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We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic
noise. Applying analytical techniques to the stochastic Susceptible-Infected-Susceptible model, we
predict the distribution of large fluctuations, the most probable, or optimal path through a network
that leads to a disease-free state from an endemic state, and the average extinction time in general
configurations. Our predictions agree with Monte-Carlo simulations on several networks, including
synthetic weighted and degree-distributed networks with degree correlations, and an empirical high
school contact network. In addition, our approach quantifies characteristic scaling patterns for the
optimal path and distribution of large fluctuations, both near and away from the epidemic threshold,
in networks with heterogeneous eigenvector centrality and degree distributions.
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I. INTRODUCTION

Understanding the dynamics of infectious processes in
complex networks is an important problem, both in terms
of generalizing concepts in statistical mechanics and ap-
plying them to public health [1–5]. A primary question
in infectious disease modeling is how to control an out-
break, with the ultimate goal of reducing the number of
individuals able to spread infection to zero. This process,
by which an epidemic is extinguished, is called extinction
or disease fade-out [6–10]. To understand and possibly
achieve extinction, mathematical models can be useful,
where extinction can be naturally captured in terms of a
dynamical transition from an endemic state (e.g., fluctu-
ating equilibrium or cycle) to a disease-free state [11].

Although it is known that random fluctuations are
the cause of extinction in finite populations, the process
of extinction does not happen in the deterministic sys-
tems analyzed in the vast majority of works on endemic
dynamics in networks – where contacts between infec-
tious and susceptible individuals are typically assumed
to be well above an epidemic threshold or bifurcation
point [1, 9, 12]. Consequently network-control prescrip-
tions often reduce to bringing systems below a bifurcation
point [7, 13, 14]. One may ask, is targeting sub-threshold
regimes as a control method necessary or even optimal?
In actuality the spread of disease is a highly stochastic
process both in terms of the natural randomness inherent
in contact processes and fluctuations due to time-varying
and uncertain environments [9, 15]. These stochastic ef-
fects make extinction inevitable, even above threshold, in
finite networks and should be reflected in epidemic con-
trols [16, 17]. In fact, recent work has shown that optimal
control of networks with noisy dynamics leverages ran-
domness and a network’s natural, noise-induced pathway
between distinct states [2, 18]. Continuing in this line of
thinking, we seek a prescription for computing epidemic
extinction pathways through complex networks.

Such issues have received much attention in well-mixed
and spatially homogeneous models [15–17, 19–21]. It has
been demonstrated in many works that noise and a sys-

tem’s dynamics can couple in such a way as to induce
a large fluctuation – effectively driving a system from
one state to another [22]. If the fluctuation is a rare
event in the weak noise limit, then the process is captured
by a path that is a maximum in probability, or optimal
path (OP), where all others are exponentially less likely
to occur. The formalism borrows from analytical me-
chanics, describing the OP as a least-action trajectory in
some effectively classical system, and allows one to pre-
dict the dynamical extinction pathway and the average
time needed to realize it [23, 24]. Some recent works have
made progress in understanding extinction in networks,
(e.g., deriving bounds for average extinction times), but
do not make use of the path-based formalism outlined
here [25–30].

The following layout of the paper describes epidemic
extinction through complex networks with intrinsic (de-
mographic) noise in terms of large fluctuations and rare-
event theory. Sec.II constructs the formalism: combining
a mean-field approximation for endemic dynamics on net-
works with a Wentzel–Kramers–Brillouin (WKB) tech-
nique that allows for an analytical description of the dis-
tribution of large fluctuations and the OP. The limiting
form of the OP is discussed near the epidemic thresh-
old in Sec.II A, and away from threshold in Sec.III A 1.
Sec.III addresses how to compute the OP, extinction
time, and their dependencies in certain cases, includ-
ing in networks with large spectral gaps (Sec.III A) and
degree distributions (Sec.III B). Throughout, predictions
are compared to real and synthetic network simulations.

II. LARGE FLUCTUATIONS, MEAN-FIELD,
AND WKB APPROXIMATION

In order to predict epidemic extinction in general con-
tact networks it is necessary to consider an arbitrary
weighted adjacency matrix, A, where each element, Aij ,
represents the strength of a link, or contact, from node
i to node j, in a graph with N nodes. Given this
representation, a network’s epidemic dynamics, assum-
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ing a simple Susceptible-Infectious-Susceptible Markov
process (SIS) is captured by the states and transitions
of its nodes; i.e., node i is either “infected”, denoted
νi = 1, or “susceptible”, νi = 0. Furthermore, node i
changes its state νi :0→1 with probability per unit time
β(1 − νi)

∑
j Aijνj , and νi : 1 → 0 with probability per

unit time ανi, where β and α are known as the infection
and recovery rates, respectively [1, 2, 5, 31]. Since the
elements of A are proportional to probabilities, A is as-
sumed to be nonnegative. It is important to note that
there is inherent noise in the SIS model defined, which
arises from the underlying stochastic reactions [32].

In order to analyze the stochastic dynamics, it is use-
ful to consider an ensemble consisting of C identical net-
works with the same A, but independent realizations of
the stochastic dynamics [33]. Each node can be specified
by a graph position i, and ensemble number c, with state
νi,c∈{0, 1}. In this way, the number of infected nodes in
the ensemble with graph position i is Ii =

∑
c νi,c, with

corresponding transitions and rates: Ii → Ii + 1 with
rate R+

i (I)≡β
∑
c(1−νi,c)

∑
j Aijνj,c=β

∑
j Aij

∑
c(1−

νi,c)νj,c, and Ii→ Ii − 1 with rate R−i (I)≡αIi. To sim-
plify our analysis, it is useful to make a mean-field ap-
proximation and replace νi,c by the ensemble average,
Ii/C: R+

i (I)≈β
∑
j AijIj(1 − Ii/C), so that the transi-

tion rates depend explicitly on I = 〈I1, I2, ..., IN 〉 alone.
This approximation neglects correlations between neigh-
boring graph positions [1, 34–36]. Ultimately, we are in-
terested in the limit of large C, so that xi≡Ii/C gives a
continuous fraction of infected nodes, or density, in graph
position i. In this way, the large ensemble allows us to
consider continuous densities even in discrete networks
with unique graph positions.

Given the stochastic reactions and rates R+
i and R−i ,

the ensemble dynamics is described by a probability dis-
tribution, P (I, t), satisfying a master equation:

∂P

∂t
(I, t) =

∑
i

R+
i (I− 1i)P (I− 1i, t)−R+

i (I)P (I, t)

+R−i (I + 1i)P (I + 1i, t)−R−i (I)P (I, t), (1)

where 1i = 〈0 1, 0 2, ..., 1 i, 0 i+1, ...〉. Because extinctions
in large networks (N� 1) with long-lived epidemics are
rare events with small probabilities, we are interested
in the tails of P (I, t), where I corresponds to a large
deviation from the average behavior, and is accompanied
by an exponential reduction in probability.

This intuition suggests looking for solutions of Eq.(1)
with an exponential, or WKB form, P (I, t) = ae−CS(x,t)

[11, 23]. The WKB solution for the ensemble distribution
can be viewed as a product of independent and identical
distributions for each realization in the ensemble. Hence,
we can approximate the probability distribution of states
for a single realization, ρ(ν, t), by

ρ(ν, t) ∼= ρ(x, t) = be−S(x,t). (2)

Predictions from Eq.(2) (when combined with Eqs.(5-7)
below) are in good agreement with simulations on an

empirical high school network [41], shown in red in Fig.1.
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FIG. 1. (Color online) Histogram of a single stochastic realiza-
tion of the SIS model on a high school contact network (HS).
The probability (blue) is shown versus the average infection
weighted by eigenvector centrality: ηi for node i. Predictions
for a single realization from Eq.(2) are shown in red. Network
details are given in Sec.III.

We can find the leading contribution to P (I, t) by sub-
stituting the WKB ansatz into Eq.(1), expanding in pow-
ers of the small parameter 1/C (e.g., S(x ± 1i/C) ≈
S(x)±(1/C)∂S/∂xi), and neglecting terms of O(1/C) or
smaller, where C� 1. This approximation converts the
master equation into a Hamilton-Jacobi equation (HJE):

∂S/∂t+H(x, ∂S/∂x) = 0, (3)

where S and H are called the Action and Hamiltonian,
respectively. The latter is a function of the infection den-
sity at graph position i, xi, and its conjugate momentum,
pi = ∂S/∂xi:

H(x,p)=
∑
i

[
β
(
1−xi

)(
epi−1

)∑
j

Aijxj + αxi
(
e−pi−1

)]
.

(4)

Just as in analytical mechanics, a convenient approach
for solving the HJE is to solve Hamilton’s equations of
motion, ẋi = ∂H/∂pi and ṗi = −∂H/∂xi:

ẋi = β̃(1− xi)epi
∑
j

Aijxj − xie−pi , (5)

ṗi = β̃
∑
j

Aijxj
(
epi−1

)
−Aji

(
1−xj

)(
epj−1

)
−e−pi +1,

(6)

expressed in terms of the ratio β̃ ≡ β/α, and the time,
τ≡αt. Crucially, solutions of the HJE extremize S, when
expressed as the integral

S(x, t) =

∫ x

x(t=t0)

p · dx−
∫ t

t0

H(x,p)dt′, (7)
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where x(t) and p(t) are determined from Eqs.(5-6)[23].
Because S is minimized, the probability of the corre-
sponding trajectory is maximized– a consequence of the
WKB approximation. Therefore, all that is needed to
find the most probable path to extinction (OP), and
ρ(x, t) (Eq.(2) and Eq.(7)) is the appropriate solution of
Eqs.(5-6). Such solutions can be determined from bound-
ary conditions, and computed as detailed in Sec.III.

From inspection of Fig.1 we notice that ρ(x, t) is a
maximum at the endemic equilibrium (x = x∗), imply-
ing ∂S/∂x= 0 and a boundary condition: ẋ= 0, ṗ= 0,
x = x∗, and p = 0. Second, at the extinct state (x = 0)
the distribution has negative slope, ∂S/∂x < 0. Fur-
thermore, ρ(x, t) is approximately time-independent, or
quasi-stationary [10, 11, 23]. In the WKB ansatz, we
have ∂S/∂t = H = 0 ∀t. Therefore the final boundary
condition is ẋ=0, ṗ=0, x=0, and p=p∗ [11, 19, 22].
OPs computed with Eqs.(5-6) and the stated boundary
conditions are compared with stochastic trajectories end-
ing in extinction for several networks in Fig.(2).

Two important details should be pointed out. Since
the distribution is time-independent, and therefore “zero
energy”, S(x) is simply the line integral of the momen-
tum along the OP, from Eq.(7). Also, the p ≡ 0 solution
of Eqs.(5-6) gives the familiar quenched mean-field equa-
tions for SIS model on complex networks. Therefore, the
WKB approach generalizes mean-field results to include
large fluctuations.

In general, by studying Eqs.(5-6) we can learn how a
network’s infection density is coupled to its large fluc-
tuations – together generating the most likely transition
sequence through a network leading to extinction. In ad-
dition to the distribution of large fluctuations, Eq.(2),
an important observable from the above formalism is the
geometry of the OP; e.g., specifying the shape of infec-
tion density in the different graph positions as a network
makes its way from a large epidemic to extinction. Ex-
amples are shown in Fig.2 and Fig.5. Another important
observable is the average extinction time for a given net-
work, 〈T 〉, which is expected to take the form:

〈T 〉 = B(β̃, A)eS(x=0)/α, (8)

from the assumption that absorption into the extinct
state has a rate, or inverse time, proportional to the prob-
ability [6, 11, 15, 22]. For sufficiently large S, the expo-
nential contribution dominates, and therefore 〈T 〉∼eS(0)
(as demonstrated in Fig.(3) for several networks [38]).
We note that beyond a theoretical interest, the frame-
work presented can be augmented with control strategies
designed to minimize the Action, Eq.(7), thus produc-
ing exponential and optimal reductions in the lifetime of
epidemics on networks [2].

A. Near threshold behavior

Since the OPs are in a high 2N -dimensional space,
they must be found by numerically solving the two-

point boundary value problem in general, given Eqs.(5-
6). However, analytic properties can be derived in certain
limiting cases, which are useful for guiding intuition and
for initializing algorithms (see Sec.(III A)). An important

case discussed in this section is for β̃ just above the epi-
demic threshold, or transcritical bifurcation, β̃c≡ 1/λ(1)

– where λ(1) is the largest eigenvalue of A [1, 34, 35]. At
this point the endemic and extinct state meet, and below
which no long-lived epidemic occurs.

In order to describe the path when β̃& β̃c, it is useful

to assume that β̃=(1+δ)/λ(1), with δ � 1, and first find
the equilibria as functions of δ. Substituting the series
x∗i =

∑
n δ

nxi,n for each i and p=0 into dx/dτ =0, and
collecting powers of δ (e.g., to O(δ2)) gives:

λ(1)xi,1 =
∑
j

Aijxj,1, (9)

λ(1)xi,2 =
∑
j

Aij [xj,2 + (1− xi,1)xj,1]. (10)

Furthermore, by decomposing Eqs.(9-10) into the eigen-

basis of A, xi,n =
∑N
m=1G

(m)
n η

(m)
i , where η(m) is the mth

right eigenvector of A with eigenvalue λ(m), and taking
the inner product,

∑
i ζixi, of Eqs.(9-10) with the left

eigenvector, ζ(1), we find x∗ to O(δ). A similar proce-
dures gives p∗, when x=0:

x∗i = δη
(1)
i /

∑
j

ζ
(1)
j η

(1)
j

2
+O(δ2), (11)

p∗i = −δζ(1)i /
∑
j

η
(1)
j ζ

(1)
j

2
+O(δ2) (12)

(assuming the normalization
∑
i ζ

(1)
i η

(1)
i =1). Examining

Eqs.(11-12), we see that x∗i and p∗i are proportional to
the principal right and left eigenvectors of A near the
bifurcation, respectively. In particular, if η(1) and ζ(1)

contain relatively few nodes that are significantly large
compared to most others, we expect the infection density
and fluctuations to be localized around these nodes[35].

Further insight on the effects of topology near thresh-
old can be gained by considering the Action along the
path, Eq.(7). To this end, it is useful to introduce a
length parameter, a ∈ [0, 1], so that we can express the
coordinates as xi(a)≈ x∗i (1 − a) and pi(a)≈ p∗i a, where
the linear form is the simplest satisfying the bound-
ary conditions to O(δ) (see Fig.5 insets). Integrating
over the path gives the action near bifurcation, S(a) =∑
i

∫ a
0
pi(a

′)da′(dxi/da
′):

S(x(a)) =
δ2
(
a− a2/2

)
∑
j ζ

(1)
j η

(1)
j

2∑
l η

(1)
l ζ

(1)
l

2 +O(δ3). (13)

We note that Eq.(13) is interesting, since the known
expression for the complete graph is generalized by a
topological factor that depends on the moments of the
centrality distribution. Typically, as the distribution be-
comes broad, the topological factor in Eq.(13) is reduced,
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FIG. 2. (Color online) Pre-history density of the final N events that ended in extinction in 400 realizations of the SIS model
on several fixed networks. The stochastic trajectories were projected into the fraction of infected nodes with high (b) and low
(b′) eigenvector centrality. Predicted paths are shown in blue for comparison (from the endemic state(∗) to extinction(◦)), and

contrasted with the path into the endemic state, pi≡0 (green). (a) WBA network: β̃λ=1.88, ηb≥0.050, and 0.014≤ηb′≤0.018

(see Sec.III A). (b) HS network: β̃λ = 1.34, ηb ≥ 0.052, and 0.0111 ≤ ηb′ ≤ 0.021. (c) Positively correlated bimodal network

(PC): β̃λ= 2.8, w= 0.23, N = 500, k1 = 5, and k2 = 50 (where k1 and k2 are degrees and w is a degree-correlation parameter

explained in Sec.III B and Sec.VII). (d) Negatively correlated bimodal network (NC): β̃λ=1.9, w=−0.26, and N =400; high
and low-centralities imply k≥ 40 and k≤ 10, respectively, for (c) and (d). Note: a position on the heat map with color “5”
means that five times as many of the total 400N events crossed the position as compared to a position with a color “1”.
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FIG. 3. (Color online) Log of the average extinction times vs.
Actions, Eq.(7), for several networks: WBA(◦); HS(�); PC
(O); NC (4); CM network with N = 1000 and a degree dis-
tribution, g(k) =k−2.5/

∑500
k′=20 k

′−2.5 (♦). Average times are
taken from at least 400 stochastic realizations of the SIS dy-
namics on a single fixed network, and are shown with symbols.
Dashed lines show the expected scaling ln〈T 〉 ∼ S + const.

such that the Action differs significantly from the limit-
ing case, ηi=ζi=1/

√
N ⇒ S = Nδ2(a−a2/2) [11]. This

is intuitive, since for heterogeneous networks, infection is
most prevalent around a comparatively small number of
nodes, who must recover without reinfection in order for
extinction to occur. The effects of heterogeneous eigen-
vector centrality are explored in more detail in Sec.III.

III. SPECIAL SOLUTIONS

In general, the OP is of interest away from threshold.
However, since the OP is a heteroclinic connection of

Eqs.(5-6), in practice it must be constructed numerically,
e.g., through shooting, or quasi-newton methods, etc.
For example, the paths shown in Fig.(2) were found from
an iterative action minimizing method (IAMM) [39]. In
the IAMM, OPs are generated from a least-squares al-
gorithm that minimizes the residuals between Eqs.(5-6)
and finite-difference approximations. The boundary con-
ditions specified in Sec.II are used to close the differenc-
ing. Often the small δ limit, Eqs.(11-12), can be used
as an initial guess. However the dimension for the mini-
mization is 2Nd where d is the number of discrete points
in the differencing and N is the size of the network, which
is prohibitively large for large N . Therefore, in practice
it is necessary to coarse-grain the network in some way.
Two such approaches are discussed in the following sec-
tions for networks with large spectral gaps (Sec.III A)
and specified degree distributions (Sec.III B).

A. Large spectral gaps

In general, A can be usefully expanded in terms of its

eigenvalues and eigenvectors: Aij =
∑N
n=1 λ

(n)η
(n)
i ζ

(n)
j .

Of particular interest, for strongly connected graphs, η1

and ζ1 are positive and unique, and λ(1) is equal to the
spectral radius, by the Perron-Frobenius theorem. More-
over, in many strongly connected networks of interest, it
is the case that λ(1) � λ(n), with large spectral gaps,

and therefore, Aij≈λ(1)η(1)i ζ
(1)
j . In such cases, A can be

coarse-grained along a single dimension as demonstrated
below.

Given a large spectral gap, a simple coarse-graining is
to bin η(1), assuming a number of bins, B, and a dis-
tribution, fb, for the number of nodes in a given bin,
b. In the following, we assume that A is symmetric,
so that η(n) = ζ(n). In this case, nodes can be or-
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dered according to increasing η
(1)
l . The binning proce-

dures follows: starting with the first node, the first bin is
filled with nodes sequentially until the number of nodes
equals Nf1; then, the second bin is filled, etc. Once
all nodes are binned, the dimension of Eqs.(5-6) can be

reduced by replacing η
(1)
l , xl, and pl with their bin av-

erages ∀l ∈ b: ηb≡
∑
l∈b η

(1)
l /(Nfb), xb≡

∑
l∈b xl/(Nfb),

pb≡
∑
l∈b pl/(Nfb). This gives the following approxima-

tions to Eqs.(5-6) with reduced dimension 2B:

ẋb = β̃λ(1)ηb(1− xb)epb
∑
b′

Nfb′ηb′xb′ − xbe−pb , (14)

ṗb = β̃λ(1)ηb
∑
b′

Nfb′ηb′
[
xb′
(
epb−1

)
−
(
1−xb′

)(
epb′−1

)]
−e−pb +1. (15)

A final requirement is needed to ensure that the binned
and original system have the same bifurcation point. We
choose to renormalize ηb so that

∑
b η

2
bfbN=

∑
i η

2
i =1.

The above procedure was applied to three networks
(considered in Figs.2-3), where the bin distribution was
assumed to be uniform for simplicity, fb = 1/B; B was
chosen large enough so that the binned centralities closely
matched the original (as in Fig.4), but not so large to pre-
clude using 200−1000 discretization points along the OP
in the IAMM. The first network in Fig.2(a) is a weighted
Barabási-Albert graph (WBA) with N = 500 and initial
degree for each node, m= 7 [40]. Every link was given
a random weight, independently drawn from a uniform
distribution over the range [0, 10] after the network was
generated from the standard Barabási-Albert algorithm
(λ(1) = 122, λ(2) = 58.6). The second network in Fig.2(b)
is a high-resolution American high school contact net-
work (HS) with 788 individuals and links representing
close proximity interactions during the course of a day
(measured using wireless motes [41]). Weights associ-
ated with links correspond to contact durations (λ(1) =
6715, λ(2) =4882). Binning results for the WBA and HS
networks are shown in Fig.4 with B=55 and B=30, re-
spectively. The third network was generated from a con-
figuration model, CM , with N=1000 and a degree distri-
bution, g(k) = k−2.5/

∑500
k′=20 k

′−2.5, where k is the num-

ber of links for a given node (λ(1) =80.9, λ(2) =16.3)[42];
B=55 for the CM network’s OP computation. A related
method for computing OPs through networks with speci-
fied degree distributions is discussed in Sec.III B, and was
applied to the networks in Fig.2(c)-(d).

1. Scaling with broad centrality distribution

As β̃ is increased above β̃c, infection increases across
the network. In particular, infection density can become
high even at low centrality nodes. In this case the path
to extinction through a network is more complex as its
global dynamical structure becomes apparent. Exam-
ple optimal paths for a WBA network when β̃� β̃c are
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FIG. 4. (Color online) Example binnings of (a) HS and (b)
WBA networks (Sec.III A). Eigenvector centralities (blue) are
shown for all nodes and compared with the average centrality
in each bin (red). (a) 30 bins (b) 55 bins.

shown in Fig.5. We can see that a multi-step structure
is visible in the relative change of infection density at
different graph positions, which can be compared with
the insets (β̃& 1/λ(1)) [2]. Though the path has a more
complicated form away from threshold, some character-
istic scalings can be captured in this region of parameter
space for networks with heterogeneous eigenvector cen-
tralities (e.g., fb ∼ η−γb ) and where the large spectral gap
approximation holds. Our approach in this section is to
study the unstable and stable linear modes of (x,p) near
the endemic and extinct states, respectively, for such net-
works. These modes approximate the OP (a heteroclinic
connection) near the equilibria, and are useful for de-
scribing how large fluctuations depend on centrality[43].

With this end in mind, we consider the dynamics of
(xi, pi) = (x∗i + εoi , µ

o
i ) and (xi, pi) = (εini , p

∗
i + µini ), for

small ε and µ, given Aij ≈ λ(1)η
(1)
i η

(1)
j (below, we drop

the superscript (1) in η and λ for convenience). Sim-

ilar to Sec.II A, when β̃ & β̃c, it is straightforward to
show that εoi , ε

in
i , µ

o
i and µini are simply proportional to

ηi. Fig.6 shows centrality scalings for the principal lin-
ear eigen-modes of Eqs.(5-6) near the equilibria. The
upper dashed lines demonstrate the predicted scaling
εini /ε

in
j ∼ ηi/ηj ∼ µoi /µoj for a WBA network where the

dark blue/red curves correspond to β̃ increasingly close
to threshold (εoi and µini scale similarly in this region).

However, as β̃ is increased, shown in light blue/red, we
can see that the scaling changes significantly [2].

In order to understand the change in scaling as β̃ is in-
creased, we first consider the equilibria x∗i and p∗i . Given
the large spectral gap assumption, we find a simple form
for each that is dependent on two parameters, X and P :

x∗i = Xβ̃ληi/
(
1 +Xβ̃ληi

)
, (16)

p∗i = − ln

[
1 + β̃ληi

(
N〈η〉 − P

)]
, (17)

satisfying: X =
∑
j ηjx

∗
j and P =

∑
j ηje

p∗j , where 〈η〉
is the average eigenvector centrality [33]. In particular,
by assuming that infection densities are high in the en-
demic state at most graph positions, i.e., β̃ληiN〈η〉�1,

then X ≈ N〈η〉−1/[β̃λ〈η〉] and P ≈ 1/[β̃λ〈η〉]. Substi-
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FIG. 5. (Color online) OP away from threshold (β̃λ = 7)
for WBA network projected into the (a) densities of infected
nodes and (b) conjugate momenta for the lowest centrality bin
vs. higher centrality bins (Sec.III A). Path projections become
increasingly dark as the bin number increases: b = 10, 15, ...55
(increasing eigenvector centrality), where B=55. Insets show

OPs for comparison when β̃λ=1.02.

tuting these approximations into the linearized Eqs.(5-
6) allows us to determine the dependence of the eigen-
modes, (εoi (t), µ

o
i (t)) = etσ

o

(εoi , µ
o
i ) and (εini (t), µini (t)) =

etσ
in

(εini , µ
in
i ), on ηi near the equilibria.

Since infection densities are high near the endemic
state away from threshold, we expect the most well con-
nected nodes to be quickly reinfected after recovery, as
compared to nodes that are less well connected. There-
fore, we expect the OP out of the endemic state to cor-
respond with an initial decrease in infection at low cen-
trality positions. The scaling for this initial step is de-
termined by the eigensolution of the linearized Eq.(6) at
(x∗i , 0):

1 =
∑
j

β̃λη2j
(
1− x∗j

)/[
1 + β̃ληjX − σo

]
, (18)

µoi = β̃ληi
∑
j

ηjµ
o
j(1− x∗j )/

[
1 + β̃ληiX − σo

]
. (19)

In particular, σo is positive and grows from zero with
β̃ > β̃c [44]. When β̃ληiN〈η〉� 1 and fb∼ η−γb for large
η, the summation in Eq.(18) ∼

∫
η−γ+1dη/(η − const.),

and converges in the limit of large maximum centrality,
ηmax, when γ>2. This implies that σo does not depend
sensitively on ηmax in this region and therefore we can
consider the limit of large centrality in Eq.(19). By in-
specting µoi for large ηi, we see that it tends to a constant,
i.e., µoi /µ

o
j ∼ 1, (since the sum over j is i-independent) in

good agreement with numerical solutions of Eqs.(18-19)
away from threshold– shown in Fig.6(b)(light red). Inter-
estingly, µoi becomes largest for small ηi (light red) and
increases quickly to a constant for large ηi. Since the mo-
menta are nearly equal across nodes in the network, the
Action’s derivatives w.r.t. infection density are nearly
equal across nodes. A similar procedure gives the scaling
εoi /ε

o
j ∼ ηj/ηi, which is found by expanding the linearized

Eq.(5) in 1/β̃ληiN〈η〉, e.g., x∗i ≈1−1/β̃ληiN〈η〉 (Sec.VI).
Therefore, the infection density at a given node decreases
inversely proportional to its eigenvector centrality, i.e,
the reciprocal scaling of the OP near threshold.
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FIG. 6. (Color online) Scaling of dynamical eigenmodes for
nodes in a WBA network relative to the maximum cen-
trality value (max). (a) Solutions of Eqs.(20-21). (b) So-
lutions of Eqs.(18-19). Upper/lower dashed lines represent
the predicted scaling near/away from threshold. Solid lines

become increasingly light in color as β̃λ increases: β̃λ =
1.05, 1.25, 2.0, 2.85, and 3.35.

Following the same approach, the scaling of the OP
near the extinct state is determined by the eigen-solution
of the linearized Eq.(5) at (0, p∗i ):

1 =
∑
j

β̃λη2j e
p∗j
/[
σin + e−p

∗
j
]
, (20)

εini = β̃ληie
p∗i
∑
j

ηjε
in
j /
[
σin + e−p

∗
i
]
. (21)

In particular, σin is negative, decreases from zero with
β̃ >β̃c, and is similarly insensitive to large ηmax. Hence,
taking the limit of large ηi, given e−p

∗
i ≈1+βληiN〈η〉[1−

1
/
βληiN〈η〉], implies εini /ε

in
j ∼ ηj/ηi in Eq.(21)– as

found near the endemic state and shown in Fig.6(b)(light
blue). However, in contrast to the behavior near x∗i , we
find that µini increases with ηi, for small ηi, before reach-
ing a constant, µini /µ

in
j ∼ 1 (see details in Sec.VI and

Fig.9). The scalings near the extinct state imply that the
last segment of the OP is coincident with a final recovery
of residual infections at low-centrality nodes, while the
momentum is largest at high centralities.

Putting the scalings near the equilibria together, we
can infer that infection density decreases rapidly in high-
centrality graph positions at a boundary layer between
the endemic and extinct states – since we have shown that
their change is small compared to low centralities near
the equilibria [2, 45]. This can be seen in Fig.5(a), where
projections of the OP into high and low-centralities, on
the x and y axes respectively, show a characteristic pat-
tern in which segments with large horizontal slope occur
between two segments with large vertical slope.

B. Degree distributions

In addition to understanding the OP for a given net-
work defined by A, it is useful to understand the quali-
tative structure of paths and Actions for networks with
similar statistical properties [1, 2, 4]. A popular approach
is to consider networks with a specified distribution for
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the fraction of nodes with k links, g(k) (where k is called
the degree), which is the focus of this section. Often,
additional information is stipulated, such as a degree-
correlation function – typically in the form of a specified
probability that a link starting from a node with degree
k leads to a node with degree k′, o(k′|k) [31, 46, 47].
OPs for networks with such properties can be found by
approximating A given these distributions, and substitut-
ing into Eqs.(5-6).

As is customary, we replace Aij by its expectation
value in the ensemble of simple networks with g(k) and
o(k′|k), which is called the annealed network approx-
imation. In particular, Aij is approximated by the
probability that nodes i and j are connected, Aij ≈
o(kj |ki)ki

/
Ng(kj), or the probability that node i is con-

nected to any node with degree kj along a single link,
multiplied by the number of possible links, and divided
by the number of nodes with degree kj [1, 2, 4]. Note that
for link consistency, Aij = Aji, the distributions must
satisfy the constraint: ko(k′|k)p(k) = k′o(k|k′)p(k′) [47].
With this substitution for Aij into Eqs.(5-6), Hamilton’s
equations depend on the density of infection for nodes
with the same degree k, xk, and their momentum, pk:

ẋk =β̃k(1− xk)epk
∑
k′

o(k′|k)xk′ − xke−pk , (22)

ṗk =β̃k
∑
j

o(k′|k)
[
xk′
(
epk−1

)
−
(
1−xk′

)(
epk′−1

)]
−e−pk +1. (23)

Notably, Eqs.(22-23) reduce to the heterogeneous
mean-field dynamics for networks when pk ≡ 0; pk 6= 0
entails extinction in degree-correlated topologies with di-
mension of (x,p) equal to twice the number of degree
classes. The analysis and results for degree-distributed
networks are analogous to Sec.II A-Sec.III A 1. For ex-
ample, for degree-distributed networks the familiar pro-
portionality of the Action on the number of nodes in A,
is found from Eq.(7) [23]:

S(x)=N
∑
k

g(k)

∫ xk

x∗k

pkdx
′
k. (24)

Moreover, with the appropriate substitution of the
largest eigenvalue, λ, and the corresponding right eigen-
vector, vk, of ko(k′|k) in Eq.(13) [47], we find the Action
at the extinct state for degree-correlated networks near
the epidemic threshold:

S =
1

2
Nδ2

〈
v2
〉3

〈v3〉2
+O(δ3), (25)

where 〈vn〉=
∑
k g(k)vnk .

Extinction paths and times for two example networks
are shown in Figs.2-3 [2, 49]. The networks have a bi-
modal degree-distribution with positive (PC) and nega-
tive (NC) degree-correlations (Figs.2(c) and (d) respec-
tively), where positive implies an increased probability

2.6 2.8 3.0 3.2 3.4
1.0

1.2

1.4

1.6

S
(
=
2
.6
)

S
(
)

γ

S(γ)
S(γ=2.6)

FIG. 7. (Color online) Relative Actions at the extinct state
vs. degree-distribution exponent for truncated power-law net-
works: g(k, γ) = k−γ/

∑400
k′=20 k

′−γ . (◦) β̃λ= 1+δ, δ� 1; (�)

β̃λ= 1.1; (♦) β̃λ= 1.5; (4) β̃λ= 2.0. A bin width of 0.015
was used to coarse-grain kg(k)/〈k〉 (Sec.III B).

relative to an uncorrelated network for nodes with sim-
ilar degree to share an edge. Correlated bimodal net-
works can be constructed in a straightforward manner as
detailed in Sec.VII. Fig.2 (c)-(d) shows OPs for example
parameters computed from Eqs.(22-23), and projected
into the densities of infected low and high-degree nodes.
Qualitatively, we can see that OP projections into infec-
tion densities are significantly closer to lines with unit
slope (which is the case for uncorrelated networks with
small variance in k) in the NC case (d), than for the PC,
(c).

The change in the OP’s shape with correlations sug-
gests a reduction/enhancement of the effects of network
heterogeneity with negative/positive correlations. For
positive correlation, infection is more prevalent around
high-degree nodes. This is reflected in the principal
eigenvectors of ko(k′|k) for the two examples, where the
low-degree component is 5.4 times greater in the NC
(parameters in Fig.2). In fact the topological factor,〈
v2
〉3
/
〈
v3
〉2

, is 2.2 times greater for the NC, given the

same N and distance to bifurcation, δ= β̃λ−1&0. There-
fore we expect the probabilities for large fluctuations to
be smaller by the same power and extinction times to
be larger by the same power. Equivalently, if comparing
fixed extinction time, the PC must be taken to larger
β̃λ and/or N . This is demonstrated in Fig.3, where the

largest times shown correspond to β̃λ=1.9 and N =400
for the NC, and β̃λ=2.8 and N=500 for the PC.

The above example raises an interesting question of
how fluctuations and extinction times vary with statisti-
cal properties in a network, such as degree-heterogeneity,
which can be anticipated from the network Action. A
more realistic class of heterogenous networks have power-
law degree distributions, g(k) ∼ k−γ , where the level
of degree-heterogeneity grows with decreasing γ. Fig.7
shows the predicted Actions at the extinct state as a
function of γ for truncated and uncorrelated, o(k|k′) =
kg(k)/〈k〉, power-law distributions with several fixed dis-
tances to threshold. Interestingly, for such networks
we can see that Actions vary as much as 60% when
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FIG. 8. (Color online) System-size scaling of the average log
of the average extinction times for CM networks with degree
distribution g(k, γ) = k−γ/

∑∞
k′=30 k

′−γ : γ = 4.5 (◦), γ = 3.7

(♦), and γ= 3.4, (�), with β̃
〈
k2
〉
/〈k〉= 1.18, 1.20, and 1.25,

respectively [36]. Dashed lines show the predicted scalings
from Eq.(26). Average times were computed from at least 50
simulations for each network, and ln 〈T 〉 was averaged over
20 different networks. Networks were selected so that kmax
was within 10% of kminN

1/[γ−1]. Error bars represent the
standard deviation of ln 〈T 〉.

(β̃λ = 2), with broader distributions resulting in sig-
nificantly smaller Actions, and therefore exponentially
larger probabilities of large fluctuations and exponen-
tially smaller extinction times.

The Action curves were found by solving Eqs.(22-
23) with the boundary conditions specified in Sec.II,
and computing Eq.(24). In addition to computation,
the lower black-curve in Fig.7 gives the analytic scal-
ing near threshold, found from Eq.(25), by substitut-
ing the eigenvector for uncorrelated random networks,

vk = k⇒ S=Nδ2
〈
k2
〉3
/
〈
k3
〉2

[2, 47]. For the computed
curves, it was useful to reduce the dimension for the
IAMM by binning the distribution o(k|k′) = kg(k)/〈k〉
with a similar procedure as Sec.III A. Our approach, was
to select a small bin width for kg(k)/〈k〉 (e.g., 0.015), and
sequentially add degree classes to a bin, starting with the
smallest k and first bin, until the sum of kg(k)/〈k〉 over k
in a given bin equaled or exceeded the bin width. Then,
the next bin was filled with the same bin width, etc.
In the final step, degrees in Eqs.(22-23) were replaced by
their bin’s average and o(k′|k) by the sum over kg(k)/〈k〉
in each bin [2].

1. System-size scaling for modest N

Another interesting feature of extinction times in
power-law networks concerns their scaling with system-
size when there is no truncation in g(k). It is known for
degree-homogeneous networks, such as simple-complete
or Erdős-Rényi graphs, that the Action scales linearly
with the system size [11, 37]. Below we show that near
threshold for modest N , a range of scalings are possi-
ble depending on the exponent, γ. As indicated above,

the Action near threshold depends on a topological fac-
tor that is a function of the moments of g(k), which can
depend on N .

Here we continue to use the annealed network approx-
imation, though for very large N this is known to break
down for random networks with unbounded degree as
localization effects become important [35]. Therefore,
we restrict ourselves to N and minimum degree, kmin,
such that λ ≈

〈
k2
〉
/〈k〉. When γ > 4,

〈
k3
〉

is finite for
power-law networks, i.e., independent of N for large N ,
and thus S ∼ N near threshold, β̃ & 〈k〉/

〈
k2
〉

[31, 46]
– though higher-order terms may be N -dependent for
δ � 1, we expect them to grow more slowly than N
[36]. On the other hand, if γ < 4,

〈
k3
〉

is a function
of the maximum degree, kmax, which follows a simple
scaling: kmax ∼ kminN

1/[γ−1], for a finite network with
minimum degree kmin [51]. The customary approach
is to approximate the statistical moments of g(k) given
kmax, allowing one to find the scaling of S with N .
For example, when kmin� 1, the discrete sum,

〈
k3
〉

=∑
k g(k)k3 ≈ C̃

∫ kmax

kmin
k3−γdk. Introducing γ=3+α with

α∈(0, 1), we get
〈
k3
〉
≈ C̃k1−αminN

[1−α]/[2+α]/[1−α], where

C̃=k2+αmin [2+α] (from normalization of g(k)). Computing
the moments of g(k) in this way, gives the Action at the
extinct state to O(δ2) from Eq.(24):

S =
δ2

2

(1− α)2(2 + α)

α3
N1−2[1−α]/[2+α], (26)

The above suggests that in the heterogeneous mean-
field approximation, the O(δ2) contribution to the Ac-
tion can increase sub-linearly in N for γ ∈ (3, 4) near
threshold [30] as suggested in Fig.8. However for very
large networks, and no truncation in kmax, eventually
λ ∼ max{

√
kmax,

〈
k2
〉
/〈k〉} � 1, and the analysis pre-

sented is no longer valid, including the expansion in δ.
Moreover, there is some evidence for multiple epidemic
thresholds in networks with unbounded kmax as N →∞
[52]. Since such issues are not yet resolved, we leave the
description of extinction in very large networks with un-
bounded degree distributions, and the crossover between
localized and delocalized extinction for future study.

IV. CONCLUSION

This work dealt with the extinction of long-lived en-
demic states above epidemic thresholds on static finite
networks with infection dynamics given by the stochas-
tic SIS model. The optimal path to extinction (OP),
the distribution of large fluctuations, and the average
extinction time were computed by combining mean-field
and WKB-approximation techniques. The path-based
formalism presented enabled us to predict extinction in
general networked populations, and extract several of its
intriguing signatures in complex topologies, including the
multistep scaling of the OP in networks with heteroge-
neous eigenvector centrality, as well as an increase in the
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probability of large fluctuations with increased topolog-
ical heterogeneity. Although theoretical in nature, the
generality of our approach allowed us to consider several
applications, including weighted empirical and degree-
correlated topologies.

Though the results show good qualitative and quanti-
tative agreement with Monte-Carlo simulations in both
real and synthetic networks, improved accuracy can be
achieved in a straightforward manner by following our
synthesized prescription, namely: Using as an ansatz in a
network’s master equation the exponential function of an
Action (typically requiring some accurate mean-field ap-
proximation), and taking a large system-size limit. The
result is a Hamilton-Jacobi equation that generates a dy-
namical system with twice the dimension of the mean-
field. The OP can be found by solving the two-point
boundary value problem of Hamilton’s equations of mo-
tion beginning at an endemic state and ending at an ex-
tinct state, which define OP endpoints. Thus the theory
changes the stochastic analysis of large fluctuations in
networks to one that may be analyzed using a determinis-
tic formalism whose zero-fluctuation limit is a mean-field
theory. Furthermore, our approach can be more generally
applied to other questions concerning noise and network
dynamics, such as epidemic extinction in adaptive net-
works, switching in social networks, network inference in
the presence of large fluctuations, and optimal control of
networks with fluctuating dynamics [2, 18].
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VI. APPENDIX A

As described in Sec.III A 1, εoi and µini satisfy the lin-

earized Eqs.(5-6). When β̃ληiN〈η〉�1, the approximate
linear systems are:∑

j

ηjε
o
j

N〈η〉
≈ εoi

[
σo+1+ β̃ληiN〈η〉

(
1−
(
1
/
β̃λN〈η〉2

))]
− µoi

[
2−
(
1
/
β̃λN〈η〉2

)
−
(
1
/
β̃ληiN〈η〉

)]
. (27)

[
−1 +

(
(σin − 1)

/
β̃ληiN〈η〉

)]
µini ≈−

∑
j

ηjµ
in
j

N〈η〉
1

β̃ληjN〈η〉

+
∑
j

ηjε
in
j

N〈η〉

[
−2 + (1

/
β̃ληiN〈η〉) + (1

/
β̃ληjN〈η〉)

]
.

(28)
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FIG. 9. (Color online) Scaling of momentum near the
extinct state for graph positions in a WBA network relative
to the maximum centrality value (max), corresponding to
the dynamical mode Eq.(21). Upper/lower dashed lines
represent the predicted scaling near/away from threshold.

Solid lines become increasingly light in color as β̃λ increases:
β̃λ=1.05, 1.25, 2.0, 2.85, and 3.35.

Since the sums in Eqs.(27-28) are independent of i,

the limit of large β̃ληiN〈η〉, gives: εoi /ε
o
j ∼ ηj/ηi and

µini /µ
in
j ∼ 1. The latter can be seen in Fig.(9). How-

ever, as β̃ � β̃c the continuous spectra, σoi and σini ,
for large N of the linearized Eqs.(5-6) become relevant:
εini , µ

o
i ∼ δ(η − ηi), and

σini = β̃ληi
2ep
∗
i − e−p

∗
i , (29)

σoi = 1 + β̃ληi
[∑

j

ηjx
∗
j − ηi(1− xi)

]
. (30)

This occurs as the denominators of Eq.(18) and Eq.(20)
approach zero, and the single-mode analysis of Sec.III A 1
is invalid. As a consequence, for very large β̃, the relevant
modes directing the OP to extinction near the equillibria
are extremely localized around low-centrality nodes.

VII. APPENDIX B

Correlated bimodal networks can be constructed as
follows. We assume that a fraction, p, of the net-
work has high-degree near k2 while the remaining nodes
have low-degree near k1. To build such networks, high-
degree nodes are connected to each other with probability
k22/[N〈k〉]+w, where w measures the assortativity above
the uncorrelated construction and 〈k〉=(k1(1− p)+k2p).
On the other hand, high and low-degree nodes are con-
nected with probability k1k2/[N〈k〉]−w, and low-degree
nodes are connected with probability k21/[N〈k〉] +w′ –
where w′ is determined from the link-consistency con-
straint. In this way the degree distribution has two peaks
centered around k1 and k2 as N → ∞, and Eqs.(22-
23) can be used to capture the OP and average extinc-
tion times assuming two degree classes with: o(k2|k2) =
w + k2p/〈k〉, o(k1|k2) =−w + k1(1 − p)/〈k〉, o(k1|k1) =
−w′ + k1(1− p)/〈k〉, and o(k2|k1)=−w′+k2p/〈k〉.
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Phys. Rev. Lett. 105, 128701 (2010).

[29] C. Buono, F. Vazquez, P. A. Macri, and L. A. Braunstein,
Phys. Rev. E 88, 022813 (2013).

[30] M. Assaf and M. Mobilia, Phys. Rev. Lett. 109, 188701
(2012).

[31] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett.
86, 3200 (2001).

[32] D. T. Gillespie, J. Comput. Phys. 22, 403 (1976).
[33] G. Barlev, T. M. Antonsen, and E. Ott, Chaos 21, 025103

(2011).
[34] A. S. Mata and S. C. Ferreira, Europhys. Lett. 103, 48003

(2013).
[35] A. V. Goltsev, S. N. Dorogovtsev, J. G. Oliveira, and J.

F. F. Mendes, Phys. Rev. Lett. 109, 128702 (2012).
[36] Techniques that include correlations can be used to sig-

nificantly improve accuracy, but at the cost of higher
dimensionality [34].

[37] B. S. Lindley, L. B. Shaw, and I. B. Schwartz, Europhys.
Lett. 108, 58008 (2014).

[38] The deviation from the expected scaling is likely due to
the pre-factor dependence (B), the binning approxima-
tion (Sec.III), and the inaccuracy of the mean-field as-

sumption, particularly in the estimate for β̃c [36].
[39] B. S. Lindley and I. B. Schwartz, Physica D 255, 22

(2013).
[40] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47

(2002).
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