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Square ice is a statistical mechanics model for two-dimensional ice, widely believed to have a
conformally invariant scaling limit. We associate a Peano (space filling) curve to a square ice
configuration, and more generally to a so-called 6-vertex model configuration, and argue that its
scaling limit is a space-filling version of the random fractal curve SLEκ, Schramm–Loewner evolution
with parameter κ, where 4 < κ ≤ 12 + 8

√
2. For square ice, κ = 12. At the “free-fermion point” of

the 6-vertex model, κ = 8 + 4
√

3. These unusual values lie outside the classical interval 2 ≤ κ ≤ 8.

PACS numbers: 64.60.De, 64.60.al

Square ice was introduced by Pauling [1] as a model
of hydrogen bonding in ice crystals in two dimensions [2].
A square-ice configuration is an orientation of each edge
of the square lattice, subject to the constraint that each
vertex has two incoming and two outgoing edges (see the
diagram below and Fig. 1). Recently actual square ice
crystals were produced between sheets of graphene [3].

The classical 6-vertex model from statistical mechanics
generalizes square ice by adding energies to each of the 6
types of local configuration at a vertex:

e1 e2 e3 e4 e5 e6

Square ice is the uniform measure on 6-vertex configura-
tions. The 6-vertex model partition function was famously
solved by Lieb in 1967 [4]. A number of beautiful com-
binatorial identities arising in this model have intrigued
mathematicians and physicists for many years [5, 6]. In
particular it is widely believed that the 6-vertex model
has conformally invariant scaling limits, however a math-
ematical proof of this fact is lacking.

We show here how to associate a discrete Peano (space
filling) curve to configurations of the square ice model with
appropriate boundary conditions (Fig. 1). We present
evidence that the scaling limit of this curve is a random
fractal curve called a Schramm–Loewner evolution (SLE).

For each κ ≤ 0, an SLEκ in the upper half plane is a
random non-self-crossing random curve that extends from
the origin to ∞, with the parameter κ indicating how
“windy” the path is. In recent decades, SLE has been
thoroughly studied and celebrated within both physics
and mathematics, and has led to many new results about
two-dimensional statistical physics and the Liouville the-
ory of quantum gravity — some of which go far beyond
the results previously established using conformal field
theory and other techniques.

The precise definition of SLE is interesting and indirect.
Fix κ > 0, let B(t) be a one-dimensional Brownian motion,
and for each z in the complex upper half plane H, let

gt(z) solve the ODE

∂gt(z)

∂t
=

2

gt(z)−
√
κB(t)

g0(z) = z ,

which is defined until Tz = inf{t : gt(z)−Wt = 0}. Then
SLEκ is the curve η : R+ → H defined so that {z : Tz ≤ t}
is the set of points hit or cut off from ∞ by η([0, t]).

For κ ≤ 4, SLEκ is a simple curve; for 4 < κ < 8, the
curve hits itself without crossing itself, forming bubbles;
for κ ≥ 8, the curve is space-filling [7]. For 4 < κ < 8,
there is also a space-filling version of SLEκ in which the
bubbles get filled in recursively as they are made [8].

The SLEκ curves are either known or believed to char-
acterize the scaling limits of various two-dimensional crit-
ical statistical physics models: dilute polymers (κ = 8/3)
[9], dense polymers (κ = 8) [10], loop-erased random
walk (κ = 2) [10], percolation interfaces (κ = 6) [11],
Ising model spin clusters (κ = 3) [12, 13], dimer systems
(κ = 4), contours of the Gaussian free field (κ = 4) [14, 15],
the Ashkin–Teller model (κ = 4), the Fortuin–Kasteleyn
random cluster model (2 ≤ κ ≤ 8), active spanning trees
(4 < κ ≤ 12) [16], and others. The dimension Df of the
fractal increases with the parameter κ according to the
formula Df = min(2, 1 + κ/8) [7, 17]. See [7, 18, 19] for
further background.

SLE is connected with conformal field theory (CFT)
[18], where the central charge c is related to κ by

c = (8− 3κ)(κ− 6)/(2κ) . (1)

In CFT usually c ≥ −2, which corresponds to κ ∈ [2, 8],
the values relevant to conformal loop ensembles [20]. Be-
fore this work and [16] it was widely assumed that only
κ ∈ [2, 8] would appear in natural discrete models [18].

For the 6-vertex model Peano curve defined here, κ
depends on the vertex energies and spans the range (4, 12+

8
√

2], which in particular includes values outside of [2, 8].
For square ice, κ = 12, which corresponds to c = −7. The
square ice Peano curve joins a tiny pantheon of models
(including the uniform spanning tree and the Ising model)
that have independently solvable random lattice analogs;
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(a) 6-vertex configuration
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FIG. 1. 6-vertex configuration with height function and its
Peano curve. The heights, when scaled by π/2, give the
winding of the Peano curve up to an additive constant.

these analogs are described in [21], along with connections
to Liouville quantum gravity and string theory.

6-vertex model height function and Peano curve.
Six-vertex configurations have a height function which
plays an important role in their analysis [22]. The heights
are defined on the faces; around even-parity vertices, the
heights increase by 1 in the counterclockwise direction
across outgoing edges, and decrease by 1 in the counter-
clockwise direction across incoming edges (see Fig. 1).

We produce a Peano curve (Figs. 1 and 3) from a
6-vertex configuration as follows: From the even index
vertices, we bend the outgoing arrows 45◦ left so that they
terminate at the face centers, and from the odd index
vertices, we bend the outgoing arrows 45◦ right. Note
that each arrow gets bent into the same face regardless of
which way it is oriented, and each face receives two arrows
from opposite sides. Because each face and each vertex
now has degree two, the curved arrows form a collection
of loops and chains which terminate at the boundary.
Observe that the six-vertex heights, when scaled by π/2,
give the winding angle of the green curve measured in
radians. Because the height function is single-valued, the
green curve cannot close up on itself to form loops. The
boundary conditions were chosen so that there is only one
chain, so it must form a single space-filling curve.

6-vertex and O(n) loop models. The six-vertex model
can also specialize to the O(n) loop model. To obtain
the O(n) model, we set (with ωi = e−εi) ω1 = ω2 = ω3 =
ω4 = 1 and ω5 = ω6 = C. The parameter ∆ is defined by

∆ =
ω1ω2 + ω3ω4 − ω5ω6

2
√
ω1ω2ω3ω4

=
2− C2

2
. (2)

There is a weight-preserving mapping between six-
vertex configurations and O(n) model loop configurations,
so that the partition functions are equal [23]: One splits
each vertex in half (maintaining planarity) so that each
half has one out-going and one in-coming edge. For any
vertex with adjacent out-going arrows, there is one way
to do this split, but for C-type vertices, there are two
ways to split it. A split vertex is given a weight of r
if the arrows turn right, and weight 1/r if the arrows

turn left. For the non-C-type vertices, the total weight is
r × r−1 = 1. For the C-type vertices, the total weight is
r2 + r−2 = C. Each loop has weight r4 + r−4 = n. Thus

n = C2 − 2 (3)

and hence n = −2∆.
The O(n) model loops are widely believed to be de-

scribed by the conformal loop ensemble CLEκ◦ (the loop
version of SLE), where

n = −2 cos(4π/κ◦) (4)

[20]. (Here ◦ is a mnemonic for O(n).) The SLE-
parameter for the Peano curve coming from the associated
6-vertex model we call κ′. Interestingly, κ′ 6= κ◦.

6-vertex height function variance. The variance in
the height function of the six-vertex model was computed
by Nienhuis [24]: When the height function h is mea-
sured in radians, for small a, 〈exp(ia(h(x) − h(0)))〉 =
exp(−a2/g log |x|), where g is the Coulomb gas coupling
constant. So the height variance, given by the quadratic
term (in a2), is (1/g) log |x|. From [24, (3.29)] we have

sin
πg

8
=
C

2
. (5)

The theory of imaginary geometry, as developed by
Miller and Sheffield, associates to a Gaussian free field
(GFF) a space-filling SLE [8, 25–27]. Roughly speaking,
the GFF height function h is divided by a parameter χ
to obtain a field of orientations (measured in radians),
and the orientation of the SLE curve is eih/χ. Thus the
Coloumb gas coupling constant g and the parameter χ
are (heuristically) related by g = χ2.

The space-filling SLE parameter κ′ and χ are related

by χ =
√
κ′

2 −
2√
κ′

[8], so

1

g
=

1

χ2
=

4κ′

(κ′ − 4)2
. (6)

If we parametrize n by n = −2 cos θ with 0 ≤ θ ≤ π,
then (2), (3), (5), (6), and (1) can be expressed as

n = −2 cos θ

∆ = − cos θ

C2 = 2− 2 cos θ

χ2 = g = 4 θ/π

κ′ = 4 + 8 θ/π + 8
√
θ/π + θ2/π2 (7)

c′ = 1− 24 θ/π ,

where c′ is the central charge associated with SLEκ′ .
The table below gives some special cases. The limiting

case C → 0 is included, but with C = 0 the discrete
models do not converge to SLE. Square ice is the C = 1
row. The special value C =

√
2 is the “free fermion” point,

where there is a mapping between the 6-vertex model and
square-lattice dimers; in this case κ′ = 8 + 4

√
3.
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FIG. 2. Shown here are (a) square ice (green) with bipolar orientation (black), (b) SE-tree (blue) rooted at sink, (c) NW-tree
(red) rooted at source, and (d) SE-tree and NW-tree (which do not cross each other) with Peano curve separating them (green).
In the SE-tree and NW-tree, each edge leads to a vertex, drawn with a straight segment, and each vertex leads to an edge,
drawn with a curved segment. The Peano curve separating the SE-tree and NW-tree is the same as the Peano curve defined
from the six-vertex heights in Fig. 1.

θ n ∆ C 1/χ2 κ′ c′

π 2 −1 2 1/4 12 + 8
√

2 −23
2
3π 1 −1/2

√
3 3/8 28/3 + 8

√
10/3 −15

1
2π 0 0

√
2 1/2 8 + 4

√
3 −11

1
3π −1 1/2 1 3/4 12 −7
0 −2 1 0 ∞ 4 1

Bipolar orientations and space-filling trees. There
is a useful, and related, bijection between six-vertex con-
figurations and bipolar orientations. Let G be a finite
subgraph of Z2, that is, the part of Z2 bounded by a
rectilinear integer polygon. Let N and S be distinct ver-
tices on the outer boundary of G. A bipolar orientation
is an orientation of the edges of G which is acyclic (has
no oriented cycles), has only one source, at N , and has
only one sink, at S.

We give a bijection between bipolar orientations of
G and 6-vertex configurations on another graph H, the
“double” of G, whose vertices are the vertices and faces
of G, with edges of H connecting vertices of G to their
incident faces of G. Edges of G correspond to faces of H.
(See Fig. 2a.)

At each vertex v of G, the outgoing edges in the bipolar
orientation form a contiguous interval in the circular or-
der around v, that is, there are no vertices for which the
orientation is in-out-in-out. Equivalently the incoming
arrows form a contiguous interval around v. In the corre-
sponding 6-vertex configuration, outgoing arrows from v
point to the two faces that separate these intervals. For
each face f of G, the bipolar orientation restricted to that
face has a unique source and unique sink; the 6-vertex
arrows point from this face to these two extremal vertices.
It is easy to check that each edge of H is oriented by
precisely one of these two rules, so it has out-degree 2
everywhere, that is, it is a 6-vertex configuration.

Given an edge in a bipolar-oriented graph G, there is a
canonical path to the sink, obtained by travelling along
that edge in the direction of its orientation and, when
arriving at a vertex, taking the maximally left outgoing
edge from the new vertex. The union of these paths
forms a tree, the “SE-tree”, drawn in blue in Fig. 2b.

The analogous “NW-tree”, which is the SE-tree for the
bipolar orientation obtained by reversing all the arrows,
is drawn in red in Fig. 2c. The SE-tree and NW-tree do
not cross each other, so there is a curve winding between
them, which is shown in green in Fig. 2d. This map from
bipolar orientations to Peano curves was first described
for general planar graphs in [21]. This Peano curve is the
same curve defined by the 6-vertex height function.

Fig. 3 shows a random sample of the Peano curve
associated to a large square ice configuration on the square
grid. For planar graphs, perfect samples for the 6-vertex
models with C ≥ 1 can be obtained from single-site
Glauber dynamics and coupling from the past [28].

Monte Carlo simulations. We used Monte Carlo sim-
ulations to check that the 6-vertex model Peano curve is
described by SLEκ′ . We produced 6-vertex configurations
on an L × L torus for various values of L, to eliminate
boundary effects. We measured the winding angle vari-
ance of the Peano curve, and also the dimension of the
outer boundary of the Peano curve.

SLE theory predicts that the Peano curve’s winding

FIG. 3. The Peano curve, colored according to the time
parameter, for the square ice model (C = 1, κ′ = 12).
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FIG. 4. Monte Carlo estimates (points, using L = 256 and L = 512) and SLE predictions (curves, using (7), (8), (9), and (10))
of (a) the winding angle variance coefficient, (b) outer boundary winding angle variance coefficient, and (c) outer boundary
dimension of the 6-vertex model’s Peano curve, as a function of C2. The apparent deviation in the right figure represents a
finite size effect that we believe would go away on larger grids. Each dot represents an independent winding angle variance or
dimension estimate for a certain C2 value. Since these quantities are continuous in C2, and independent estimates for many
nearby values of C2 are given, the vertical fluctuations in the points effectively serve as error bars.

angle variance scales as

4κ′

(κ′ − 4)2
lnL . (8)

[8]. Since the winding of the curve is given by the height
function, we measured the height function variance.

The outer boundary corresponds to paths within the
blue SE-tree in Fig. 2b. Since the simulations are done on
a torus, the “SE-tree” is actually a cycle-rooted spanning
forest (CRSF), and we measured both the winding angle
variance and the length ` of the cycle in the cycle-rooted
spanning tree containing the edge at the origin. The SLE
prediction is that the outer boundary’s winding angle
variance scales as

4

κ′
lnL , (9)

and that its length scales as ` ∼ LDf where

Df = 1 + κ/8 = 1 + 2/κ′ . (10)

We estimated the winding angle variance coefficients and

the outer boundary dimension using samples for L = 256
and L = 512, as shown in Fig. 4.

The estimates for the winding angle variance coefficient
is an excellent fit to the predicted value. Since the formula
relating κ′ to C2 was derived from Nienhuis’ formula (5),
the left panel of Fig. 4 is essentially an experimental
verification of Nienhuis’ formula.

The outer boundary winding angle variance and dimen-
sion estimates (middle and right panels of Fig. 4) are both
independent tests of the curve’s convergence to SLE. The
estimated values are a close match to the predicted value,
though when C2 ≈ 3.5, the measured dimension deviates
from the prediction by as much as 0.015. Further tests of
the distribution of the loop length ` and its dependence
on L suggest that the convergence to the asymptotic be-
havior occurs for larger values of L when C2 ≈ 4 than
when, for example, C2 ≈ 2. Overall, the experiments are
consistent with convergence to SLE.
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