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Strengthening or destroying a network is a very important issue in designing resilient networks or
in planning attacks against networks including planning strategies to immunize a network against
diseases, viruses etc.. Here we develop a method for strengthening or destroying a random network
with a minimum cost. We assume a correlation between the cost required to strengthen or destroy
a node and the degree of the node. Accordingly, we define a cost function c(k), which is the
cost of strengthening or destroying a node with degree k. Using the degrees k in a network and
the cost function c(k), we develop a method for defining a list of priorities of degrees, and for
choosing the right group of degrees to be strengthened or destroyed that minimizes the total price
of strengthening or destroying the entire network. We find that the list of priorities of degrees is
universal and independent of the network’s degree distribution, for all kinds of random networks.
The list of priorities is the same for both strengthening a network and for destroying a network with
minimum cost. However, in spite of this similarity there is a difference between their pc - the critical
fraction of nodes that has to be functional, to guarantee the existence of a giant component in the
network.

I. Introduction

Random networks are obtained by randomly linking a
set of nodes by edges. There are many types of random
networks, each of them is generated by a specific method
and has a typical topology. One of the most important
characteristics of networks is the probability distribution
of the number of edges that emanate from a randomly
chosen node, called the degree of the node, and denoted
by p(k).

Two kinds of random networks are widely studied, are
the Erdős-Rényi network (ER) and Scale-Free network
(SF). In ER network, that was the first model of random
networks [1, 2], as the total number of nodes N tends to
infinity, the degrees of the nodes k are distributed accord-

ing to a Poisson distribution p(k) = e−λ λk

k!
, where λ is the

expectation of the node’s degree. In a SF network, as N
tends to infinity the degrees of the nodes are distributed
according to power-law distribution p(k) = Ck−γ , where
C is a normalization factor. In a SF network, although
most of the degrees are relatively small, there is a sig-
nificant probability for the existence of nodes with high
degree, called ’hubs’, as opposed to ER networks.

There are two typical states in random networks. The
first state is when the network is fragmented into many
small components, each of them contains relatively small
number of nodes. The second state is when a ’giant com-

ponent’ exists in the network, which is a component that
contains a finite fraction of the entire network’s nodes i.e.
scales as O(N). The transition between the two states
when the giant component appears in the network, is
called percolation transition of the network.

It was shown [3] that in a random network, generated
by the configuration model, a percolation transition oc-

curs [4, 5] at

κ =
〈k2〉

〈k〉
= 2 . (1)

where 〈k〉 and 〈k2〉 are the expectations of the degree
and the square of the degree of a node in the network,
respectively. For κ > 2 the network is in the supercritical
region where a giant component exists, and otherwise if
κ < 2 the network is in the subcritical region and a giant
component does not exist.
An important case, that is treated in this paper, is

when a network in the supercritical state is under attack,
where nodes (or edges) are destroyed. As long as the
giant component still exists, the network is considered to
be functional. However, when a critical fraction of nodes
(or edges) are destroyed, a phase transition occurs, the
giant component collapses into many small components
and the network is considered to be nonfunctional. If we
define p to be the probability that a randomly chosen
node in the network is not attacked, then the fraction
of nodes that are not attacked at the threshold between
the supercritical and the subcritical states, is called the
critical threshold pc - the probability that a randomly
chosen node in the critical state, is functional.
Research has been focused on three types of attacks

against networks - random attack, targeted attack and
localized attack. In a random attack the attacker has no
information about the network, its topology or charac-
teristics. A fraction of nodes are chosen randomly to be
destroyed [6–8]. On the other hand, in a targeted attack
the attacker has some information about the topology
and the nodes of the network, and by this determines
which nodes to attack and in which order. In a localized
attack, just a certain region in the network is affected.
The attack begins against one node, and then it spreads
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over its neighbors and its neighbors of the neighbors etc.,
until a certain fraction, 1− p, of the network is removed
[9]. Using Eq. (1) an expression for pc for random attack
was derived [7]

pc =
1

κ0 − 1
, (2)

where κ0 is the value of κ before the attack begun. From
this follows that for ER network under random attack
pc = 1/λ.
Furthermore, by this criterion it was shown that for

SF random networks under random attack, for γ > 3,
pc equals to finite non-zero value, but for γ ≤ 3, pc ap-
proaches zero as N approaches to infinity [7]. This means
that although almost all the nodes in the network are
randomly removed, the network still possesses a giant
component and is regarded functional.
Under a targeted attack, it was shown that ER net-

works behave similarly to their behavior under random
attack. That is because most of the degrees in the net-
work are close to λ. Thus choosing nodes randomly or
targeting nodes with high degree are not significantly dif-
ferent. In contrast, it was shown that pc in SF network
under targeted attack can be high [8, 10]. This means
that removing small fraction of nodes, causes the net-
work to collapse and the giant component to disappear.
This is explained by the existence of a small fraction of
hubs in SF networks that are critical for the connectiv-
ity of the network. When the hubs are destroyed, the
network breaks into small components.
Although there exists extensive study about attacks

against random networks, most of the studies are based
on some ideal assumptions. First, it is usually assumed
that there are no constraints to be considered by the at-
tacker, like limited budget to the execution of the attack,
limited time to the execution of the attack etc.. Fur-
thermore it is assumed that the attack is implemented
ideally, such that in a targeted attack the attacker has
some information about the network, and in a random
attack the attacker knows nothing about the network.
Indeed, there are few studies that consider variations on
the ideal models of attacks against networks [11–14].
Recently Morone and Makse [15] developed a method

for optimal percolation in random networks. Their
method identify the minimal set of nodes that would
break the network into disconnected small components
without a giant component. Also in [16] the problem
of network dismantling was studied, where the case of
random sparse graphs was mapped to the network decy-
cling problem, and an efficient algorithm was presented
for finding the minimal set of nodes to be removed and
dismantle the network. But again, these studies do not
take into consideration cost constraints on which the at-
tacker is subjected.
In this paper we present an optimized approach for

strengthening or attacking a network, where we consider
the constraint of minimizing of the cost of strengthening
or destroying (which is equal to immunizing) the network.

We develop an analytical strategy for choosing the right
set of degrees that would strengthen or immunizing the
network with minimum cost. Surprisingly, as long as the
network is random, the method and the set of degrees are
general and do not depend on the degree distribution.

II. Efficient destruction of a network

A. Theory

We begin with a functional network in the supercritical
region. We assume a realistic feature of dependency be-
tween the cost of destroying or immunizing a node and its
degree. Accordingly, we define a cost function c(k) that
represents the cost of destroying or immunizing one node
with degree k. Our goal is to find for every group of nodes
with degree k, the fraction of nodes to be destroyed (or
immunized), that will be denoted by r(k), such that the
total cost to destroy (immunize) the network is minimal.
We define a function P , that is the total cost to frag-

ment the network, as follows

P =

∞
∑

k=o

p(k)Nc(k)r(k) . (3)

Every attack begins when all the nodes are functional.
That means that initially r(k) = 0 for all the degrees k,
and obviously P = 0. During the attack, when nodes
with degree k fail, r(k) increases, as does the cost P .
After the destruction of a sufficient number of nodes, the
condition for critical percolation is achieved, the giant
component is fragmented and the attack ends. Our goal
is to minimize the total cost P for the entire attack.
Eq. (1), which is the condition for percolation transi-

tion, can be written as

∞
∑

k=0

(k − 1)
kp(k)q(k)

λ
= 1 , (4)

where q(k) is the probability that a randomly chosen
node with degree k is functional, and λ is the original
mean degree in the network. Eq. (4) defines the perco-
lation threshold of a random network when the expecta-
tion of the number of edges that emanate from a popu-
lated node, reached by following a randomly chosen edge,
equals 1. Since q(k) = 1− r(k) we get

∞
∑

k=0

(k − 1)
kp(k) [1− r(k)]

λ
= 1 . (5)

Eq. (5) is equivalent to

∞
∑

k=0

(k − 1)
kp(k)r(k)

λ
=

〈k2〉

〈k〉
− 2 , (6)

where for each k, 0 ≤ r(k) ≤ 1.
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According to Eq. (6) we define a parameter a(k), that
represents the contribution to the progress of achieving
the condition for the percolation threshold, when attack-
ing (immunizing) all the nodes with degree k (r (k) = 1),
to be:

a(k) ≡ (k − 1)
kp(k)

λ
. (7)

According to Eq. (3), we define a parameter e(k) that
represents the total cost of destroying all the nodes with
degree k,

e(k) ≡ p(k)c(k)N . (8)

Next, we define an efficiency parameter z(k) to be the
ratio between a(k) and e(k) after neglecting the constants
λ and N , that is the ratio between the contribution of all
the nodes with degree k to the destruction of the network
and the price for destroying all the nodes with degree k,

a(k)

e(k)
∝

(k − 1)k

c(k)
≡ z(k) . (9)

Since by definition the relation of the contribution to
the destruction of the network per cost of removing all
the nodes with degree k is maximal when z(k) is maxi-
mal, therefore clearly we prefer to destroy degrees with
largest efficiency, that is with highest values of z(k). Ac-
cordingly, we define the following method for destroying
(immunizing) a network with minimum cost:
(i) For each degree k calculate z(k).
(ii) Choose degrees to be attacked (immunized) accord-

ing to the value of z(k) in descending order.
The process destroying the network should be stopped

when a sufficient amount of chosen degrees are collected,
such that if all these nodes are removed, the condition
for percolation threshold, Eq. (6), would be achieved.
The degrees that were chosen would be fully removed
(immunized) (r(k) = 1), except the last chosen degree
that could be attacked partially. Using Eq. (6) and (7),
the fraction of nodes that would be removed from the
last chosen degree is

r(k) =
κ− 2−

∑

i a(i)

a(k)
, (10)

where the summation is over all the degrees that were
fully removed.
The main point of our method is the behavior of the

function z(k), that gives the priority of each degree k to
be destroyed relative to the other degrees. Analysis of the
behavior of z(k) by identifying first the most preferable
degree from which the choice of degrees starts, is the k
of the extremum maximum point of z(k). This can be
implemented by zeroing the first derivative of z(k) (Eq.
(9)) and conditioning the second derivative of z(k) to be
negative. Since we are interested in z(k) only for the
range 2 ≤ k < ∞ (destroying a node with degree 0 or 1
contributes nothing to the destruction of the network),

we find that for a given cost function c(k) with its specific
parameters and constants, not in all cases there exists an
extremum maximum point within the bounds 2 ≤ k <
∞. In other cases there exist only a superior value of z(k)
at the bounds or even outside the bounds of that range,
either at k = ∞ or at k ≤ 2. In these last cases z(k) at
k ≥ 2 is a monotonic increasing function or a monotonic
decreasing function, respectively.
Accordingly, we demonstrate our analysis of the be-

havior of z(k) for two functional forms of c(k): (i) the
cost function c(k) is a power-law kα and (ii) the cost
function c(k) is an exponential eβk. Since it is reason-
able to assume that as the degree of a node increases the
cost required to destroy it rises, we demonstrate here the
behavior of z(k) only when α > 0 and β > 0.
For case (i) we it is easy to see that when 0 < α ≤ 2,

z(k) is a monotonic increasing function, and when α ≥ 3,
z(k) is a monotonic decreasing function. In the interme-
diate range 2 < α < 3, z(k) is an extremum maximum
function (see Appendix B for a detailed computations).
Therefore, when 0 < α ≤ 2 the optimal strategy of at-
tack (removing or immunizing) should be from the high
degrees to low, when α ≥ 3 we begin with removing the
low degrees, and when 2 < α < 3 we remove the inter-
mediate degrees according to descending order of z(k).
(ii) When the cost function, c(k), is exponential eβk,

and when β > 0, we find that when β ≥ 1.5, z(k) is a
monotonic decreasing function, and when 0 < β < 1.5,
z(k) is an extremum maximum function (see Appendix
C for a detailed computations). Therefore when β ≥ 1.5
we begin with removing the low degrees, and when 0 <
β < 1.5 we remove the intermediate degrees according to
descending order of z(k). Although analytically there is
no β for which z(k) is a monotonic increasing function, we
analyzed also the case of β approaching to 0+, where the
maximum point at z(k) tends to k approaching infinity.
In this case, and in fact in every case when β is relative
small such that the maximum point at z(k) is greater
than the maximum degree of the network, z(k) can be
considered as a monotonic increasing function.
Examples for the behavior of z(k) for power-law and

exponential cost functions in the various regions dis-
cussed above, are illustrated in Fig. 1.
As shown in Fig. 1 with accordance to Eq. (9), z(k) =

0 when k is 0 or 1, that means that nodes with degrees
0 or 1 are with the lowest preference to be destroyed
(and in fact they should not be destroyed), which is in
accordance to the fact that destroying nodes with degrees
0 or 1 contributes nothing to the destruction of the giant
component and the entire network.

B. Results

The first demonstration of the validity of the theory,
in the case of an attack (or immunization) of ER net-
work, is illustrated in Fig. 2. In Fig. 2(a)-2(b), the cost
function is power-law. The graphs present the size of
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FIG. 1: Demonstrating the behavior of z(k) when the
maximum degree of the network is 10, (a,b) with
power-law cost function and (c,d) with exponential
cost function: (a) An extremum maximum for z(k) at in-
termediate values of k (kmax = 5) when α = 2.25 (and in
general for any 2 < α < 3). (b) Monotonic decreasing func-
tion of z(k) for α = 3.2 (and in general for any α ≥ 3). (c)
The case of very small β where z(k) behaves as a monotonic
increasing function. (d) An extremum maximum for z(k) at
intermediate values of k (kmax = 6) when β = 0.4 (and in
general for all 0 < β < 1.5). In all cases, for simplifying the
demonstration, the values of z(k) were normalized by dividing
them by the maximum value of the original series z(k).

the giant component G vs. the normalized accumulated
cost P/Pmin, where Pmin is the minimal cost of the four
strategies discussed below. In Fig. 2(c)-2(d), the cost
function is exponential. The graphs present the size of
the giant component G vs. the accumulated cost P on a
logarithmic scale (because of the large values of P ). In
each of the figures 2(a)-2(d), there are four graphs that
illustrate four different attack strategies against the net-
work by a removal of a specific group of degrees. Each
choice of the specific degrees for each group, is imple-
mented step by step according to a specific strategy of
priorities, and is ended when a sufficient combination of
degrees are collected such that if all these nodes are re-
moved the condition for percolation threshold would be
achieved. The strategies are: Rectangles - in accordance
with our optimal method i.e. according to descending
order of the values of z(k) in Eq. (9). Circles - in de-
scending order from high degrees, except removing the
most highest degrees that include 5 percents of the nodes
of the network (because of the high cost of removing very
high degrees). Diamonds - in ascending order from low
degrees, except removing the most lowest degrees that
include 5 percents of the nodes of the network (because
of the negligible contribution to the destruction of the
network when removing very low degrees). Downward
triangles - an inverse order to the order presented by the
theory.

The beginning point of each graph is its intersection
with the y-axis, that represents the initial state before
the attack where the size of the giant component is max-

imal and the accumulated cost is 0. The adjacent point
to the beginning point represents the first stage of the
attack, where a removal of all the nodes with the most
preferred degree, is implemented. That causes the size
of the giant component to decrease and the accumulated
cost to increase. The next adjacent point in the graph
represents the second stage of the attack where all the
nodes with the next preferred degree are removed, and
the size of the giant component once again decreases and
the cost once again increases, and so on. The end of the
attack is when a sufficient amount of nodes are removed
that causes the giant component to be fully fragmented,
is represented by the intersection of the graph with the
x-axis where the size of the giant component is 0. The
value of the x-coordinate in this point represents the total
cost required in order to destroy the entire network. We
can see in each of the four figures 2(a)-2(d), that among
the four curves, the minimum cost of destroying the net-
work is in the choice that is signed by rectangles that
represents the choice of degrees according to our theory,
Eq. (9). Note the interesting case in Fig. 2(c) when
it is preferable to destroy the intermediate degrees, as
predicted by the theory when 0 < β < 1.5.

An important property of Eq. (9) is the independence
of z(k) on p(k). This means that our method is univer-
sal independent on the degree distribution of the special
network we deal with. The only possible difference be-
tween various networks could be the stopping point of
the chosen to be removed degrees. Accordingly, Fig. 3
illustrates results of simulations on SF networks. As can
be seen, our optimal method establishes again a mini-
mum cost of destroying the SF network, similar to the
case of ER network.

III. Efficient strengthening of network

Strengthening a network in our method is the mirror
image of the network’s destruction model that presented
above. We assume a network in which we are allowed to
strengthen some of its nodes, such that at the beginning
of an attack against the network all the nodes collapse
except the nodes that were strengthened before. The
strength of a node is measured by its survival time after
an attack begun, that will be named the lifetime of the
node. We define a cost function c(k) that is the cost of
strengthening a node with degree k by a lifetime of one
unit of time. We classify the nodes by its degrees. Our
goal is to find for every group of nodes with degree k,
the fraction of nodes, that will be denoted by q(k), to be
strengthened by lifetime of one unit of time, such that
the total cost of strengthening the entire network, which
means to guarantee the existence of a giant component in
the network, by lifetime of one unit of time is minimum.

We define a function P , that is the total cost of
strengthening the entire network by lifetime of one unit,
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FIG. 2: (a,b) Behavior of the size of the giant component vs. the normalized accumulated cost: Cost function
is power-law c(k) = kα. Open symbols represent simulations results of ER networks having N = 103 nodes: (a) Average
degree λ = 4 and α = 3.2. (b) Average degree λ = 8 and α = 1. A normalization of the cost values P on the x-axis was
implemented by dividing by the minimum total cost Pmin of the four curves (strategies).(c,d) Behavior of the size of the
giant component vs. the cost: Cost function is exponential c(k) = eβk: (c) Average degree λ = 4 and β = 0.2. (d)
Average degree λ = 8 and β = 2.5. Averages are taken over 50 realizations. The α’s and β’s values were taken as an examples
to ranges that state different orders of degrees to be destroyed - descending order from high degrees, ascending order from
low degrees and the intermediate degrees. In the right hand-side of the graphs - the four bars demonstrate the fraction of the
removed nodes from each degree, in each graph. Each bar is signed by a symbol respective to the symbol of the graph that it
represents. Inset in (c) and (d): Close up of the region where there are several curves that intersect the x-axis very closely.
With accordance to our prediction, the curves that represent our method (rectangles) intersect the x-axis at the lowest point
compared to the other curves.

as follows

P =

∞
∑

k=o

p(k)Nc(k)q(k) . (11)

The condition for percolation and the existence of a giant
component is (see above Eq. (1) and Eq. (4))

∞
∑

k=0

(k − 1)
kp(k)q(k)

λ
= 1 , (12)

where for each k, 0 ≤ q(k) ≤ 1. Note the similarity of Eq.
(11)-(12), as well as the next equations to the analogous
equations in the case of efficient destruction, but here we
use q(k) as opposed to r(k) that we used in the previous
case.
Very similar to the model of efficient destruction of

network, by Eq. (12) we define a(k) as the contribution
to the existence of a giant component of all the nodes

with degree k if all of them would be allocated by one
unit of lifetime (q (k) = 1)

a(k) ≡ (k − 1)
kp(k)

λ
. (13)

By Eq. (11) we define e(k) as the total cost of allocating
all the nodes with degree k by 1 unit of lifetime

e(k) ≡ p(k)c(k)N . (14)

z(k) is again the ratio between a(k) and e(k) when ne-
glecting the constants λ and N , that is the ratio between
the contribution of all the nodes with degree k to the ex-
istence of the giant component and the cost of allocating
all the nodes with degree k by one unit of lifetime is,

a(k)

e(k)
∝

(k − 1)k

c(k)
≡ z(k) . (15)

Note the identity of z(k) in Eq. (9) of the model of effi-
cient destruction of network, and Eq. (15) of the model
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FIG. 3: Behavior of the size of the giant component in SF networks: Open symbols represent simulations results
of SF networks having N = 103 nodes. The exponent γ in the distribution p(k) = Ck−γ is 2.8. (a,b) Cost function c(k) is
power-law with: (a) α = 1.0, (b) α = 3.2. (c,d) Cost function c(k) is exponential with: (c) β = 0.01, (d) β = 2.5. In each
of the graphs the order of choosing the degrees to be removed, is identical to the graphs in Fig. 2, except the curves that are
signed by circles where only 1 (and not 5 as in Fig. 2) percents of the nodes with the highest degrees are not removed. For the
convenience, the bars in the right side of each figure were truncated arbitrarily above k = 20, but in fact they include also the
hubs with degrees up to about k = 40. Inset in (b): Close up of the region where there are two curves that intersect the x-axis
very closely. With accordance to our prediction, the curve that represents our method (rectangles) intersects the x-axis at the
lowest point compared to the other curves.

of efficient strengthening a network. Like in the model of
destruction of a network, we prefer to allocate lifetime to
degrees with high value of z(k). We define an analogous
method to that of efficient destroying of network, of how
to strengthen a network with minimum cost, as follows:

(i) For each degree k calculate z(k).

(ii) Choose groups of degrees to be allocated by 1 unit
of lifetime according to the value of z(k) in descending
order.

The choice of degrees would be ended when a sufficient
amount of degrees was chosen, such that if all of them
would be allocated by one unit of lifetime the condition
to percolation’s threshold would be achieved, and a giant
component with one unit of lifetime will appear in the
network.

Although the identity of z(k) between Eq. (9) of ef-
ficient destruction of network and Eq. (15) of efficient
strengthening of network, there is still a difference be-
tween the two cases regarding the critical threshold pc -
the fraction of nodes that have to be functional to guar-
antee the existence of giant component in the network.
Each of the two models is the mirror image of the other

one. In the model of destruction of a network, we begin
when all the nodes of the network are functional, then
we destroy some nodes until we reach the percolation’s
threshold. In contrast in the model of strengthening a
network, we begin when all the nodes are not functional,
then we strengthen some nodes until we reach the per-
colation’s threshold from the opposite direction. In the
strengthening model we strengthen some degrees to con-
struct from it the giant component, while in the destroy-
ing model we destroy exactly these degrees and construct
the giant component from the other degrees. It is reason-
able that in general when constructing a giant component
from two different groups of degrees, pc is different.

IV. Summary

In this work we developed a method for choosing the
right group of nodes to be destroyed (immunized) or
strengthened for minimizing the total price of destroy-
ing (immunizing) or strengthening a general random net-
work. According to the value of a parameter z(k) (Eq.
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(9)), that we derived analytically, when calculated for
each degree k, we define a list of priorities of degrees to
be destroyed or strengthened, such that the cost for de-
stroying or strengthening the entire network is minimum.
Surprisingly, we find analytically that z(k) is independent
of the degree distribution p(k), and therefore our method
is general and useful for all kinds of random networks in-
dependent of the degree distribution of the network.

V. Appendix A:
An analytic proof of the theory

We begin with the condition to percolation in a random
network, that is

∞
∑

k=0

(k − 1)
kp(k)q(k)

λ
≤ 1 . (A1)

Substituting into it q(k) = 1−r(k) and p(k) = Nk

N
, where

Nk is the expected number of nodes with degree k, we
get

∞
∑

k=0

(k − 1)kNkr(k) ≥ λN(κ− 2) , (A2)

where κ = 〈k2〉
〈k〉 . If we consider only one node with degree

k from all theNk nodes, we can see from Eq. (A2) that its
contribution to the percolation in the network is r(k)(k−
1)k.
Accordingly, we can replace the summation in Eq.

(A2) to be not over the degrees of the nodes, but over
the nodes themselves, and get

∑

v∈V

r(k)(k − 1)k ≥ λN(κ− 2) , (A3)

where v is a specific node in the network and V is the
set of all the nodes in the network. The summation is
calculated over all the nodes, and for each one of them
with accordance to its degree k.
In our theory, r(k) was determined according to the

value of z(k) (Eq. (9)). We Choose degrees to be at-
tacked (immunized) according to the value of z(k) in
descending order, and stopping the process when a suf-
ficient combination of degrees are collected, such that if
all these nodes are removed, the condition for percolation
threshold would be achieved. Accordingly, all the de-
grees that were chosen are fully removed which for them
r(k) = 1, except the last degree that was chosen that
usually is partially removed where 0 < r(k) ≤ 1. We can
define a constant M to be a threshold for z(k), such that
the set of nodes which for them z(k) > M are fully re-
moved, the set of nodes for which z(k) = M are partially

removed, and the set of nodes for which z(k) < M are
not chosen to be removed. Therefore, we can write the
function r(k) using the constant M as follows

r(k) =











1 z(k) > M

α z(k) = M ,

0 z(k) < M

(A4)

where 0 < α ≤ 1. To determine the specific value of
M , we consider that in our theory we stop the process of
removing nodes exactly when a percolation occurs and at
the percolation threshold. Mathematically, that means
that in the condition to percolation Eq. (A3), among
all the possibilities where the left hand side is greater or
equals to the right-hand side, we choose a specific state
where the two sides are equal. Therefeore, the value ofM
has to be determined such that r(k) fulfills the followings

∑

v∈V

r(k)(k − 1)k = λN(κ− 2) . (A5)

In the same manner that we replace the summation
over degrees in Eq. (A2) by a summation over nodes in
Eq. (A3), we can replace the summation over degrees
in the function of the total cost to fragment the network
Eq. (3) by a summation over nodes, and rewrite that
function as follows

P =
∑

v∈V

r(k)c(k) . (A6)

Our theory argues that choosing nodes to be removed
according to r(k) Eq. (A4), where M is determined ac-
cording to the condition Eq. (A5), minimizes the cost
function Eq. (A6).
We prove it as follows: assume an alternative way to

r(k) of choosing nodes to be removed, that will be named
rA(k). The condition to percolation and fragmenting the
network should be fulfilled also by removing nodes ac-
cording to that function, such that the following condi-
tion is fulfilled

∑

v∈V

rA(k)(k − 1)k ≥ λN(κ− 2) . (A7)

We argue that the following inequality is true

[rA(k)− r(k)] [k(k − 1)−Mc(k)] ≤ 0 . (A8)

We test its validity for three exhaustive options:
(i) k(k − 1) > Mc(k) which is equivalent to z(k) > M –
the expression within the right parenthesis in Eq. (A8)
is positive. When z(k) > M , r(k) = 1 and rA(k) ≤ 1.
Therefore, the expression within the left parenthesis is
negative or equals to 0. Thus, the multiplication of the
two parenthesis in Eq. (A8) is negative or equals to 0 as
we argued.
(ii) k(k − 1) = Mc(k) which is equivalent to z(k) = M –
the expression within the right parenthesis in Eq. (A8)
equals to 0. Therefore, Eq. (A8) equals to 0.
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(iii) k(k− 1) < Mc(k) which is equivalent to z(k) < M –
the expression within the right parenthesis in Eq. (A8)
is negative. When z(k) < M , r(k) = 0 and rA(k) ≥ 0.
Therefore, the expression within the left parenthesis is
positive or equals to 0. Thus, the multiplication of the
two parenthesis in Eq. (A8) is negative or equals to 0.
We rearrange Eq. (A8) and also adding to it summa-

tion over all the nodes in the network, and get
∑

v∈V

[rA(k)− r(k)] k(k− 1) ≤
∑

v∈V

M [rA(k)− r(k)] c(k) .

(A9)
By Eq. (A5) and Eq. (A7) we can see that the left-

hand side of Eq. (A9) is greater or equals to 0. Therefore,
we get for the right-hand side of that equation

∑

v∈V

M [rA(k)− r(k)] c(k) ≥ 0 , (A10)

Thus we get
∑

v∈V

rA(k)c(k) ≥
∑

v∈V

r(k)c(k) . (A11)

By Eq. (A6) the former equation is equivalent to the
following

PA(k) ≥ P (k) , (A12)

Where PA(k) is the total price of destroying the net-
work when choosing the nodes to be removed according
to rA(k), and P (k) is the total price of destroying the
network when choosing the nodes according to r(k) as
suggested by our theory. Therefore, Eq. (A12) shows
that the total price of destroying the network according
to r(k) as suggested by our theory, is not greater than the
total price of destroying the network when choosing the
nodes according to any other alternative rA(k). Thus,
we prove that choosing nodes to be removed according
to our theory, minimizes the total price of destroying the
network.

VI. Appendix B:
Analysis of z(k) with power-law cost function

We begin with Eq. (9) and substituting into it c(k) =
kα. We receive

z(k) = k1−α(k − 1) . (B1)

We differentiate it with respect to k, and receive

dz(k)

dk
= k−α [(2− α) k − (1− α)] . (B2)

By zeroing this equation, we receive an extremum point -
k = 1−α

2−α
, that would be denoted by kext. We differentiate

again and receive

d2z(k)

dk2
= (α− 1) k−α−1 [(α− 2) k − α] . (B3)

Substituting kext into Eq. (B3), we receive

d2z(k)

dk2
= (2− α)

(

2− α

1− α

)α

. (B4)

For every α > 2 the second derivative in Eq. (B4) is
always negative, and thus z(k) has a maximum point at
kext. Note that kext = 2 for α = 3, and as α increases
kext decreases until it equals to 1 when α tends to infin-
ity. Since our interest in z(k) is only at k ≥ 2 (nodes
with degrees 0 or 1 do not affect the destruction or the
strengthening of the giant component), we conclude that
as α ≥ 3, z(k) is a decreasing function for k ≥ 2. When
α < 3, kext becomes greater than 2, until kext tends to
infinity when α tends to 2+. Thus We conclude that for
2 < α < 3, z(k) is an extremum maximum function.
Despite that, note that when kext is greater than the
maximum degree of the network we analyze, z(k) in fact
becomes, for the sake of our problem, a monotonic in-
creasing function. That especially as α tends to 2+ when
kext tends to infinity.

In contrast, when α < 1 the second derivative in Eq.
(B4) is always positive, and thus z(k) has a minimum
point in kext. Recall that we are interested only in α > 0
(the cost function kα is an increasing function with k),
and that kext tends to 0.5 as α tends to 0+, and tends
to 0 as α tends to 1−, and also when α < 1 there is no
discontinuity in z(k) (Eq. (9)) at k = 0, we conclude that
as 0 < α < 1, z(k) is a monotonic increasing function for
all k ≥ 2.

In the range 1 ≤ α ≤ 2, the analysis of an extremum
points in z(k) according to Eq. (B4) is problematic, since
we obtain complex numbers. However, we can do the
analysis by using the fact that this range is the only one
where both (2 − α) and −(1 − α) in the first derivative
of z(k) (Eq. (B2)) are positive. Thus in this range for
all k ≥ 0, ans especially for every k ≥ 2, z(k) always
increases. We conclude that for 1 ≤ α ≤ 2, z(k) is a
monotonic increasing function for k ≥ 2.

In summary, the analysis of z(k) with power-law cost
function gives the following results at k ≥ 2:
1. When 0 < α ≤ 2, z(k) is a monotonic increasing
function.
2. When 2 < α < 3, z(k) is an extremum maximum
function.
3. When α ≥ 3, z(k) is a monotonic decreasing function.

VII. Appendix C:
Analysis of z(k) with an exponential cost

function

We begin with Eq. (9) and substituting into it c(k) =
eβk. We receive

z(k) = e−βkk(k − 1) . (C1)
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Differentiating it with respect to k, we receive

dz(k)

dk
= e−βk

(

−βk2 + βk + 2k − 1
)

. (C2)

By zeroing this equation, we receive two extremum points

k1 =
β + 2 +

√

β2 + 4

2β
k2 =

β + 2−
√

β2 + 4

2β
.

(C3)
Recall that β > 0 (the cost function eβk is an increasing
function with k). Analyzing k2 we observe that it tends
to 0.5 as β tends to 0+, and tends to 0 as β tends to
∞. Analyzing k1 we observe that it tends to ∞ as β
tends to 0+, and tends to 1 as β tends to ∞. Note that
k1 > k2 for every β. Since we are interested in z(k) only
for k ≥ 2 and since the maximum of k2 is 0.5 less than
2, then z(k) for k ≥ 2 is affected only by k1. Thus, we
neglect k2 and consider only k1 that would be denoted
by kext. We differentiate z(k) again and calculate the
second derivative with k = kext. We receive

d2z(k)

dk2
= −

√

β2 + 4 , (C4)

which is negative for every β, and thus z(k) has a max-
imum point in kext for every β. From Eq. (C3) it is
easy to see that kext = 2 when β = 1.5. As β increases
above 1.5, kext decreases until kext tends to 1 as β tends
to infinity. On the other hand as β decreases below 1.5,
kext increases until kext tends to infinity as β tends to 0.
Recall that we only consider z(k) at k ≥ 2, and thuswe
conclude that as β ≥ 1.5, z(k) is a monotonic decreasing
function at k ≥ 2. On the other hand as 0 < β < 1.5, z(k)
is an extremum maximum function at the range k ≥ 2.
However, when kext is greater than the maximum degree
of the network we analyze, z(k) in fact becomes a mono-
tonic increasing function. That is especially valid as α
tends to 0+ where kext tends to infinity.

In summary, the analysis of z(k) with exponential
cost function gives the following results for k ≥ 2:
1. When 0 < β < 1.5, z(k) is an extremum maximum
function.
2. When β ≥ 1.5, z(k) is a monotonic decreasing
function.
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