations in immunity, ethnic background, and intervention usage across geographic areas [1]. 
There is direct evidence for spread of infection within commercial airplanes for many infectious diseases 
including influenza [2], SARS [3], tuberculosis [4], measles [5] and norovirus [6].  

Several factors affect the infection transmission in the high occupancy enclosed environment of 
aircraft cabins, including cabin air quality, exposure time, flight duration, and passenger contact due to 
inflight movement. The high efficiency particulate filters used in current airplanes are effective in 
reducing a contagion in the recirculated air [7]; however, virus shedding from infected passengers before 
the air can pass through filters can lead to other passengers becoming infected. In this context, passenger 
location and movement resulting in close contact between infective and susceptible populations is a 
critical component in infection spread aboard airplanes. Passengers move during boarding (ingress), 
deplaning (egress) and within the cabin. Susceptible passengers otherwise not exposed to the contagion 
may come into contact with it when they are in close proximity of infected passengers or contaminated 
surfaces during the high mobility phases of passenger entry and exit. There is a strong correlation 
between contact rates and infection rates in a number of disease epidemics including SARS [8] and Ebola 
[9]. The probability of infectious disease transmission when the host and agent come into contact is 
inherently stochastic and depends on variations in multiple factors including infectivity (virus content in 
bodily fluids and rate of shedding), age, and demographic characteristics. Stochastic infection models 
such as Susceptible-Exposed-Infectious (SEI) model have been effectively used in studying such 
infectious disease spread [10]. In this paper, we develop a novel hybrid model that combines a social 
force based pedestrian dynamical model with a stochastic infection transmission framework to study the 
effect of pedestrian dynamics on the infection spread.  

Often there are limitations in modeling quantities related to real systems. Therefore, stochasticity is 
naturally inherent in systems, that is, there is uncertainty in its constituents. In order to address distinct 
types of uncertainty present in the system, we use scenario analyses into the aforementioned 
stochastic/probabilistic process based on SEI framework to allow for variance in projections of output 
parameters.  We quantify the uncertainty in the input parameters as well as structural uncertainty in the 
model itself by simulating over the design space.  

As a case study, we utilize the model to assess the propagation of Ebola aboard an airplane. During the 
2014-15 Ebola epidemic, despite travel restrictions, there have been a few instances of Ebola infected 
travelers using commercial airplanes in the USA and Nigeria [11-13]. Models have suggested that 7.17 
infected travelers per month would have been transported through commercial airlines without air travel 
restrictions [14]. Detailed pedestrian dynamics enables tracking the trajectories of passengers that is 
needed to assess passenger contact rates due to different air-travel policies. While all in-plane passenger 
movement (e.g. movement of airplane staff, passenger movement to restrooms etc.) can contribute to 
infection spread, discretionary nature of such activities requires additional uncertainty considerations and 
difficulty in modeling, therefore, we focus on high pedestrian density and mobility phases of airplane 
boarding and deplaning in this paper. Through the modeling framework developed in this paper, we 
assess the air-travel and passenger movement strategies that can reduce the infectious disease spread. The 
pedestrian movement component can be used to model different crowded locations like airports and the 
stochastic infection dynamics component can be used for other directly transmitted diseases. The 
integrated model developed here is therefore general and can be applied to other infection studies. 
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FIG. 1. Schematic depiction of the overall modeling approach 

II. MODEL FORMULATION 

We model the motion of pedestrians using a molecular dynamics based social force model [15]. 
Considering a pedestrian as a particle in motion, the pedestrian particle is subjected to competing forces 
of a person’s desire to travel to a destination while impeded by obstructions (e.g. walls, chairs and other 
pedestrians). The total force experienced by a pedestrian: ܨపഥ=∑ ప݂ഥ = ప݂ప௧തതതതത + ప݂ௗതതതതതത= ݉ܽపഥ  (1)

Where ܨపഥ  is the resulting force, ప݂ప௧തതതതത is the force exerted by the pedestrian in the intention to reach his/her 
terminus, ప݂ௗതതതതതത is the resisting forces obstructing the motion, ݉ the body mass and,  ݒపഥ  and ܽపഥ  are the 
instantaneous velocity and acceleration at time t respectively. 

The intention force relates the desired velocity of pedestrian i moving towards a destination (ݒҧሻ to the 
actual speed ݒ and is defined by:  

ప݂ప௧തതതതത = ఛ ሻݐపതതതതሺݒ ]  െ పഥݒ ሺݐሻ ] (2)

Here, ߬ is a time step. We modify the equations of motion by introducing a local neighbor dependence 
to the desired velocity ( )i

ov t . In line forming applications like in an airplane entry or exit, the self-
propelling intention force and desired velocity of ith pedestrian is dependent on the position of nearest 
pedestrian in the direction of motion, i.e. in front of the pedestrian particle in the line. To model the 
slowing of pedestrian particle as they approach other particles in a line, the desired velocity of ith 
pedestrian ( )i

ov t  in direction 1e) is modified as follows:            
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In equation (3), 1e)  is the direction of desired motion. For example, for passenger boarding an airplane, 
this could be the direction along the aisle.  ( )A i Bv vγ+  provides a distribution of desired speed for all 

pedestrians in the system. Av is the deterministic component of the pedestrian speed. iγ is a random 
number and i Bvγ is the component of pedestrian speed that varies for each pedestrian, enabling a 
distribution of speeds that accounts for differences due to factors such as age and sex.  ir  and kr  denote 
the positions of ith and kth pedestrians, where kth pedestrian is the nearest in 1e)  direction and ( )1 1i kr e r e−) )  

would be the separation between them in direction 1e)  is the critical distance between two pedestrians ߜ .
in a line at which the rear pedestrian becomes stationary. Equation (3) ensures that attractive force toward 
destination is reduced when a pedestrian encounters another particle and the desired speed reduces to zero 
when the distance between them is δ. 

The second part of particle dynamics in equation (1) considers the repulsive social force term ( ప݂ௗሻതതതതതതത  
that inhibits the motion of pedestrian particles. The repulsive force is essential to ensure impenetrability 
of particles. For this purpose, we use the repulsive term [16] of Lennard-Jones potential given by: 

ప݂ௗതതതതതത = ∑ ప݂ఫതതത = ∑ పఫതതതሻஷݎሺ߮  =∑ ሾ߳ ൬ ఙೕ൰ ଵଶሿஷ  (4)

where ߳  and ߪ are constants and ݎ is the distance between the ݅௧ and ݆௧ pedestrians. The equation of 
motion in (1) is numerically integrated to obtain the velocities and positions in the subsequent time steps. 
We apply this approach to pedestrian movement in airplanes to obtain the trajectories of pedestrian 
movement for different boarding and deplaning methods. Note that equations (1-4) are in two 
dimensional space in the plane of pedestrian movement.   

There are several parameters in the pedestrian dynamics model, such as maximum walking speed
( )A Bv v+ , random variation ( iγ ), distance parameter (δ ), two parameters for the Lennard-Jones 
repulsive force terms (� and σ) and aisle delay for luggage. There is experimental data available for some 
of the parameters like the range of walking speed [17, 18]. Also the observed exit times and passenger 
flow rate for some commercial airplanes is available in the literature [19, 20].  To obtain the estimates of 
other model parameters that represent realistic model behavior of an outbreak we vary the parameters 
over a large design space.  In our earlier study [21], we used a parameter sweep on 60,000 processors to 
determine the parameters that match the available observed data of deplaning [19, 20]. We have been able 
to match the pedestrian dynamics model with experimental data on flowrates and exit times for five 
different airplane seating configurations for which test data is available. In addition, we have also been 
able to capture qualitative features like front to back unloading and hallway congestion [21].  The 
pedestrian dynamics parameters obtained through our earlier work [21] are used in the model and are 
tabulated in Table I. 

The pedestrian trajectory information from the above model (equations 1-4) is integrated with a 
discrete-time stochastic Susceptible-Exposed-Infectious (SEI) model for infection transmission described 
below (equations 5-6). Note that in the context of air-travel of a few hours newly exposed (and infected) 
passengers do not become infectious. The schematic in figure 1 depicts the overall approach of this 
modeling study.  

From a population of N passengers if  ݅ represents number of infectives at a given time with age of 
infection of c, then the number of susceptible individuals at time t, S(t), is given by  
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S(t) = N - ∑ ݅ௗୀଵ  = N – I(t) (5)

where c varies between 1 and a maximum of d days of infection and I(t) is the total number of infected 
individuals in the modeled population. In the current model, we consider that there is one infective with 
Ebola in a given population that fills an airplane, however this number can be higher for more common 
infectious diseases like influenza. We also assume that the initial number of exposed in the system is zero.   

When these  ݅  infectives come into contact with im  susceptibles estimated by the pedestrian 
movement model, the newly infected and the probability of their infection can be estimated using a 
binomial distribution. In the context of air-travel, the model population is relatively small (a few hundred 
passengers), hence, contacts are few. We assume that probability of an individual infecting each 
susceptible is small and number of susceptibles as compared to infected (or exposed) is larger. Under this 
assumption, we approximated binomial distribution using Poisson distribution. The newly infected at time 
t and the probability of their infection is as shown in equation (6) below:  

  

( )
0

1 1

( -1) ( 1)
~  

c
i

id
i r

c
c i

m t s t
I t Poisson p

N= =

⎛ ⎞⎛ ⎞−⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
∑ ∑  

 

(6)

Here, an infective with infectivity  placed in a susceptible population would expose i cm p  members at 

time t. 
ir

s represents the number of suseptibles within the radius ir  of infectious individual where 
infection is possible. The use of Poisson distribution accounts for demographic stochasticity and 
variations in susceptibility of the population. 

The probability-distribution of infection transmission varies depending on the incubation periods and 
transmission rates for specific diseases and is a primary input data required for the stochastic infection 
transmission model. For example, for Ebola virus the mean incubation period is 12.7 days [22], with 
logarithmic increase in virus levels in blood during acute illness phase [23].  The RNA virus copies in the 
serum is indicative of the transmission probability and we used the corresponding Center for Disease 
Control and Prevention (CDC) data [23] to obtain the infectivity profile shown in Figure 2. Since, there is 
no possibility of mortality by infection in the short timescale of the model, we used weighted (by sample 
size) average of both fatal and nonfatal data from [23] to compute the probabilities in figure 2.  

The overall model can be adapted to other directly transmitted infectious diseases as well as other 
crowded locations (e.g. airport security lines) by modifying the infectivity input and the control 
parameters in Table 1. Here we used the integrated model to study infection transmission inside an 
airplane. Inherent uncertainties in human behavior and stochasticity in infection spread make precise 
prediction of number of infections difficult. Instead, we identify policies and passenger movement 
strategies that generally lead to reducing the spread of infectious diseases.     

TABLE I. Parameters and data ranges used in the computational models. 

Parameters Definition Estimate/Range Reference / Notes ࢜ഥ Walking speed (no obstructions) 1.07 - 1.55 m/s [18, 21] ࢽ Random number 0 – 1 [21] ࢾ Distance parameter (distance 
between people in a stationary 
line) 

0.405 m [21] 
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ࣕ Repulsive force field parameter 16 [21] ࣌ Repulsive force field parameter 0.86 m [21] 

cp  Infectivity of individual as 
function of age of infection (c 
days). 

0.01 -0.098  Based on [23] (See Figure 2) 

D Maximum number of days for 
virus incubation 

1-21 days [23] 

  Number of infectives with an ageࢉ
of infection of c days 

1 Only one infective/ plane 
assumed 

 

 

 
FIG. 2. Distribution of probability of infection vs days since onset of symptoms for Ebola virus; modified 

and distribution generated using CDC data for RNA copies in serum [23]. 
 

III.   RESULTS AND DISCUSSION 

 We consider the situation with one infected individual with Ebola travelling on a commercial airplane. 
The infective passenger onboard is not identifiable; therefore, we varied the seating position of the 
infected individual through all the seats in the airplane. At each seating location of the infective, we 
obtained the mean number of newly infected members and corresponding discrete Poisson distribution 
using the above formulation. We combined these distributions to evaluate the probability of k newly 
infected passengers when an infected individual is on the airplane at any possible seating position. The 
mean number of newly infected is the key measure we use in comparing the infection spread using 
different boarding and deplaning strategies.  We used this approach to evaluate air travel policies such as 
boarding strategies and airplane seating capacity that impact infectious disease spread.   

 The boarding and exiting strategies have been investigated in earlier studies with respect to 
minimizing the turn-around time of airplanes at boarding gates [e.g. 19, 20]. Several passenger ingress 
strategies such as random, outside-in, back to front, column wise, zone/section style enplanement have 
been studied. We compare a few of the boarding strategies with respect to spread of infections. In Figure 
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3, we show that the three-sections boarding method has the highest mean and thus represents the worst 
strategy for reducing spread of infection. Interestingly, many current airlines use such a strategy with 
multiple zones or sections.  In this method passengers sitting in the front of the aircraft (e.g. first class) 
board first followed by a middle zone and then the back section of the airplane. Because of this pattern, 
the passage-way is filled with passengers waiting to get to their seats resulting in clustering and increased 
exposure with infected passenger and therefore resulting in a higher number of newly infected passengers.  
The column-wise method, used here, is the same as the outside-inside strategy in a front-to-back manner. 
This scheme also results in more infected members. For the random and two-sections boarding, 
passengers close together in a queue may be seated in seats that are wide apart. This leads to arbitrary 
movement of passengers along the cabin preventing clustering of a group of travelers around the infected 
passenger which in-turn reduces infection transmission. The two-section and random boarding have the 
same mean value of two newly infected, although the infection transmission for two-section strategy 
results in a lower probability of infection at the mean. A two–section strategy involves dividing the plane 
into two sections and the passengers are randomly boarded within these sections. Our model suggests that 
this approach may be a good choice to reduce infection transmissions during boarding. We find the 
similar pattern of results for 144 seat Airbus A320 seating configuration as well as 182 seat Boeing 757-
200 seating configuration (see Figure 3 a & b). In these simulations (figures 3, 4 and 5) the airplanes 
contain a single Ebola infected passenger with infectivity corresponding to one day of infection in an 
unidentified seating location with a contact radius of 1.2 m.    

 
FIG. 3. Infection distribution profile at different boarding strategies for (a) Boeing 757-200 capable of 

182 passengers, (b) Airbus A320 capable of 144 passengers. The pictures on the bottom show the 
corresponding aircraft seating configurations with seats (blue dots) and pedestrians (green dots) 

 We followed a similar approach for the deplaning strategies. We found that deplaning had a smaller 
impact on infection dynamics because of the lower number of new contacts and lower time of exposure 
during the comparatively faster process. In Figure 4, we show a comparison of deplaning strategies for the 
182 seat Boeing 757 seating configuration. The different deplaning strategies such as alternating columns, 
alternating rows, zone wise and baseline (closest to exit - out first) result in similar number of mean 
infectives. When we compare the probabilities alternate rows and baseline strategies are marginally 
better. In Figure 5, we compute the mean infectives by combining the egress, ingress, and in-plane 
movement. It is apparent that other pedestrian movement strategies can be better than the boarding using 
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FIG 5. Infection distribution profile for combined 
baseline egress with different boarding strategies 
for 182 seat Boeing 757 

FIG. 4. Infection distribution profile for 
different deplaning strategies for  182 seat 
Boeing 757 

multiple zones. We show the worst case situation where an infected individual with peak infectivity is 
seated at a location that results in the highest number of contacts. 

 

There is an inherent uncertainty in the human movement behavior as well as the stochasticity in the 
infection model. Many parameters affect the simulations including airplane size and seating arrangement, 
the number of infective passengers, the infectivity characterized by days post onset of symptoms, the 
radius of infection which in turn depends on transmission mechanics (e.g.  Coughing, talking etc.), and 
the susceptibility of population. It is necessary to assign values for some of these parameters for 
deterministic analysis, however the uncertainty in these parameters needs to be quantified to assess 
effective air travel policies under a broad set of conditions. We have studied the variations in some of 
those parameters. 

 According to the CDC, data a nonfatal Ebola infection lasts for 21 days post onset of symptoms, with 
highest virus shedding rates and correspondingly highest infectivity in days 3-5 of disease development 
[23]. The three zone boarding simulations are repeated by varying the number of days of infection for an 
infective person as we show in Figure 6. The number of mean newly infected passengers clearly varies 
with the infectivity of the index passenger. During a known outbreak, reported infected passengers will 
most likely be grounded for further monitoring, but there have been three cases of potentially newly 
infected passengers travelling through commercial airplanes from the 2014 epidemic [11-13]. A medical 
professional travelled in two commercial airplanes on October 10th and October 13, 2014 within United 
States [11]. The index case was tested and confirmed to be infected on October 15th, however it is 
uncertain if the person was infectious and exhibiting symptoms during the travel dates.  Contact tracing 
indicated no further infections. According to our simulations, the probability of zero new infected cases is 
about 7% with a fully loaded flight. Note that there were large number of vacant seats in one of the flights 
which would have increased this probability. We cannot make a direct comparison because it is not 
known if the index case was infectious [11].  

 Another critical model parameter is the contact radius which is the minimum distance at which a 
susceptible passenger in the proximity of the infective can be potentially infected. The distance to which 
particles travel depends on the particle size and associated fluid mechanics in expiratory events like 
coughing and talking [24]. Experimental investigations measure particle size in these expiratory events to 
be in the range of 0.1 to 10 µm [25, 26, 27]. Droplets emanating from cough of 30 µm and smaller have 
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been estimated to travel over 2 m [24, 27]. The transmission distance also depends on specific disease, for 
example, SARS has been transmitted by short range droplet based as well as longer range airborne 
mechanisms [28]. Primary mode of transmission for Ebola is through contact droplets, but studies with 
monkeys indicate possible transfer through aerosols [29]. Mangili and Gendreau [30] indicate large 
droplet and airborne mechanisms are possibly highest risk transmission mechanisms during air travel.   

 
FIG. 6. Infection distribution profile varying the days of infection for index case. Three zone boarding 

strategy for 182 passenger seating configuration is used for these simulations. 
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FIG. 7. Infection distribution profile varying the contact radius for infection transmission. Three zone 

boarding strategy for 182 passenger seating configuration is used for these simulations. 

 

 
FIG. 8. Infection distribution profile for random boarding strategy varying the airplane size.  

 We account for the effect of environmental variation and transmission methods on the contact radius 
by varying it from 0.6 m (24 inch) to 2.1 m (84 inch) as we show in Figure 7. The typical seat width on 
airplanes is 18 inches (0.45 m). We consider a distance between passenger particles of 24 inches (0.61m) 
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as a touching distance. The lower end of the range in Figure 7 signifies a contact based and large droplet 
mechanism while a larger contact radius may be more relevant for aerosol based mechanisms. As 
expected, the number of newly infected passengers is lower when the contact radius is lower. 

 Next, we considered the size and the seating capacity of the airplane.  In Figure 8, we show the effect 
of airplane size with a random boarding strategy. Smaller airplanes such as CRJ-200 are better in 
reducing the spread of infection compared to larger capacity airplanes, however the advantage with 
smaller seating capacity of airplanes quickly vanishes as the number of seats increase beyond 150. The 
smaller size of the susceptible population, lower number of susceptibles within a given contact radius and 
the reduced time of in-plane movement are some of the factors that benefit smaller airplanes. 

 The improvements obtained for individual flights by these policy changes can benefit substantially 
over the course of an epidemic. For example, consider the case of 2014 Ebola epidemic: Bogoch et al. 
[14] estimate that without travel restrictions, 41,750 would have used air travel for international 
destinations in a given month from the highly affected countries of Liberia, Sierra-Leone and Guinea. 
This is based on data from Sep-Dec 2013. They estimate that under these conditions, without travel 
restrictions, 7.17 infected travelers per month would travel out bound from these countries. Note that 
travel restrictions have resulted in very few cases of Ebola infected travelers using commercial airplanes. 
We aggregate our model results based on the data from [14]. We assume all the passengers traveling are 
divided equally between A320 and Boeing 757 seating configurations considered in figure 3, and move 
according to strategies discussed earlier (figures 3, 4 and 5). The mean number of infectives and 
probability of infection is computed as described earlier and aggregated per month.  Our model suggests 
there is a 67 % probability of generating more than 20 new air-travel related infections per month using 
the default boarding strategies with these 144 and 182 seat configuration airplanes. This can be reduced to 
less than 40% by using the better pedestrian movement strategies suggested in figures 3 and 4. In 
addition, exclusive use of small 50 seater airplanes further reduces the probability of generating 20 
infecteds to 13% probability. 

IV.  SUMMARY 

 A multiscale model combining social force based pedestrian dynamics and metapopulation stochastic 
infection dynamics model has been formulated. The model is used to study the dynamics of Ebola virus 
infection on airplanes specifically during pedestrian movement related to boarding and disembarkation. 
Specific air travel related policies that potentially mitigate diseases spread are identified. The modeling 
approach developed here is generic and can be readily modified to other directly transmitted infectious 
diseases and dense pedestrian spaces.        
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