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We study the problem of stabilized coexistence in a three-species public goods game, in which
each species simultaneously contributes to one public good while freeloading off another public
good (“cheating”). The proportional population growth is governed by an appropriately modified
replicator equation, depending on the returns from the public goods and the cost. We show that the
replicator dynamic has at most one interior unstable fixed point, and that the population becomes
dominated by a single species. We then show that applying an externally imposed penalty, or “tax”
on success can stabilize the interior fixed point, allowing for the symbiotic coexistence of all species.
We show that the interior fixed point is the point of globally minimal total population growth in
both the taxed and untaxed cases. We then formulate an optimal taxation problem, and show that
it admits a quasi-linearization resulting in novel necessary conditions for the optimal control. In
particular, the optimal control problem governing the tax rate must solve a certain second order
ordinary differential equation.

PACS numbers: 02.50.Le, 87.23.Kg, 89.75.Fb

I. INTRODUCTION

The public goods game is a mathematical representa-
tion of the Tragedy of the Commons [1, 2] - the idea that
in situations of a shared common product such as clean
surroundings or common grazing area, there is less in-
centive to contribute than there is to “cheat”, or freeload
on the contributions of others. In Lloyd’s original 1833
lecture, the commons refers to the common grazing land
held in England at the time [1]. Hardin later related
this problem to nuclear proliferation during the 1960’s
[2]. Within the public goods game, cheating is a more
profitable choice than producing; in this way, it is in-
tellectually similar to the prisoner’s dilemma (see e.g.,
[3, 4]), and various approaches to resolving the tragedy
have been taken (see e.g., [5])

However, the division of labor that led to the develop-
ment of advanced human societies was based on the idea
of specialization combined with an exchange of produced
goods; this could be thought of as mutual freeloading. In
this scenario it is essential that there are multiple, com-
plementary products made by different members of the
society. Although such products, such as making bread
or raising livestock, are easily exchanged or withheld,
and therefore not at all public goods, it seems relevant
to consider a situation with multiple public goods. The
mathematical model we propose here treats the situation
in which there are three choices, each of which involves
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producing one good while simultaneously freeloading on
another.

The public goods game [6] poses the following dilemma
to a group of N agents: each agent is asked to contribute
c monetary units to a public good. If the agent con-
tributes, the contribution earns a rate of return r provid-
ing rc monetary units to the public. The rc monetary
units are then shared among the population of N agents.
Thus, if k individuals contribute, a contributing individ-
ual (cooperator) earns rck/N − c monetary units, while
a non-contributing individual (freeloader) earns rck/N
monetary units. Rational agents would therefore choose
not to contribute as long as r < N , which is generally
assumed.

Direct translation of this dynamic into differential
equations frequently takes the following form: two fitness
functions fC for cooperators and fD for freeloaders are
defined. Population growth (proportional or actual) is
then linked to these fitness functions. The direct transla-
tion of this dynamic into differential equations (usually)
leads to cooperator population collapse (because contri-
bution to the public good is less beneficial than freeload-
ing). This is illustrated in (e.g.) [7]. Recently models
including synergistic effects that capture the fact that it
is more attractive to participate than to freeload have
been proposed [8]. [9] provides an excellent review of
differential equation models of public goods.

In [7, 10, 11], a three-population model is considered
that includes cooperators, freeloaders and a vacancy pop-
ulation, that models free-space within the system; birth
can only occur if space is available. The authors show
that a Hopf bifurcation occurs and a limit cycle emerges
within the cooperator and freeloader populations. In [12]
the authors study diversified contributions from a finite
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population and the emergence of cooperative behavior
therein. Archetti and Scheuring study the emergence of
mixed populations of cooperators and freeloaders in dy-
namic public goods games, and evaluate these in the con-
text of prisoner’s dilemma and the volunteer’s dilemma
[13].

Additional work has been done on the emergence
of cooperation in public goods games when exogenous
influences are present. In [14], the authors consider
a finite population involved in a public goods game
where punishment for freeloading is possible, but agents
may abstain from contributing or receiving any bene-
fits. In [15], Hauert considers reputation as a kind of
reward/punishment system within the public goods con-
text. Cressman et al. [16] a dynamic public goods game
with institutional incentives, which are similar to the tax
structures we consider in this paper.

Finally, much work has been done on the incorporation
of spatial dynamics into the dynamic public goods prob-
lem. Wakano [17] studied freeloading in the context of a
farming scenario, showing how cooperation is influenced
to emerge as a result of the spatial component of the
model. In [18], the authors show that cooperation within
an ecological public goods model can be promoted by
differing pattern formation processes. This work is con-
tinued in [19] where the authors demonstrate the creation
of spatial chaos in spatial public goods games. Finally,
work in non-homogenous spatial settings (i.e., scale-free
graphs) is studied in [20]. In particular this work also in-
cluded an exogenous investment element, similar to [16].

In this paper, we propose a variation of the public
goods game with three species, each contributing to one
public good while freeloading off another public good,
creating a three-way symbiotic relationship. For the case
of three such mutual producer/freeloader pairs, we find
that the standard replicator model leads to the com-
plete dominance of one population, and that coexistence
among the mixed population of three species is unsta-
ble. We also show that this coexistence equilibrium point
corresponds to minimum population growth. We then
show that the inclusion of a penalty or “tax” can sta-
bilize the mixed population equilibrium. We prove that
the interior mixed population is the unique mixed species
fixed point, and show that the dynamics we study cannot
exhibit isolated periodic orbits. In particular, we show
that the three species public goods game is diffeomorphic
to rock-paper-scissors under the evolutionary game the-
oretic replicator dynamic. We then examine the problem
of designing an optimal success tax and formulate this
problem as an optimal control problem. We show that a
certain quasi-linearization of the problem admits a sec-
ond order ordinary differential equation that the quasi-
linear optimal control must satisfy.

The remainder of this paper is formulated as follows:
In Section II we discuss notational preliminaries. In Sec-
tion III we formulate the three species cyclic public goods
game, and derive results including stability. We then
present stability results for a three-species public goods

game with penalty tax in Section IV. We discuss the op-
timal control problem for the taxation in Section V, fol-
lowed by conclusions and future directions in Section VI.

II. NOTATION AND PRELIMINARIES

A. Evolutionary Formulation

Throughout this paper, we use x = 〈x1, . . . , xn〉 to
denote a column vector in R

n. Let ∆n ⊂ R
n be the

standard n-dimensional simplex defined by:

∆n =

{

x ∈ R
n :

n
∑

i=1

xi = 1 and 0 ≤ xi ≤ 1

}

(1)

Assume we have a population of n ≥ 1 species, so that Ui

is the (raw) number of individuals of species i, and the to-
tal population size is M =

∑

i Ui. For each i = 1, . . . , n,
let ui = Ui/M denote the proportion (frequency) of pop-
ulation i. Suppose the growth dynamics of each popula-
tion is governed by the differential equation:

U̇i = Uifi(u) (2)

where u = 〈u1, . . . , un〉 is the vector of population pro-
portions and fi : R

n → R is continuous and differentiable
on ∆n for i = 1, . . . , n. Elementary calculus (the quotient
rule) shows that if:

f̄ =

n
∑

i=1

uifi(u), (3)

then for each i = 1, . . . , n

u̇i = ui

(

fi(u)− f̄(u)
)

, (4)

which is the replicator dynamic [21–23]. Moreover, the
growth of the entire population is given by

Ṁ = Mf̄ (5)

where the variable growth-rate function f̄ is given by
Equation (3).

If there is some (payoff) matrix A so that:

fi(u) = eTi Au (6)

where ei is the i
th standard basis vector in n-dimensional

Euclidean space, then Equation (4) can be re-written:

u̇i = ui

(

eTi Au− uTAu
)

(7)

See [24] for a discussion of alternative evolution equa-
tions.
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B. Rock-Paper-Scissors Games

Following [21], the generalized rock-paper-scissors
game is described by the payoff matrix:

Arps =





0 −a2 b3
b1 0 −a3
−a1 b2 0



 (8)

where a1, a2, a3, b1, b2, b3 > 0. Here the columns (and
rows) correspond to the strategies rock, paper and scis-
sors in order. From Theorem 8 of [25] we state the fol-
lowing:

Lemma II.1. There is a unique interior fixed point
u∗ ∈ ∆3 for Equation (7) with Arps and the following
are equivalent:

1. u∗ is asymptotically stable,
2. u∗ is globally stable,
3. detArps > 0 and

4. u∗
T

Arpsu
∗ > 0

Further if detArps = 0, then u∗ is a non-linear center
and if detArps < 0 , then u is asymptotically unstable
and all orbits tend to the boundary of ∆3.

Corollary II.2 (Page 483, [21]). There are no isolated
orbits for Equation (7) with Arps; i.e., RPS does not
admit a limit cycle.

It is worth noting that adding constants to the columns
of Arps will not change the qualitative behavior of the
orbits of Equation (7) [22] (or see Section 2.4 of [21]); i.e.,
the orbits of the resulting solutions will be diffeomorphic
to those of the RPS system. Lemma II.1 was originally
established in [25] and [26]. The results are succinctly
reported in [21].

III. THREE SPECIES PUBLIC GOODS

We propose the following three species public goods
game with populations U(t), V (t) and W (t). Assume in-
dividuals in the first species cooperate among themselves
by contributing to Public Good A, but are freeloaders on
Public Good C, which is produced by Species 3. Simi-
larly, individuals in the second species cooperate by con-
tributing to Public Good B, but are freeloaders Public
Good A, while individuals in Species 3 cooperate to pro-
duce to Public Good C, but freeload on Public Good B.
The resulting population dynamics are:

U̇ = U

(

cArAU

U + V +W
− cA +

cCrCW

U + V +W

)

(9)

V̇ = V

(

cBrBV

U + V +W
− cB +

cArAU

U + V +W

)

(10)

Ẇ = W

(

cCrCW

U + V +W
− cC +

cBrBV

U + V +W

)

(11)

where rA, rB , rC and cA, cB, cC are the rates of return
and costs, respectively, for the three public goods, and
we assume rA, rB , rC > 1. Define:

pA(u, v, w) = cArAu− cA + cCrCw (12)

pB(u, v, w) = cBrBv − cB + cArAu (13)

pC(u, v, w) = cCrCw − cC + cBrBv (14)

Then,

U̇ = U · pA(u, v, w) (15)

V̇ = V · pB(u, v, w) (16)

Ẇ = W · pC(u, v, w) (17)

and

u̇ = u · (pA − p̄) (18)

v̇ = v · (pB − p̄) (19)

ẇ = w · (pC − p̄) (20)

We analyze this system of differential equations un-
der the simplifying assumption of a common cost c =
cA = cB = cC . The resultant system has fixed points
at all three pure strategies, (u, v, w) = (1, 0, 0), etc., cor-
responding to a single, self-cooperating species monocul-
ture. In addition, there is an interior fixed point:

u∗ =
rBrC

rArB + rArC + rBrC
(21)

v∗ =
rArC

rArB + rArC + rBrC
(22)

w∗ =
rArB

rArB + rArC + rBrC
(23)

which corresponds to a coexistence point of the three
species.
To evaluate the stability of this interior fixed point, the

eigenvalues of the Jacobian matrix are:

ζ1,2,3 =

{

θ

σ
,
τ −

√
3c
√
∆

2σ2
,
τ +

√
3c
√
∆

2σ2

}

(24)

where:

σ =rArB + rArC + rBrC (25)

∆ =− r2Ar
2
Br

2
Cσ

2 (26)

τ =crArBrCσ (27)

θ =− cσ (2rArBrC − σ) (28)

The fact that rA, rB, rC > 1 implies that τ > 0, thus
the interior fixed point is never stable. Furthermore, the
fact that Equations (18) - (20) are linearly dependent
suggests that the first eigenvalue controls the stability
off the simplex, which can be proved by simplifying the
system to use only u and v with w = 1 − u − v. In this
case, the eigenvalues of the interior fixed point u = v = 1

3

are:

ζ̃1,2 =

{

τ −
√
3c
√
∆

2σ2
,
τ +

√
3c
√
∆

2σ2

}

(29)

Thus we have proved the following:
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A B
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FIG. 1: Phase portraits for the 3 species public goods game:
(a) with rA = rB = rC = 1.1 and c = 2; (b) rA = 1.8,
rB = 2.2 and rC = 1.5 and c = 1, which displaces the fixed
point off-center.

Proposition III.1. When cA = cB = cC = c, the three
species public goods game has a unique asymptotically un-
stable interior fixed point.

Numerically obtained trajectories diverging away from
the interior fixed point are shown as phase portraits in
Figure 1, for the symmetric case r = rA = rB = rC = 1.1
and c = 2, as well as for the off-center case rA = 1.8,
rB = 2.2 and rC = 1.5 and c = 1. The ultimately
dominant species depends sensitively on the initial con-
ditions, although the basins of attraction for the three
stable states do not appear to be fractal, as shown in
Figure 2. It is clear from this plot that a small shift near
the boundaries between basins will lead to a completely
different final state.

A. Minimum Growth Properties of the Interior

Fixed Point

Proposition III.2. Assume cA = cB = cC = c,
rA, rB , rC > 1 and the following regularity conditions
hold:

1. If rA > rB, then:

rArB
rA + rB

≤ rC ≤ rArB
rA − rB

2. If rA = rB, then:

rArB
rA + rB

≤ rC

3. If rA < rB, then:

rArB
rA + rB

≤ rC ≤ rArB
rB − rA

Then the interior fixed point of the three species public
goods game is the point of minimum population growth
for the system.

Proof. Consider the optimization problem:






































min z

s.t. pA(u, v, w) ≤ z

pB(u, v, w) ≤ z

pC(u, v, w) ≤ z

u+ v + w = 1

u, v, w ≥ 0

(30)

Any solution (u, v, w) represents a species mixture that
minimizes the fastest species growth, since pA, pB and
pC are growth rates for species A, B and C respectively
and we are finding the minimal z so that pA, pB, pC ≤ z.

A B

C

FIG. 2: Basins of attraction for the 3 species public good
game when rA = rB = rC = 1.1 and c = 2.
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Note the functions pA, pB and pC are linear in u, v and
w. Consequently the Karush-Kuhn-Tucker (KKT) con-
ditions are both necessary and sufficient for the solution
of Problem (30) [27] (see Appendix A for a summary of
relevant results on the KKT optimization conditions).
We now formulate and solve the specific KKT con-

ditions for Problem (30). In doing so, we assume that
gradients are taken as

〈

∂
∂z
, ∂
∂u

, ∂
∂v

, ∂
∂w

〉

. Following the
formulation in Appendix A, the Kuhn-Tucker equality
for Problem (30) is:

∇z + λ1∇(pA − z) + λ2∇(pB − z) +∇(pC − z)+

µ∇(u+v+w−1)+ρ1∇(−u)+ρ2∇(−v)+ρ3∇(−w) = 0

The last three terms of the left-hand-side are from the
constraints −u ≤ 0, −v ≤ 0 and −w ≤ 0. The remainder
of the KKT conditions are given by:

Primal Feasibility



























pA(u, v, w)− z ≤ 0

pB(u, v, w)− z ≤ 0

pC(u, v, w)− z ≤ 0

u+ v + w − 1 = 0

u, v, w ≥ 0

Dual Feasibility











λ1, λ2, λ3 ≥ 0

ρ1, ρ2, ρ3 ≥ 0

µ ∈ R

Complementary Slackness







































λ1(pA − z) = 0

λ2(pB − z) = 0

λ3(pC − z) = 0

ρ1u = 0

ρ2v = 0

ρ3w = 0

For simplicity, assume u, v, w > 0 and thus ρ1, ρ2, ρ3 = 0
and that λ1, λ2, λ3 > 0, and thus pA = pB = pC =
z. Under the assumption that cA = cB = cC = c, the
conditions reduce to the systems:

λ1 + λ2 + λ3 = 1 (31)

crA(λ1 + λ2) + µ = 0 (32)

crB(λ2 + λ3) + µ = 0 (33)

crC(λ1 + λ3) + µ = 0 (34)

crAu+ crCw = c+ z (35)

crAu+ crBv = c+ z (36)

crBv + crCw = c+ z (37)

u+ v + w = 1 (38)

These systems are separable and can be solved indepen-
dently for the primal variables u, v, w and z and the dual

variables λ1, λ2, λ3 and µ. The unique solution is:

u =
rBrC
σ

v =
rArC
σ

w =
rArB
σ

z =
2crArBrC

σ
− c

and

λ1 =
rA(rB − rC) + rBrC

σ
λ2 =

rB(rC − rA) + rArC
σ

λ3 =
rC(rA − rB) + rArB

σ
µ = −2crArBrC

σ

Recall σ is defined in Equation (25). Thus as long as
λ1, λ2, λ3 ≥ 0, the interior fixed point is a KKT point
(global minimizer) of the linear program in Expression
(30). Assuming rA, rB , rC ≥ 1, the following regularity
conditions:

1. If rA > rB, then:

rArB
rA + rB

≤ rC ≤ rArB
rA − rB

2. If rA = rB, then:

rArB
rA + rB

≤ rC

3. If rA < rB, then:

rArB
rA + rB

≤ rC ≤ rArB
rB − rA

are equivalent to the statement that λ1, λ2, λ3 ≥ 0 and
thus the interior fixed point is a point of minimal popu-
lation growth. This completes the proof.

For the symmetric case when rA = rB = rC = r,
it is clear the regularity conditions are satisfied (since
rC = r > r/2). Thus, the totally mixed population is a
point of minimal population growth.

B. Population Collapse

Let us now assume that the regularity conditions are
met, so that the interior fixed point is a point of minimal
population growth. In particular, the total population is
growing at this point whenever z > 0. As in Section II,
let M denote the entire population. Then Ṁ ≥ 0 if and
only if

2rArBrC
rArB + rArC + rBrC

− 1 ≥ 0 (39)

In the completely symmetric case rA = rB = rC = r, this
reduces to r ≥ 3/2. Thus, for rates of return less than
this, the population will collapse. Analysis of the com-
plete population leads to further insight regarding the
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value z in Expression (30). Note that in Equation (3),

Ṁ = Mp̄. Computing p̄ at the interior equilibrium point
yields exactly z; thus the growth rate of the total pop-
ulation at this rest point is p̄ = z, and it becomes clear
why the population collapses when z < 0. The remain-
ing dual variables (λ1, λ2, λ3) express an alternate, less
intuitive, relationship between p̄ and the amounts that
pA, pB and pC can differ from p̄ in an optimal solution.

IV. STABLE COEXISTENCE IN THE CYCLIC

PUBLIC GOODS MODEL - PENALTY TAX

Intuitively, the cyclic public goods model we have pre-
sented is unstable at its interior fixed point because, as
one population gains some proportional advantage and
leaves the interior fixed point, that population’s payoff
begins to increase (if only marginally). The system is
then driven by a kind of oscillating predation until only
one species is left. For our simple model, a single species
population is the only stable outcome.

With the goal of stabilizing coexistence, we modify our
model in order to change the stability conditions of the
internal fixed point. We introduce an imposed reduc-
tion in growth to slow down the dynamics of the increase
which drives the system towards a single species, as de-
scribed above. To accomplish this, we include a propor-
tional penalty or tax on each population, in a modified
form of Equations (12) - (14):

p̃A = pA − βAu (40)

p̃B = pB − βBv (41)

p̃C = pC − βCw (42)

where βA, βB and βC are the tax rates per individual
levied on each population. Here p̄ is the population
weighted average payoff with the tax terms βA, βB and
βC included, and we drop the tilde’s and use the new
functions as before. We also assume population dynamics
like Equations (15) - (17), with tax terms included. Thus
while the individuals still reap the benefits of freeloading
as well as investment in the public goods games, a penalty
tax proportional to their share of the population is also
subtracted.

Note that there is no redistribution back to the popu-
lation of what we are referring to as a tax, nor is it being
used to fund any public goods; we are not really address-
ing here the optimal income tax problem (see e.g. [28]),
though this is clearly not completely unrelated.

Equation (18) - (20) still hold. However, the interior
fixed point is now perturbed by the tax-rates, so that if
cA = cB = cC = c as before and βA = βB = βC = β
(a flat tax rate across the population), then the interior

A B

C

(a)Center

A B

C

(b)Stable

FIG. 3: (a) Setting β = 1.5, rA = rB = rC = 3 and cA =
cB = cC = 1 results in a neutrally stable non-linear cycle. (b)
Setting β = 2, rA = rB = rC = 3 and cA = cB = cC = 1
results in an asymptotically stable non-linear cycle.

fixed point (if it exists) is:

u∗ =
β2 + c2rBrC − βcrB

3β2 + c2σ − βc(rA + rB + rC)
(43)

v∗ =
β2 + c2rArC − βcrC

3β2 + c2σ − βc(rA + rB + rC)
(44)

w∗ =
β2 + c2rArB − βcrA

3β2 + c2σ − βc(rA + rB + rC)
(45)

with σ defined in Equation (25). Unlike the interior fixed
point in the non-taxed case, however, this fixed point
can be attracting, neutral or repelling depending on the
relative values of β and rA, rB and rC . This is illustrated
in Figure 3.

Proposition IV.1. Assume cA = cB = cC = c and :

crA − βA > 0, crB − βB > 0, crC − βC > 0

Then there is a unique interior fixed point for the three-
species public goods game with taxation. Furthermore let:

Ã =





0 βB − crB βC

βA 0 βC − crC
βA − crA βB 0



 (46)

The following hold:

1. If det Ã > 0, then the interior fixed point is (glob-
ally) asymptotically stable.

2. If det Ã = 0, then the interior fixed point is a non-
linear center.

3. If det Ã < 0, then the interior fixed point is asymp-
totically unstable.

Consequently, the three-species public goods game with
taxation does not admit an isolated orbit (limit cycle).

Proof. Note first that:

p̄ = −c+ (crA − βA)u
2 + crCuw + (crB − βB)v

2+

crAuv + (crC − βC)w
2 + crBvw (47)
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In particular pA − p̄, pB − p̄ and pC − p̄ have no constant
terms (i.e., terms containing only a constant multiple of
c). Moreover, let:

A =





crA − βA 0 crC
crA crB − βB 0
0 crB crC − βC



 (48)

We can re-write the equations governing u̇, v̇ and ẇ –
Equations (18) - (20) – using the replicator dynamics
given in Expression (7) with (payoff) matrix A.
As noted in Section II, the dynamics of the system are

unchanged when constants are added to the columns of
the matrix A. Thus, we construct Ã from A by adding
βA − crA to the first column, βB − crB to the second
column and βC − crC to the third column. Under our
assumption that βA − crA, βB − crB, βC − crC < 0 this
is a rock-paper-scissors matrix and the RPS replicator
dynamics are diffeomorphic to the original three-species
triple public goods game with taxation. The result fol-
lows immediately from Lemma II.1.

Setting βA = βB = βC = 1, c = 1 and rA = rB =
rC = 2 we recover the standard RPS payoff matrix [22].
Intuitively, public good A maps to rock, public good B
maps to paper and public good C maps to scissors.

A. Totally Symmetric Case

It is instructive to consider the totally symmetric
three-species public goods game. The following corollary
is illustrated in Figure 3.

Corollary IV.2. Assume cA = cB = cC = c, βA =
βB = βC = β, and rA = rB = rC = r, then:

1. If β > rc/2, then the fixed point u = v = w = 1
3
is

globally asymptotically stable.
2. If β < rc/2, then the fixed point u = v = w = 1

3
is

asymptotically unstable.
3. If β = rc/2, then the fixed point u = v = w = 1

3
is

a neutrally stable non-linear center.

Proof. In this case:

Ã =





0 β − cr β
β 0 β − cr

β − cr β 0





Computing the determinant we have:

det Ã = (2β − cr)
(

β2 + cr(cr − β)
)

(49)

We assumed cr−β > 0, thus the sign of the determinant
is entirely controlled by the sign of 2β − cr. The result
follows immediately.

The previous corollary asserts precisely what we in-
tuitively believed: adding a tax on population growth
that is high enough will essentially alter the stability of
the mixed population, and allow for species coexistence.
However, a tax that is too high could again result in pop-
ulation collapse, as we discuss next.

Proposition IV.3. Assume the conditions of Corollary
IV.2. The point u = v = w = 1

3
is still a point of minimal

growth in the presence of taxation.

Proof. Accounting for the terms βA, βB and βC , Equa-
tions (31) - (38) can be modified as:

λ1 + λ2 + λ3 = 1

(crA − βA)λ1 + crAλ2 + µ = 0

(crB − βB)λ2 + crBλ3 + µ = 0

(crC − βC)λ3 + crCλ3 + µ = 0

(crA − βA)u + crCw = c+ z

crAu+ (crB − βB)v = c+ z

crBv + (crC − βC)w = c+ z

u+ v + w = 1

When rA = rB = rC = r and βA = βB = βC = β,
these equations have solution u = v = w = 1

3
, λ1 =

λ2 = λ3 = 1
3
, z = 1

3
(c(2r − 3)− β) and µ = 2

3
(β − cr).

This point is a KKT point and must minimize population
growth.

Corollary IV.4. If:

β > c(2r − 3)

then the population will collapse. Consequently, since we
assume β ≥ 0, we again see r ≥ 3/2 is a necessary con-
dition to prevent population collapse.

This result is unexpected and intriguing because it sug-
gests that the minimal growth property of the interior
fixed point is not related at all to its stability.

V. OPTIMAL STABILIZING PENALTY TAX

Consider now the problem of driving the population
towards the mixed-species state. Such a problem could
arise for purposes of minimizing population growth (as
shown in Proposition IV.3), or for the purposes of species
diversity, or both.
The penalty tax in our model is never redistributed

back to the population in any way, and as such represents
an inefficiency or waste. We therefore seek a minimal
tax that drives these public goods populations toward
a mixed state. For simplicity we study the problem in
the totally symmetric case: cA = cB = cC = c, rA =
rB = rC = r, with u∗, v∗ and w∗ the mixed population
stationary point that is attracting when β > rc/2. We
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can phrase the minimal taxation problem as an optimal
control problem:


































































min Ψ(u(tf ), v(tf ), w(tf )) +

∫ tf

0

1

2
(u− u∗)2 +

1

2
(v − v∗)

2
+

1

2
(w − w∗)

2
+

1

2
kβ2 dt

s.t. u̇ = u · (pA − p̄)

v̇ = v · (pB − p̄)

ẇ = w · (pC − p̄)

u(0) = u0, v(0) = v0, w(0) = w0

cr

2
≤ β ≤ c(2r − 3)

(50)
Here, pA, pB, and pC are functions of u, v, w and β. In
the closed-loop setting β is a function of u, v, and w, while
in the open-loop setting, it is just a function of t. In either
case, β is time-varying. We require β ≥ cr

2
to ensure the

control produces a stable system and β ≤ c(2r − 3) to
prevent population collapse.
This optimal control problem is highly non-linear, and

does not necessarily admit a closed form optimal con-
trol. Moreover, the inclusion of boundaries on the control
function (i.e., cr

2
≤ β ≤ c(2r − 3)) may present difficul-

ties as there may be periods of time when the control
function would do better to escape these boundaries, but
cannot. In such a scenario, the population size might be
reduced to bring it closer to the equilibrium point.
As an alternative to approaching this problem numer-

ically, we will do the following:

1. We will quasi-linearize the problem around the
state variables, leaving a simpler, but still tractable
non-linear optimal control problem.

2. We will define a new control function γ = β − cr
2

with minimum bound at zero, which will be ensured
by the structure of the objective functional.

3. We will set Ψ(u(tf ), v(tf ), w(tf )) ≡ 0 and assume
that r is sufficiently large so that the upper-bound
can be ignored. Since the new control function γ(t)
will tend to zero (as a result of the assumption on
Ψ) this simplification is justified and will result in
an intriguing result.

For convenience and completeness, key facts from opti-
mal control theory used in this approach are included in
Appendix B.
Define the matrix and state vector:

A(β) =





cr − β 0 cr
cr cr − β 0
0 cr cr − β



 z =





u
v
w



 (51)

Re-write the optimal control dynamics as:

u̇ = u
(

(e1 − z)TA(β)z
)

(52)

v̇ = v
(

(e2 − z)TA(β)z
)

(53)

ẇ = w
(

(e3 − z)TA(β)z
)

(54)

(55)

Following the approach in [29] let:

L =





1 0 1
1 1 0
0 1 1



 M =





−1 0 0
0 −1 0
0 0 −1



 (56)

Replace β with β = γ+ cr
2
, thus ensuring that the system

is (neutrally) stable whenever γ ≥ 0. We can then write

A(γ) = crL+
(

γ + cr
2

)

M = cr

(

L+
1

2
M

)

+ γM

We next define the following functions:

f0(z, γ) =
1

2
||z− z∗||2 + 1

2
kγ2 (57)

Fi(z) = zi (ei − z)
T

(

L+
1

2
M

)

z (58)

Gi(z) = zi (ei − z)
T
Mz (59)

Assuming Ψ(z(tf )) ≡ 0, the modified optimal control
problem is:



























min

∫ tf

0

f0(z, γ) dt

s.t. żi = crF(z) + γG(z)

z(0) = z0

γ ∈ R

(60)

We further assume that both z and γ are appropriately
square integrable and furthermore will require that γ is
time-differentiable almost everywhere. The Hamiltonian
for this system is:

H(z,λ, γ) = f0(z, γ) + crλTF(z) + γλTG(z) (61)

If the Hamiltonian is convex, the optimal γ should satisfy

γ∗ = − 1

k
λTG(z) (62)

By Lemma B.1, the Euler-Lagrange necessary conditions
are:



















































ż = crF(z) −
(

1

k
λTG(z)

)

G(z)

λ̇T = − (z− z∗)
T − crλT ∂F(z)

∂z
+

1

k
λTG(z)λT ∂G(z)

∂z
z(0) = z0

λ(tf ) = 0

This non-linear ODE system, can be solved numerically
to obtain a solution satisfying the necessary conditions
for the optimal controller. An example γ∗ is shown in
Figure 4(a), while the resulting state-dynamics under
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FIG. 4: (a) A computed control function γ(t) that satisfies
the Euler-Lagrange necessary conditions. Here tf = 6. (b)
The state dynamics under the optimal control function with
starting values near the fixed point. Here tf = 10.

that control are shown in Figure 4(b). The convexity
of the objective function is not sufficient to ensure the
optimality of the control since the resulting Hamiltonian
is not necessarily guaranteed to be convex in both the
state and control. However, for certain k, we can find a
quasi-linearized variation of this problem that has con-
vex Hamiltonian and admits solutions close to the opti-
mal control. Before proceeding, it is worth noting that
control problems with this form are considered in [30],
where a control Lyapunov method is also discussed, and
in [31], where receding horizon control is considered. Nei-
ther reference derives a sufficient second order ODE for
the control function, as we do next.

The form of the Hamiltonian suggests a reasonable
quasi-linearization of the equation of motion to be:

ż ≈
(

cr
∂F(z)

∂z
+ γ

∂G(z)

∂z

)

(z− z∗) (63)

where z∗ is the goal fixed point. We call this quasi-
linearized because we are linearizing on the state, not
the control variable. Without loss of generality, assume
we translate the system so that z∗ = 0. This assumption

will play a critical role in the proof of Lemma V.3. Let:

J = cr
∂F(z)

∂z
H =

∂G(z)

∂z

Proposition V.1. Assume we have translated so that
z∗ = 0. If for all t ∈ [0, tf ], ||λ||2 < 9k, then

γ∗ = − 1

k
λTHz (64)

is the optimal control for the quasi-linearized control
problem:



























min

∫ tf

0

f0(z, γ) dt

s.t. żi = crJz + γHz

z(0) = z0

γ ∈ R

(65)

Proof. The quasi-linearized Hamiltonian is:

H̃(z,λ, γ) = f0(z, γ) + λTJz+ γλTHz (66)

The Hessian matrix of H̃ as a function of z and γ has
eigenvalues

r1,2,3,4 =

{

1, 1,
1

6

(

3 + 3k −
√

9(k − 1)2 + 4||λ||2
)

,

1

6

(

3 + 3k +
√

9(k − 1)2 + 4||λ||2
)

}

The first, second and fourth eigenvalues are always pos-
itive. The third eigenvalue is positive whenever ||λ||2 <
9k. Thus, the Hamiltonian is jointly convex in z and γ
(because the Hessian matrix is positive definite) when-
ever ||λ||2 < 9k.
Assume the Hamiltonian is jointly convex in z and γ.

The control minimizing the Hamiltonian can be com-
puted by differentiation. The resulting minimizing con-
trol is

γ∗ = − 1

k
λTHz

By the restricted Mangaserian sufficiency theorem
(Lemma B.2) this is the optimal control when the Hamil-
tonian is jointly convex in z and γ, which is implied when
||λ||2 < 9k. This completes the proof.

The resulting Euler-Lagrange necessary (and condi-
tionally sufficient) conditions for the quasi-linearized sys-
tem are thus:



















ż = Jz+ γHz

λ̇T = −zT − λTJ− γλTH

z(0) = z0

λ(tf ) = 0

Throughout the remainder of this paper, we will assume
that k is sufficiently large so that ||λ||2 < 9k, though in
practice this may need to be verified a posteriori.
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Lemma V.2. Assume γ is an optimal control for the
quasi-linearized optimal control problem – Expression
(65). Then the time derivative of the optimal control
obeys:

γ̇ =
1

k
zTHz (67)

γ(tf ) = 0 (68)

Proof. Differentiate Equation (64). The result is:

γ̇ = − 1

k

(

λ̇THz+ λTHż
)

Expanding we have:

γ̇ =
1

k
zTHz+

1

k

(

λT (J+ γH)Hz
)

−
1

k
λTH (Jz+ γHz)

Then we can write:

γ̇ =
1

k
zTHz+

1

k

(

λT (JH−HJ) z+ γλT (HH−HH) z
)

=

1

k
zTHz+

1

k
λT (JH−HJ) z

In this case:

J = cr ·





− 1
6

− 1
3

0
0 − 1

6
− 1

3

− 1
3

0 − 1
6



 H =





− 1
9

2
9

2
9

2
9

− 1
9

2
9

2
9

2
9

− 1
9





and note that JH = HJ. Thus we have proved:

γ̇ =
1

k
zTHz

By the transversality condition, λ(tf ) = 0. Thus:

γ(tf ) = − 1

k
λT (tf )Hz(tf ) = 0.

This completes the proof.

Note, γ̇ is not dependent on the adjoint variables λ,
but only on the state. This expression is very much in
the spirit of Equation (3) of [32].

Lemma V.3. Assume C is a constant of integration.
Then:

zT z = γ2 + C (69)

where:

C = zT0 z0 − γ2(0)

Proof. We have:

1

2

d

dt
zT z = zT (Jz+ γHz) =

zTJz+ γzTHz = zTJz+ γγ̇ (70)

by Lemma V.2 – Equation (67). Computing zTJz yields:

cr
[

z1 z2 z3
]

·





− 1
6

− 1
3

0
0 − 1

6
− 1

3

− 1
3

0 − 1
6



 ·





z1
z2
z3



 =

− cr

6
(z1 + z2 + z3)

2
. (71)

Recall z∗ has been translated to the origin, so if u+ v +
w = 1 and u∗ = v∗ = w∗ = 1

3
, then: z1 = u − u∗,

z2 = v− v∗ and z3 = w−w∗. This implies that z1+ z2+
z3 = 0, because the linearized form of the problem does
not depart from ∆3. Thus:

d

dt
zT z = 2γγ̇ (72)

Integrating we obtain:

zT z = γ2 + C

where C is a constant of integration satisfying:

C = zT0 z0 − γ2(0)

This completes the proof.

Proposition V.4. The open-loop optimal control is a
solution to the following second order differential equa-
tion:

kγ̈ − 2

9
γ(γ2 + C) = 0 = 0 (73)

with the boundary conditions:

γ(tf ) = 0

γ′(0) =
1

k
zT0 Hz0

C = zT0 z0 − γ(0)2

Proof. Computing γ̈ yields:

kγ̈ = żTHz+ zTHż =
(

zTJT + γzTHT
)

Hz+ zTH (Jz+ γHz) =

zT
(

JTH+HJ
)

z+ γzT
(

HTH+H2
)

z (74)

In this case:

(

HTH+H2
)

=
2

9
I3 (75)

and:

zT
(

JTH+HJ
)

z = −cr

9

(

z21 + z22 + z23
)

= 0 (76)
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as before. We can therefore write:

kγ̈ =
2

9
γzTz

Thus, by Lemma V.3 [Equation (69)], this implies:

kγ̈ − 2

9
γ(γ2 + C) = 0

and we have the boundary conditions:

γ(tf ) = 0

γ′(0) =
1

k
zT0 Hz0

C = zT0 z0 − γ(0)2

An example of the controlled quasi-linearized system
and γ(t) found by solving the quasi-linearized Euler-
Lagrange equations and the second order ODE are shown
in Figure 5. (Compare to Figure 4.) We also super-
impose the optimal control function determined from
the non-linear system. Note the second order ODE is
exactly the solution to the Euler-Lagrange equation for
γ(t). Additionally, we plot ||λ||2 in Figure 6 showing that
||λ||2 < 9k (here k = 1) and thus confirming a posteori
that the resulting controls are optimal.

VI. CONCLUSION AND FUTURE

DIRECTIONS

In this paper, we proposed a three-species public goods
game in which each species both freeloads and con-
tributes to a public good. We showed that when all
species pay identical costs, the unique interior mixed
population is unstable and the population is ultimately
dominated by a single species. We then showed that by
imposing a penalty tax in proportion to the size of each
population, we could stabilize the interior equilibrium
point. We generalized this result by showing that under a
common cost assumption, the three-species public goods
game with taxation is diffeomorphic to the three-strategy
rock-paper-scissors evolutionary game. This immediately
implies that the interior fixed point will either be asymp-
totically stable, unstable or neutrally stable with a non-
linear center. Consequently, limit cycles cannot form in
this system.
In considering the symmetric population case, we as-

sumed that the tax could be controlled exogenously.
From this assumption, we formulated an optimal control
problem and showed that a quasi-linearized form of the
problem admitted an optimal control satisfying a specific
second order ODE. We compared the quasi-linearized op-
timal control to the fully non-linear optimal control and
illustrated agreement. We also noted a condition on the
problem that ensures the Euler-Lagrange necessary con-
ditions are also sufficient.

! "

#

(a)

Quasi-Linearized Euler Lagrange Solution

Second Order ODE Solution

Exact Euler-Lagrange Solution

!"!#$

!"!%!

!
(b)

FIG. 5: (a) The state using the quasi-linear control function
shows slower decay (as expected) than the non-linear control
function. Here tf = 20 to illustrate that the quasi-linear con-
troller is still driving the system toward the fixed point. (b)
The quasi-linear control function is shown and compared to
the solution to the second order ODE illustrating their equiv-
alence. We also compare the control function computed for
the non-linear control problem to the quasi-linearized control.
Here tf = 6.

Future extensions of this work will include generaliza-
tions of cyclic public goods games as well as a general-
ization of the taxation control problem. In particular,
our results on control assume a totally symmetric case.
Relaxing this assumption will lead to a richer class of con-
trol problems. For n species (n ≥ 2), we expect that the
public goods game is fully diffeomorphic to generalized
Lotka-Volterra dynamics and thus systems with n ≥ 4
may exhibit dramatic dynamics such as chaotic solutions
or limit cycles. Confirming this assertion and looking for
biologically meaningful instances where this might occur
is also an area for future study. In addition, studying
assortative interactions, rather than fully mixed interac-
tions, as discussed in [33], may lead to alternative sta-
bilization mechanisms. Finally, although the extremely
simple model we have proposed here is not in any way
an encapsulation nor a representation of human society,
or realistic economic interactions, we should nonetheless
underline the stabilizing role played by the penalty tax
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FIG. 6: The plot of ||λ||2 showing that throughout the entire
time its value does not exceed 9k (k = 1), thus implying that
the identified controller is optimal.

in terms of coexistence in this evolutionary game.
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Appendix A: Karush-Kuhn-Tucker Conditions

In Section IIIA we will show that the interior fixed
point of the dynamical system we consider has a certain
minimal growth property. To do this, we make use of the
Karush-Kuhn-Tucker (KKT) conditions from the theory
of optimization. We state the conditions we require be-
low. Extensive details on KKT conditions can be found
in [34–36].

Lemma A.1 (Karush-Kuhn-Tucker Theorem). Let z :
R

n → R be a differentiable objective function, gi : R
n →

R be differentiable constraint functions for i = 1, . . . ,m
and hj : Rn → R be differentiable constraint functions
for j = 1, . . . , l. If x∗ ∈ R

n is an optimal point satisfy-
ing an appropriate regularity condition for the following
optimization problem:

P



























































min z(x1, . . . , xn)

s.t. g1(x1, . . . , xn) ≤ 0

...

gm(x1, . . . , xn) ≤ 0

h1(x1, . . . , xn) = 0

...

hl(x1, . . . , xn) = 0

then there exists λ1, . . . , λm ∈ R and µ1, . . . µl ∈ R so

that:

Primal Feasibility :

{

gi(x
∗) ≤ 0 for i = 1, . . . ,m

hj(x
∗) = 0 for j = 1, . . . , l

Dual Feasibility :















































∇z(x∗) +

m
∑

i=1

λi∇gi(x
∗)+

l
∑

j=1

µj∇hj(x
∗) = 0

λi ≥ 0 for i = 1, . . . ,m

µj ∈ R for j = 1, . . . , l

Complementary Slackness :

{

λigi(x
∗) = 0

for i = 1, . . . ,m

The expression:

∇z(x∗) +

m
∑

i=1

λi∇gi(x
∗) +

l
∑

j=1

µj∇hj(x
∗) = 0

is sometimes called the Kuhn-Tucker equality. Let
λ = 〈λ1, . . . , λm〉 and µ = 〈µ1, . . . , µl〉. If z(x),
g1(x), . . . , gm(x) and h1(x), . . . , hl(x) are affine, then any
triple (x,λ,µ) of values satisfying the KKT conditions
has the property that x is a global minimizer of z(x)
under the given constraints [27].

Appendix B: Optimal Control Problems

In Section V we study a problem of stabilizing a mixed
population. We present key facts from optimal control
theory used in this study. Details are available in [37–39].
A Bolza type optimal control problem is an optimiza-

tion problem of the form:



















min Ψ(x(tf )) +

∫ tf

t0

f(x(t),u(t), t)dt

s.t. ẋ = g(x(t),u(t), t)

x(0) = x0

(B1)

When Ψ(x(tf )) ≡ 0, this is called a Lagrange type opti-
mal control problem. The vector of variables x is called
the state, while the vector of decision variables u is called
the control. Additional constraints on u, x or the joint
function of x and u can be added.
The Hamiltonian with adjoint variables (Lagrange

multipliers) λ for this problem is:

H(x,λ, u) = f(x(t),u(t), t) + λTg(x(t),u(t), t)

In what follows, we assume that all f(x,u, t) and
g(x),u, t) are continuous and differentiable in x and u

and Ψ(x(tf )) is continuous and differentiable in x(tf ). A
proof of this lemma can be found in almost every book
on optimal control (e.g. [39]).
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Lemma B.1 (Necessary Conditions of Optimal Con-
trol). If u∗ is a solution to Optimal Control Problem
(B1), then there is a vector of adjoint variables λ∗ so
that:

H(x∗(t),u∗(t),λ∗(t)) ≤ H(x∗(t),u(t),λ∗(t)) (B2)

for all t ∈ [0, T ] and for all admissible inputs u, and the
following conditions hold:

1. Pontryagin’s Minimim Principle: u̇(t) = ∂H
∂u

= 0

and ∂2
H

∂u2 is positive definite,
2. Co-State Dynamics:

λ̇(t) = −∂H
∂x

= −λT (t)
∂g(x,u)

∂x
+

∂f(x,u)

∂x
,

3. State Dynamics: ẋ(t) = ∂H
∂λ

= g(x,u),
4. Initial Condition: x(0) = x0, and
5. Transversality Condition: λ(tf ) =

∂Ψ
∂x

(x(tf )).

We will use the following restricted form of Mangasar-
ian’s Sufficiency condition [37] to argue a controller we
derive in Section V is the optimal controller.

Lemma B.2 (Mangasarian’s Sufficiency Condition - Re-
stricted Form). Suppose (x∗,u∗) satisfies the necessary
conditions from Lemma B.1 and H is jointly convex in
x and u for all time and Ψ(x(tf )) ≡ 0. Then (x∗,u∗) is
a globally optimal control in the sense that it minimizes
the objective functional.
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