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We apply a generalized Kibble-Zurek out-of-equilibrium scaling ansatz to simulated annealing
when approaching the spin-glass transition at temperature T = 0 of the two-dimensional Ising
model with random J = ±1 couplings. Analyzing the spin-glass order parameter and the excess
energy as functions of the system size and the annealing velocity in Monte Carlo simulations with
Metropolis dynamics, we find scaling where the energy relaxes slower than the spin-glass order
parameter, i.e., there are two different dynamic exponents. The values of the exponents relating the
relaxation time scales to the system length, τ ∼ Lz, are z = 8.28 ± 0.03 for the relaxation of the
order parameter and z = 10.31 ± 0.04 for the energy relaxation. We argue that the behavior with
dual time scales arises as a consequence of the entropy-driven ordering mechanism within droplet
theory. We point out that the dynamic exponents found here for T → 0 simulated annealing are
different from the temperature-dependent equilibrium dynamic exponent zeq(T ), for which previous
studies have found a divergent behavior; zeq(T → 0) → ∞. Thus, our study shows that, within
Metropolis dynamics, it is easier to relax the system to one of its degenerate ground states than
to migrate at low temperatures between regions of the configuration space surrounding different
ground states. In a more general context of optimization, our study provides an example of robust
dense-region solutions for which the excess energy (the conventional cost function) may not be the
best measure of success.

I. INTRODUCTION

A simulated annealing (SA) process [1] carried out on
a system with a continuous phase transition exhibits scal-
ing with the system size and the annealing velocity (the
rate of change of the temperature T versus time). Fol-
lowing the seminal analysis by Kibble [2] and Zurek [3]
(KZ) of the “freezing” of defects close to a critical point,
a compelling picture has emerged of the combined effects
of finite size and velocity on physical observables in SA
[4–7]. The generalization of KZ scaling to quantum sys-
tems (where a system parameter is changed as a function
of time at low T ) [8–10] has found applications in studies
of cold atom systems [11, 12], and should be of relevance
also in the quantum annealing (QA) [13] (or quantum-
adiabatic [14]) approach to solving hard optimization
problems by adiabatically evolving a programmable qubit
system from a trivial to a complex ground state [15].
An untested application of classical KZ scaling is to

systems with critical temperature Tc = 0. A prominent
example of such a case is the two-dimensional (2D) Ising
spin glass, which is interesting not only in its own right
but also in the context of quantum annealing, e.g., the de-
vices produced by D-Wave Systems [16] are laid out with
a particular 2D connectivity. Numerous studies of 2D
Ising spin glasses have been carried out recently in order
to compare SA and QA, to gain insights into the nature
of the quantum and thermal fluctuations in QA devices,
and to develop methods for analyzing the efficiency of an-
nealing protocols [17–20]. The KZ scaling formalism has
not been applied, however. We here present such a study
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of the 2D Ising spin glass with bimodal couplings and
find an unusual behavior where two different dynamic
exponents govern the equilibration of the spin-glass or-
der parameter and the excess energy in SA simulations
with local Metropolis Monte Carlo (MC) dynamics. The
exponent for the order parameter is z = 8.28± 0.03 and
for the excess energy z′ = 10.31 ± 0.04, and, thus, the
energy relaxes slower than the order parameter. We ar-
gue that this unusual behavior is a consequence of the
entropy-driven spin-glass ordering process within droplet
theory [21, 22], by which the system can first reach the
region of high density of low-energy states, where the or-
der parameter is not sensitive to the energy, and only
later relax to the minimum energy.
Our results also show that the dynamics of simulated

annealing is not necessarily governed by the dynamic ex-
ponent zeq of the equilibrium autocorrelation functions,
though at conventional critical points at T > 0 this is
the case in all systems we are aware of, e.g., the standard
2D and 3D Ising models with Metropolis and cluster dy-
namics [6] and the 3D Ising spin glass [7]. In the 2D
Ising glass zeq depends on the temperature and diverges
as T → 0 [23, 24], in contrast to the finite values of z and
z′ found here for T → 0 SA simulations.
In Sec. II we define the Ising spin-glass model, discuss

its known equilibrium properties, and describe the simu-
lation methods we have used to study it. In addition to
SA, we also implemented parallel tempering (PT) for ob-
taining equilibrium T → 0 results (which are later used
together with SA data in the KZ analysis). We discuss
equilibrium finite-size scaling in Sec. III. The KZ scaling
ansatz and its connections to both the equilibrium and
high-velocity behavior is outlined in Sec. IV and adapted
to the particular circumstances of the T → 0 relaxation
of the Ising spin glass. Results are presented in support
of the dual time-scale behavior. In Sec. V we discuss the
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physical reasons behind our findings and the significance
of dual SA time scales in a more general context of opti-
mization. Additional analysis and results are presented
in two appendicies.

II. MODEL AND METHODS

The 2D Ising spin glass considered here is defined by
the Hamiltonian

H =
∑

〈ij〉

Jijσiσj , σi = ±1, (1)

with random nearest-neighbor couplings Jij drawn from
some distribution, e.g., bimodal or normal (with the for-
mer used here). A central property of spin glasses is the
Edwards-Anderson (EA) order parameter, defined with
two replicas (independent simulations, labeled 1 and 2,
with the same couplings) as

q =
1

N

∑

i=1

σ
(1)
i σ

(2)
i . (2)

We focus our studies in this paper on the disorder-
averaged squared EA order parameter 〈q2〉 and the in-
ternal energy E = 〈H〉/N in the limit T → 0.
The equilibrium properties of the bimodal Jij = ±1

model have been controversial. A long-standing issue
has been to distinguish between exponential [25, 26] and
power-law [27–29] scaling as T → 0. The nature of the
state at T = 0 has also been difficult to ascertain. Until
recently it was widely believed that the Jij = ±1 system
does not harbor spin-glass order (unlike the model with
normal-distributed couplings), only power-law decaying
critical EA spin-spin correlations [30–32]. More recent
studies [22, 33, 34] point to significant long-range order.
In particular, Thomas et al. [22] evaluated the Pfaffian
form of the partition function on larger lattices and lower
temperatures than in previous MC studies. A quantita-
tive picture was presented for finite-size corrections to the
long-range order at T = 0, power-law scaling at T > 0,
and a size-dependent cross-over temperature T ∗(L), with
T ∗ → 0 when L → ∞, below which the discreteness of
the coupling distribution is important.
We here use out-of-equilibrium (SA) MC simulations

to study the model (1) with N = L2 spins on peri-
odic square lattices with bimodal coupling distribution.
We generate the Jij = ±1 couplings independently with
probability 1/2 and use bit representations for both the
spins and the couplings, as discussed in detail in Sec. II A,
running 64 independent parallel simulations for each re-
alization (sample) of the couplings and repeating for a
large number of samples. In addition to SA, where we
go to system sizes up to L = 128, we have also used PT
simulations [35] to obtain equilibrium T → 0 results for
smaller systems (up to L = 32 for the energy and L = 24
for the EA order parameter). Technical details and con-
vergence tests of the PT simulations are presented below

in Sec. II B. Although larger systems (with open bound-
aries) can be studied with ground-state methods [26, 36],
proper thermodynamic averages of the EA order param-
eter, with equal weighting of degenerate states, are diffi-
cult to obtain [37].

A. Simulated annealing

We code the Ising spins σi = ±1 of the model (1) as
bits of long (64-bit) integers, thus using N integers Ii for
a system of N spins and propagating 64 replicas of the
same system (with the same random couplings). The bi-
modal couplings Jij = ±1 are also encoded as bits 0, 1,
and most of the operations involved in computing en-
ergy differences for the Metropolis acceptance probabili-
ties for single-spin flips (with the same spin considered in
all replicas) can then be carried out simultaneously on all
64 replicas by using standard bit-vise logical operations
on the stored integers.
In the beginning of each repetition of the SA pro-

cess, we generate new random couplings and initialize
the spins at random. We then carry out 10 MC sweeps
at the initial temperature Tini = 8. We found that this
small number of initial steps is sufficient for reaching very
close to thermal equilibrium at this high temperature
(and note that any deviation from equilibrium at this
stage can be regarded as just a different initial state and
will not affect the scaling when T → 0 at low velocities).
In the subsequent SA run we carry out tmax MC sweeps
and lower the temperature after each sweep according to
the following generic power-law protocol to anneal the
system to T = 0:

T (t) = Tini(1 − t/tmax)
r. (3)

In addition to the linear case r = 1 we also study r > 1.
Measurements of the EA order parameter and the energy
are carried out after the final (T = 0) MC sweep and re-
sults are averaged over a large number of SA runs. To
compute the EA order parameter (2) we form 32 config-
uration pairs out of the 64 replicas and again make use
of bit operations for parallel computing, thus obtaining
32 independent contributions to 〈q2〉 from each run.
The safest way to ensure independent propagation of

the replicas is to generate different random numbers for
the final Meropolis accept/reject step for each replica, in
which case the generation of the random numbers con-
sumes a large fraction of the computation time. Strictly
speaking, uncorrelated replicas are required only when
computing the EA order parameter; correlations of the
replicas do not cause distortions of computed averages
(provided that the random number generator is not
flawed), though the efficiency is potentially reduced as
there is effectively a smaller amount of statistical data.
For example, if the same random number is used for each
replica, if ever two replicas go into the same state they
will stay in the same state for the remainder of the simu-
lation, thus reducing the number of independent replicas.
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No statistical bias is introduced in computed mean val-
ues, however. Once the system size is reasonably large, it
is very unlikely for replicas to lock to each other in this
way, and we can sefely use the same random numbers
within the two groups of 32 replicas between which the
EA order is computed.

B. Parallel tempering

In our PT simulations [35], we again use the bit repre-
sentation but now all the bits b ∈ {0, 63} correspond to
different temperatures on a uniform grid, Tb = T0+b∆T .
Attempts to swap spin configurations of runs at adja-
cent temperatures Tb, Tb+1 are carried out after each MC
sweep over the spins, with independent random numbers
used for the MC updates at all temperatures. The goal of
the PT simulations is to obtain T → 0 equilibrium results
for the EA order parameter and the ground state energy.
For the latter, we do not use the thermal energy average
but simply keep track of the lowest energy reached in
each run and average it over the coupling samples. We
here present results showing proper convergence to equi-
librium values of computed quantities as the number of
MC sweeps is increased.
We choose the lowest temperature T0 such that the T

dependence of the energy and the EA order parameter is
insignificant in the neighborhood of this temperature for
the system sizes studied, i.e., T is well below the size-
dependent entropic cross-over temperature T ∗(L) [22]
mentioned above and discussed in detail in Sec. IV. The
highest temperature should be high enough for signifi-
cant thermal fluctuations to migrate to low temperatures,
thereby enhancing the ergodicity of the PT simulations
relative to independent fixed-T runs. Efficient migration
of the fluctuations also necessitates a sufficiently small
spacing ∆T , and, in principle optimal simulations would
have ∆T decreasing and the number of temperatures in-
creasing with the system size. Here we always use 64
replicas and the spacing is ∆T = 0.04 or 0.02, for smaller
and larger lattices, respectively.
Figure 1 shows examples of the convergence of the EA

order parameter and the lowest energy reached as func-
tions of the number of MC sweeps in PT simulations.
We use the same number of MC sweeps for equilibration
and data collection. The horizontal axis of Fig. 1 cor-
responds to the sweeps for data collection only (i.e., the
total number of sweeps is twice this number) and each
successive point corresponds to doubling the number of
sweeps. For these system sizes, L = 16, 24, the energy
converges faster than the order parameter, but this trend
is clearer for L = 16 than L = 24. The energy likely con-
verges slower than the order parameter for large sizes, as
we find in SA simulations in Sec. IV. We have not studied
the scaling properties of the PT scheme in detail.
For acceptable convergence, we require statistically in-

distingusiable results from at least the last two runs in a
series of runs such as those in Fig. 1. Based on this cri-
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FIG. 1. Convergence of PT results of the EA order parameter
(a) and the excess energy (b) vs the number of sweeps for two
system sizes. The lowest temperature was T0 = 0.1 and T0 =
0.06 for L = 16 and 24, respectively, and in both cases the
temperature spacing was ∆T = 0.02. The results represent
averages over more than 105 samples for both system size.

0.0 0.2 0.4 0.6
T

0.2

0.3

0.4

0.5

<
q2 >

FIG. 2. Temperature dependence of the squared EA order
parameter for L = 24 in PT simulations with 106 sweeps for
both equilibration and data collection.

terion we have obtained converged results for 〈q2〉 up to
L = 24 and for 〈E〉 up to L = 32. To ensure that we ob-
tain T → 0 results, it is also important to check the tem-
perature dependence of the results. Fig. 2 shows results
for L = 24 from the PT runs with the largest number of
sweeps in Fig. 1(b). Here we can see that there is only
a weak temperature dependence below T ≈ 0.25. We es-
timate that the very small remaining finite-temperature
effect at T0 = 0.06 is much smaller than the statistical
error.
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III. EQUILIBRIUM FINITE-SIZE SCALING

We discuss the equilibrium PT results first because
they will be important in the KZ scaling analysis. The
mean values presented here were computed over mil-
lions of coupling samples for the smaller system sizes and
about 105 samples for the largest systems.
The standard finite-size scaling ansatz [38] for a quan-

tity A that scales as |T−Tc|
κ in the thermodynamic limit

is (neglecting corrections from irrelevant fields)

A(T, L) = L−κ/νf [(T − Tc)L
1/ν ], (4)

where the exponent ν governs the correlation length,
ξ ∼ |T − Tc|

−ν , and the scaling function f(x) must have
the form xκ for x → ∞ to ensure the correct thermo-
dynamic limit. With this form, the singular behavior
in a system of finite length is cut off at ξ ∼ L, i.e., at
|T − Tc| ∼ L−1/ν . In the 2D J = ±1 spin glass Tc = 0
and a low size-dependent energy scale was identified in
previous works, T ∗(L) ∼ L−ΘS , where ΘS ≈ 0.50 is an
exponent quantifying the entropy due to zero-energy clus-
ters; flipping a cluster of linear size l changes the entropy
by ∆S ∼ lΘS [22, 39]. The finite-size scaling relation
then changes to

A(T, L) = L−κΘSf(TLΘS). (5)

Thomas et al. showed that the specific heat exponent is
α = 1 − 2/ΘS [22]. Then, at T = 0, Eq. (5) with κ = α
predicts that the finite-size energy correction (per spin)
should be ∆E0 = E0(L)−E0(∞) ∼ L−2. This form was
obtained based on a different scenario in Ref. 26 and was
consistent with data for periodic systems. In our PT sim-
ulations we generated a much larger number of samples
for all system sizes up to L = 32, to obtain a more reliable
estimate of the L−2 correction. As shown in Fig. 3(a),
the agreement with the prediction is excellent. The ex-
trapolated infinite-size energy based on system sizes for
which no further scaling corrections are statistically im-
portant is E0 = −1.40192(2), where the number within
parentheses indicates the one-standard-deviation statis-
tical error. This value is in good agreement with the best
previous result, E0 = −1.401938(2), from open-boundary
systems [36] (see also Ref. [26]). Using the more precise
value to constrain the fit we obtain ∆E0 = aL−2 with
a = 1.230(2).
We evaluate 〈q2〉 according to Eq. (2) and extrapolate

it to infinite size, as shown in Fig. 3(b). Since long-range
order is expected at T = 0, the exponent κ = 0 in Eq. (5)
and the size dependence reflects a correction of the form

〈q2(L)〉 − 〈q2(∞)〉 ∝ L−Θs , (6)

derived in Ref. [22]. With data for 6 ≤ L ≤ 24 our
independent estimate of the exponent is ΘS = 0.60(3)
for even L and ΘS = 0.52(3) for odd L. Fixing ΘS =
1/2, as was also done in the data analysis in Ref. [22],
fits for both even and odd sizes are good and mutually
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FIG. 3. Equilibrium results for (a) the ground state energy

graphed vs L−2 and (b) the EA order parameter vs L−1/2. In
(a) the results for L = 14− 32 were fitted to E0 = −1.401938
[36] plus a correction aL−2 with a = 1.230(2). The inset
shows data for the larger systems on a more detailed scale
(where the error bars are similar to the symbol size). In (b),
there are significant even-odd effects and L ≥ 9 data for even
(blue circles) and odd (red squares) L have been individually

fitted to constants plus L−1/2 corrections.

consistent for L ≥ 9. The extrapolated order parameter
is then 〈q2(∞)〉 = 0.373(3), which is roughly consistent
with the previous estimate, 〈q2(∞)〉 = 0.395(10), from
large systems at low but non-zero temperature [22].

IV. KIBBLE-ZUREK SCALING

Turning to the SA simulations, we measure the time t
in the standard way in units of MC sweeps, where each
sweep consists of N attempted Metropolis flips of ran-
domly selected spins. Starting in equilibrium at Tini = 8,
we anneal to T = 0 in tmax MC sweeps according to the
power-law protocol in Eq. (3). We define the velocity for
r = 1 as v = Tini/tmax and use this definition of v as
the inverse of the total annealing time also for r = 2 and
4. We collect expectation values at the final temperature
T = 0, using millions of samples for smaller sizes and
several thousand for the largest systems. There is signif-
icant self-averaging and the error bars are small even for
the largest sizes (much smaller than the plot symbols in
the graphs below).
In standard KZ scaling, for a process stopping at the

critical point, a singular quantity A depends on the ve-
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locity and the system size according to the form [4–6]

A(v, L) = L−κ/νg(v/vKZ), (7)

where the “critical” KZ velocity,

vKZ ∝ L−z̄−1/(νr), (8)

is the velocity separating fast and slow processes, z̄ is
the dynamic exponent, and g → constant when v → 0.
Variants of this ansatz have been confirmed in uniform
systems [4–6] as well as in the 3D Ising spin glass (where
Tc > 0) [7]. It has proved to be a reliable way to extract
the dynamic exponent, especially if Tc and ν are known,
e.g., for the 3D Ising glass z ≈ 6.0 was obtained using KZ
scaling [7] and this value is in excellent agreement with a
recent result from a completely different apprroach [41].
If ν is not known, it can be obtained along with z̄ by
combining results for different r values in the protocol
(3) [6], and in principle Tc can be determined by using an
extended scaling ansatz [4, 6]. Note that vKZ in Eq. (8)
is only determined up to an essentially arbitrary factor
that can be fixed by using some criterion once the scal-
ing function g(v/vKZ) in Eq. (7) has been determined,
e.g., based on some small deviation from the saturated
equilibrium value.
The dynamic exponent relates the relaxation time scale

τ to the equilibrium correlation length; τ ∼ ξz̄. For
given velocity, in the thermodynamic limit the correlation
length saturates at

ξv ∼ v−1/(z̄+1/(νr)), (9)

and for finite system size the saturation velocity scales
as ξv ∼ L, i.e., v ∼ L−z̄−1/(νr) demarks the “freezing” of
the system. However, this analysis has neglected the en-
tropic scale L−ΘS present in the J = ±1 spin glass model
in equilibrium. This new scale should also carry over to
velocity scaling. Expressed as a length scale, the en-
tropic scale is, ξS ∼ ξ1/(νΘS), where presumably ν ≈ 3.6
[29, 40–42] as in the model with normal-distributed cou-
plings. In analogy with the equilibrium finite-size scaling
behavior in the presence of the entropic scale [22], since
νΘS > 1 and ξS ≪ ξ the quasi-static behavior should

then set in for SA when ξS ∼ ξ
1/(νΘS)
v ∼ L, which to-

gether with Eq. (9) gives the entropy-driven analogue of
the KZ velocity

vS ∝ L−(z̄vΘS+ΘS/r). (10)

We can define a more practical dynamic exponent for
finite-size scaling purposes as

z = z̄νΘS , (11)

which gives the critical quasi-static velocity

vS(L) ∼ L−z−ΘS/r (12)

in the same form as the original KZ velocity (8) with ν
replaced by 1/ΘS, and the following modified KZ finite-
size scaling form:

A(v, L) = L−κΘSg(vLz+ΘS/r). (13)

10
-6

10
-4

10
-2

v
10

-4

10
-3

10
-2

10
-1

<
q2 >

10
4

10
8

10
12

10
16

vL
z+Θ

s
/r

10
-3

10
-2

10
-1

10
0

<
q2 re

s> L=16
L=32
L=48
L=64
L=96
L=128

10
-6

10
-4

10
-2

v

10
1

10
2

<
q2 >

L
2

(a)

(b)

(c)

FIG. 4. (a) EA order parameter squared vs the velocity in
linear (r = 1) SA runs for different system sizes. (b) Velocity
scaling, where 〈q2〉 has been rescaled by the size correction,

〈q2res〉 = 〈q2〉/(a + bL−1/2) with a and b the constants of the
even-L fit in Fig. 3(b), and the horizontal axis has been scaled
with the optimal exponent z + ΘS = 8.83(4) (obtained with
a data-collapse procedure using many system sizes between
L = 32 and 128). The line has the expected slope −2/(z+ΘS)
in the power-law scaling regime. (c) The same data scaled
according to the third line of Eq. (15) along with a line with
the same slope as in (b).

We will test this hypothesis with SA data in the following
sections.

A. Order parameter

Results for the EA order parameter in linear SA runs
are shown in Fig. 4(a). For fixed velocity, the squared
order parameter 〈q2〉 drops rapidly with increasing sys-
tem size. In Eq. (13) we have κ = 0 as in the equilibrium
scaling of this quantity, but since the correction to the
asymptotic value of 〈q2〉 is large, as seen in Fig. 3, we
first divide it out based on the form in Eq. (6). The so
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rescaled order parameter is thus

〈q2res〉 =
〈q2〉

a+ bL−ΘS

, (14)

where we use ΘS = 1/2 and the constants a and b from
the fit in Fig. 3(b). With this definition 〈q2res〉 → 1 for
v → 0 for all system sizes (up to small deviations due
to inaccuracies of the fitted parameters and neglected
higher-order corrections). As shown in Fig. 4(b), we then
rescale the velocity by the size-dependent KZ velocity
L−z−ΘS , optimizing the value of the exponent z+Θs for
the best data collapse for large systems and low veloci-
ties. The data-collapse procedure is discussed further in
Appendix A. Here we just note that the goodness of the
data collapse is quantified by a fit of data for all included
system sizes to a flexible function representing the scaling
function g in Eq. (13).
The KZ scaling form (13) discussed above only applies

for sufficiently low velocity and the inability to collapse
the data at high velocities in Fig. 4 is not surprising. We
observe power-law behavior over a wide range of scaled
velocities and also see a flattening-out toward the ex-
pected constant behavaior on the low-velocity side (which
we can see more clearly for smaller system sizes, as dis-
cussed in detail in Sec. IVC).
According to the general non-equilibrium finite-size

scaling form discussed in Ref. [6], adapted to the present
case where 1/ν is replaced by ΘS , we expect that the
squared order parameter can be written in the following
way in three distinct velocity regimes:

〈q2〉 ∝



































∑

n
cn(vL

z+Θs/r)n, v . vKZ,

(vLz+Θs/r)−x = L−2(1/v)x, vKZ . v . 1,

L−2
∑

n
cn(1/v)

n, v & 1.

(15)
Here we think of vKZ as the velocity separating the near-
equilibrium and power-law scaling behaviors. The factor
L−2 = N−1 on the second and third line represents the
overall size dependence in the limit where ξv ≪ L. In
order for the two expressions on the middle line to be
equal, the exponent x has to be given by

x =
2

z +Θs/r
. (16)

The Taylor-expandable near-equilibrium behavior on the
first line of Eq. (15) should smoothly connect to the first
power-law form on the second line, through a cross-over
region in the scaling function (13). In the high-velocity
limit, the third case above, the behavior can be expressed
as a series in 1/v, and this series has to be smoothly
connected to the form L−2v−x on the second line.
For convenience we denote the often occurring gener-

alized KZ exponent by σ(r),

σ(r) = z +ΘSr
−1. (17)
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FIG. 5. The KZ scaling exponent vs the exponent r in the
SA protocol (3), along with a fit giving z = 8.28(3) and ΘS =
0.55(6). The r = 1 point was obtained using the data analysis
in Fig. 4(b) and similar data for r = 2 and r = 4 are presented
in Appendix B.

One can use Eq. (15) for given r to extract this exponent
either from the high-velocity side, by fitting a straight
line to ln〈q2res〉 versus ln(1/v), the slope of this line being
the exponent x = 2/σ(r) in Eq. (16), or by adjusting σ(r)
so that 〈q2res〉 versus vL

σ(r) in the power-law and equilib-
rium regimes collapse onto a common scaling function for
different L. These two methods were also illustrated in
Figs. 4(b,c). To cancel out the leading equilibrium finite-
size corrections, in the low-velocity analysis in panel (b)
we used the rescaled order parameter, while in the high-
velocity analysis in panel (c) the original data were used.

The analysis from the high-velocity side, Fig. 4(c), can
include data only in the strict power-law regime, unless
high-velocity corrections are taken into account. The be-
havior as v → ∞ is clearly non-universal, with the curve
tending to the equilibrium value at the initial tempera-
ture. The data-collapse method in Fig. 4(b) potentially
can lead to better statistical precision on the extracted
exponent if a substantial amount of data is available
in the low-velocity cross-over and equilibrium regimes,
where the power-law scaling no longer holds. Due to the
slow dynamics of the Ising glass model, reflected in the
large value of the KZ exponent, z + ΘS ≈ 9, we can
only reach the equilibrium and cross-over regions clearly
for very small system sizes, which we discuss further in
Sec. IVC. In Fig. 4(b), in order to minimize finite-size
corrections (beyond those appearing explicitly in the KZ
form), we exclude the smallest systems, and, therefore,
mainly collapse data in the power-law region (though
some of the included low-v data do deviate from the pure
lower-law). By systematically monitoring the goodness of
the fit as small systems are gradually excluded, we find
that the exponent settles to z + ΘS = 8.83(4) when the
fit becomes statistically sound (χ2 per degree of freedom
is close to one).

To disentangle Eq. (17) and obtain the exponents z
and ΘS , it is in principle sufficient to work with two
different values of r in the annealing protocol, Eq.(3), and
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FIG. 6. Mean energy above the infinite-size ground state
energy E0 in r = 1 SA runs. The results have been divided
by the L−2 equilibrium size-dependence and the horizontal
axis was rescaled according to the generalized KZ hypothesis
(13), with κΘS = 2 and the optimum-collapse value z′+ΘS =
10.80(8) of the scaling exponent. The line shows the expected
slope 2/(z′ +ΘS) in the power-law regime.

extract σ(r1) and σ(r2). Here, as a further consistency
check we use three different values, r = 1, 2, 4, and fit the
resulting σ(r) to the expected form (17) with z and ΘS

optimized for the best fit. The procedure is illustrated in
Fig. 5. The r = 2 and r = 4 data sets corresponding to
Fig. 4(b) for r = 1 are presented in Appendix B. The σ(r)
data points are completely consistent with the expected
r-dependence in Eq. (17), and a fit delivers the exponent
values z = 8.28(3) and ΘS = 0.55(6). Fixing ΘS = 1/2
does not significantly alter the estimate of z.

B. Mean energy

Forms analogous to Eq. (15) for the order parameter
hold for other singular quantities as well. On the left-
hand side the critical size-dependence in equilibrium, i.e.,
the factor L−κΘS in Eq. (13), should be divided out (and
in principle finite-size corrections can also be divided out,
as we did above for 〈q2〉). The factor L−2 on the sec-
ond and third lines should be replaced by LκΘS−2. To
study the singular part of the energy, we first subtract
the infinite-size value E0 from the velocity dependent en-
ergy E(v, L) and use κΘS = (|α|+1)ΘS = 2 in Eq. (13).
We again optimize the data collapse with small systems
and high velocities excluded. Fig. 6 shows r = 1 results
and similar r = 2, 4 plots are presented in Appendix B.
Combining the results for z′ +ΘS/r for the different r

values, we can again, as in Fig. 4(c), disentangle the ex-
ponents. Interestingly, here we obtain a clearly different
dynamic exponent, z′ = 10.32(7), than the previously
extracted exponent z = 8.28(3) governing the EA order
parameter, while ΘS = 0.5(1) is consistent with the pre-
vious value. Fixing ΘS = 1/2 we can reduce the error
bar on the dynamic exponent; z′ = 10.31(4).
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FIG. 7. Generalized KZ scaling analysis of the kind presented
in Figs. 4 and 6 but for smaller systems for which the cross-
over toward equilibrium can be more clearly observed. The
velocity scaling exponents are σ = z + Θs = 9.01 and σ′ =
z′+ΘS = 10.8 for the EA order parameter (upper panel) and
the excess energy (lower panel), respectively. The lines have
slopes 2/σ and 2/σ′, corresponding to the expected exponents
in the power-law scaling regime.

C. Scaling results for small system sizes

In the previous sections we discussed velocity scaling
for systems sufficiently large for no significant subleading
finite-size scaling corrections to remain (to within the
statistical precision of the data). For these system sizes
we can reach well into the power-law scaling regime (the
linear part of the scaling function graphed on a log-log
scale), but not very far into the cross-over into the regime
where the systems approach and reach equilibrium, i.e.,
corresponding to the first line in Eq. (15). It is important
to test the scaling behavior also here, to make sure that
the final relaxation stage is governed by the same dy-
namic exponent as the power-law regime. Because of the
large dynamic exponents, we are in practice limited to
small system sizes in this velocity regime. We show here
that useful results further supporting the dual time-scale
picture can still be obtained.
Figure 7 shows r = 1 results for lattice sizes in the

range L = 8 to 32, with the exponent σ = z + ΘS

adjusted for best overall data collapse. Here the data-
collapse procedure included all the system sizes shown,
again excluding high velocities where no data collapse
can be expected. In the low-velocity limit the rescaled
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order parameter approaches 1, while the scaled energy
tends to the value of the constant a ≈ 1.23 extracted
in Fig. 3(a). We obtain the exponents σ = 9.01(5) and
σ′ = 10.9(2) for the EA order parameter and the energy,
respectively. These values are very close to those ob-
tained for larger system sizes in Figs. 4 and 6, σ = 8.83(4)
and σ′ = 10.80(8), respectively, demonstrating the sta-
bility of the results. We did not include the smallest
systems in the previous analysis because, although the
exponent values do not differ much, we can not obtain a
statistically fully satisfactory value of the goodness of the
fit (χ2 per degree of freedom close to 1) when all data are
included in a common fit, given the small error bars of
the SA data and small but statistically significant effects
of neglected finite-size scaling corrections for the smaller
systems.
Given the good agreement we have demonstrated be-

tween different system sizes and velocity regimes, we
judge that the significant difference between the dynamic
exponent for the excess energy and the EA order param-
eter, z′−z ≈ 2, cannot be explained by neglected scaling
corrections. The dual time scales are therefore a real
aspect of the relaxation of the 2D J = ±1 spin glass.

D. Minimum energy

When applying SA to an optimization problem, it is in
general better to keep track of the minimum energy (cost
function) Emin reached during an entire SA run, instead
of computing the mean energy or only using the energy
at the end of the run. Even in very slow annealings the
minimum energy is occasionally lower than the energy
after the final MC step at T = 0. Therefore, the disorder-
averaged 〈Emin〉 should be lower than 〈E〉. An important
question then is whether the scaling of the two quantities
is the same or not. We address this question next.
For each SA run, we save the minimum energy in any

of the 64 replicas running in parallel and average over
samples. Figure 8 shows results for r = 1, scaled using
the same exponents as in Fig. 6. The scaling collapse is
very good also here, and the optimized scaling exponent
for this case is also statistically equal to the one obtained
before. Overall the minimum energy values are, as ex-
pected, below those for the mean energy. With the range
of system sizes used here we can see the full equilibrium
behavior (the flat portion, where the value corresponds
to the prefactor of the L−2 correction in Fig. 3) as well
as the cross-over into the power-law scaling regime. In
the graph we also draw a straight line with exactly the
same parameters as the line drawn through the power-
law scaling portion of the collapsed mean energy data
in Fig. 6. In 〈Emin − E0〉L

2 we observe that larger sys-
tems are needed to observe the same slope—we see that
the scaling function (onto which the data collapse) ex-
hibits some curvature. Nevertheless, with increasing size
the functional form appears to approach a line with the
same slope as before. It is possible that the curves for
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FIG. 8. Scaling of the minimum energy reached during any
time in r = 1 SA runs for L = 8, 16, 24, 32, 48, 64, 72, 96, 128.
The exponents used for the rescaling of both the axes are
the same as those in Fig. 6. The solid line has the expected
slope 2/(z′ +ΘS) and is drawn in close proximity to the data
for the largest system sizes. The dashed line has the same
parameters as the line in Fig. 6.
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FIG. 9. Scaling function for the mean energy and the mean
lowest energy in r = 1 SA runs. Data points (v, L) for sys-
tem sizes in the range L = 8 to 128 were used, for each size
excluding v points that deviate from the common data col-
lapsed form. The value of the scaling exponent is the same as
in Fig. 6; z′ +Θs = 10.8.

L → ∞ actually approach exactly the same line (not just
the same slope but also the same constant) as the one
for 〈E − E0〉L

2 in Fig. 6. If so, the asymptotic power-
law scaling of the two quantities would be exactly the
same, and the advantages (in optimization applications)
of monitoring Emin instead of E would only appear as the
behavior crosses over toward the equilibrium behavior.
We conclude that the minimum energy collected dur-

ing SA runs converges to the ground state energy on the
same time scale Lz+Θs/r as the convergence of the mean
energy. The scaling functions are different, reflecting an
overall lower value of the minimum energy than the mean
energy for given scaled velocity vLz′+ΘS/r. In Fig. 9 we
show the two r = 1 scaling functions in the same graph.
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We have combined data from other figures but only in-
cluded points that fall very close to the common scaling
functions. Here one can read off that Emin ultimately
converges (the curve flattens out to a constant) about
104 times faster than E. This factor depends on the de-
tails of how Emin is computed in the simulations. In our
case, we carried out 64 simulations in parallel for each
coupling sample and monitored the lowest energy in any
of these simulations. Clearly, upon increasing the number
of parallel runs Emin will converge faster, thus pushing
the scaling function further to the right.

V. DISCUSSION AND CONCLUSIONS

The existence of two different dynamic exponents at
first sight appears to contradict the standard picture
of critical dynamics, where the slowest mode is associ-
ated with the fluctuation of the order parameter. The
coupling of the energy to the order parameter (via de-
fects) normally implies that the asymptotic energy auto-
correlations are also determined by z. Thus, in the stan-
dard scenario, there is a single exponent governing the
dynamic scaling of all quantities, except ones that are
explicitly constructed to only sense faster modes.
Given the unusual behavior, it is natural to ask

whether scaling corrections may explain the rather large
difference between the two dynamic exponents, z′−z ≈ 2,
so that there would actually only be a single common ex-
ponent for the energy and order-parameter relaxation.
The fact that both small and large systems lead to the
same exponents (as shown in Figs. 4 6, and 7) speaks
against the existence of large finite-size corrections be-
yond the leading corrections that we have included (based
on the analysis of equilibrium results in Fig. 3). Since
the two groups of system sizes also probe regimes closer
to (the smaller sizes) and further away from (the larger
sizes) equilibrium, the good agreement between the ex-
ponents also indicate that any velocity corrections must
be small. The insignificance of velocity corrections in the
power-law regime is also supported by the fact that scal-
ing (data collapse) works extremely well over 1-2 orders
of magnitude of the scaled energy and order parameter
for the larger system sizes, with no deviations detected
from the power-law behavior. In this regard the behav-
ior is similar to that in the 3D Ising spin glass, for which
also no corrections to velocity scaling were needed to col-
lapse data analyzed within the KZ framework [7]. Subse-
quently, the value of the dynamic exponent extracted was
reproduced with a completely different approach [41].
We also point out that the fact that the critical tem-

perature Tc = 0 is known exactly removes one of the
potential flaws in data-collapse approaches, namely, that
the agreement between the scaled data sets may be artifi-
cially improved by the procedure of adjusting exponents
as well as the critical-point value, thus leading to system-
atical errors in all the fitting parameters. In the present
case we only adjusted a single exponent σ(r) = z+ΘS/r

FIG. 10. Conceptual illustration of the essential features of
the energy landscape of the J = ±1 model, as suggested by
droplet theory and our study. Ground states (red solid cir-
cles) are clustered and typical states fall within a small region
(large circle) of the configuration space. Low-energy excita-
tions (black open circles) are predominantly located in the
same region.

(and similarly with z → z′) independently for each of
three annealing protocols (exponent r = 1, 2, 4 in the
power-law annealing form), and when combining the re-
sults according to the proposed generalized KZ scaling
form, Eq. (13), the entropy exponent ΘS comes out very
close to its previously calculated value. It is hard to be-
lieve that this success in reproducing a non-trivial ther-
modynamic exponent in a dynamical approach could be a
mere coincidence. Another consistency check is provided
by the scaling of the mean energy and the lowest energy,
shown in Fig. 9. Their scaling functions are very differ-
ent, with the lowest energy converging much faster to the
equilibrium value, yet the extracted dynamic exponents
are the same for both of them. Thus, there are many
reasons to trust the exponents extracted here, as well as
their error bars (which we have computed based on ex-
tensive bootstrapping and considering different windows
of velocities and system sizes). We conclude that the dif-
ference z′ − z ≈ 2 is too large to be explained by scaling
corrections, unless the flow of the exponents to their true
values is so slow that the changes cannot be detected at
all in the size and velocity regimes considered here. Such
an extremely slow convergence is unlikely and would in
itself be remarkable and beyond current understanding
of out-of-equilibrium scaling.

We next provide a physical explanation for our find-
ings. The dual dynamic scales should be related to the
phenomenon of droplet entropy stabilizing the EA order
parameter of the 2D J = ±1 Ising glass when T → 0 in
equilibrium. The backbone of the spin-glass cluster has
a fractal dimension df < 2 [43] and, thus, does not repre-
sent long-range order on its own [22]. The ground states
are strongly clustered within a small region (and its spin-
reflected counterpart), which implies that these states are
related to each other by flipping small (compared to the
system size) droplets; flips of large droplets throw the
system into atypical regions that are statistically insgnif-
icant in the thermodynamic limit. Although the absence
of order at T > 0 implies that low-energy excitations
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FIG. 11. Conceptual one-dimensiomal analogue of our
proposal for the difference between equilibrium and non-
equilibrium dynamics of the spin glass. In the equilibrium
at low temperatures, the slowest dynamic time scale corre-
sponds to fluctuations between regions surrounding different
low-energy states. In a non-equilibrium SA simulation, at
some point the system locks into one such funnel. The dy-
namic order-parameter exponent z characterizes the process
of reaching a funnel, while the energy exponent z′ governs the
eventual relaxation to the bottom of the funnel.

must be spread out over a large region of the configu-
ration space, the ground state region should also have a
much higher density of low-energy states than other re-
gions (since these states can be obtained from the ground
states by flipping small clusters). Thus, there should
exist a region of typical ground states and low-energy
states, illustrated in Fig. 10, and the large entropy drives
the system toward this region under annealing. In the
typical region, the EA order parameter, Eq. (2), has es-
sentially the same distribution for replicas in low-energy
states as for those strictly in ground states, and, there-
fore, the order parameter can converge even when a sig-
nificant fraction of the replicas remain in excited states.
Our scaling results show that the final relaxation of the
system involves transitions between excited states into
ground states located in the same high-density region,
and that the time scale for this is significantly longer
(approximately by a factor L2) than that for reaching
the high-density region.
It should be noted that the T → 0 relaxation dynam-

ics we study here is different from the equilibrium dy-
namics at fixed temperature, with the same kind of MC
updates (here using the standard single-spin Metropolis
algorithm). In previous works [24] it has been shown
that the equilibrium dynamic exponent zeq depends on
the temperature and zeq → ∞ as T → 0. This behavior
is consistent with the fact that the single-spin Metropo-
lis algorithm is not ergodic at T = 0—while some spins
can be flipped without changing the energy, not every
ground state can be reached in this way. The equilib-
rium autocorrelation function at T > 0 quantifies the
way in which a simulation explores the global configu-
ration space, which at low temperatures corresponds to
migrating between regions of states surrounding different

ground states. In contrast, in an SA simulation the sys-
tem can be expected to become trapped in one of these
regions—a “funnel” in the energy landscape, and when
that happens the final relaxation corresponds to reaching
the bottom of the funnel. The different kinds of dynam-
ical processes are illustrated in Fig. 11.

We have argued above that the dynamic exponent
z characterizes the time scale upon which the system
reaches the region of the configuration space with a large
number of low-energy states, i.e., the funnels. In our pic-
ture, the larger energy exponent z′ then characterizes the
time scale of trapping of the system in local energy min-
imas along the “walls” of the funnel, and the fact that
we observe power-law scaling implies that the barriers (in
energy and entropy) do not grow sufficiently large with
increasing system size to cause an exponential slowing
down. In principle, there could also be funnels with a
lowest energy larger than the ground state energy, but
the fact that z′ is finite shows that such funnels must
have a statistically negligible weight, or are separated
from ground-state funnels by barriers that grow only very
slowly with the system size (to maintain power-law scal-
ing of the relaxation time).

Dynamic scaling is also interesting in the context of
optimization. It has recently been argued that the best
measure of optimization is not necessarily just the en-
ergy (the standard cost function), but the stability of
the solution is also important and should be enhanced
if the solution belongs to a dense region of similar solu-
tions [44, 45]. A method was presented to enhance the
ability to reach such regions, by using coupled replicas
of the system. The 2D J = ±1 Ising spin glass may be
an extreme case of a system harboring a dense region
of low-energy states, and we have shown here that SA
finds this region efficiently even without artificial repli-
cating, as evidenced by the entropy-driven order param-
eter converging in polynomial time and even faster than
the energy. In optimization, one may be willing to ac-
cept a slightly sub-optimal solution, as measured by the
energy, for a solution in a dense region that can be found
on a much shorter time scale. Clustering of solutions is
also important when discussing the efficiency of QA pro-
tocols, where the measure of success is also ambiguous
and solution stability may be a desirable feature. QA of
systems with discrete coupling distributions may also be
affected by dual time scales, due to mechanisms similar
to those discussed here.

It would clearly be interesting to also study the KZ dy-
namics of the model with normal-distributed couplings,
which has a unique ground state and likely different dy-
namic scaling. KZ scaling of T → 0 SA simulations can
also be used in other systems that do not order at T > 0.
Stimulated by the present work, the procedures were al-
ready applied to a planar vertex model encoding a class
of reversible computing problems [46].
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FIG. 12. Example for r = 1 of the goodness of the linear fit
of ln〈q2res〉 versus ln(vLσ

r ) when the slope of the line is fixed
at −2/σ. The data used here is shown as the middle set
(triangles) in Fig. 13. A scan is performed as a function of
the exponent σ = z+Θs and the minimum of χ2 is identified
for the optimum σ.
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Appendix A: Data collapse procedures

Here we give further details on the data-collapse proce-
dures. We take r = 1 as an example and in the following
simply use σ to denote the exponent σ(r = 1) = z +ΘS.
In Fig. 4(a,b) we already illustrated how data are col-
lapsed by optimizing σ. To characterize the goodness of
the data collapse, we fit a high-order polynomial to a set
of data points {ln〈q2res〉, ln(vL

σ)} for different v and L,
sweeping over σ on a dense grid and locating the optimal
value (minimum χ2 for the fit). If a satisfactory collapse,
χ2/Ndof ≈ 1, cannot be achieved we systematically elim-
inate small system sizes and/or high-velocity points until
a statistically good fit is obtained. Typically tens of data
points are left in the good fit. To estimate error bars,
we perform bootstrapping, repeating the fitting proce-
dure with many bootstrap samples and computing the
standard deviation of the optimal σ.

Here, for illustration purposes and to demonstrate the
stability of the exponents extracted in Fig. 4, we discuss
a slightly simpler method for analyzing only the power-
law regime and including only the three or four lowest
available velocities for three system sizes; L = 72, 80, 96.
For these sizes, even at the lowest velocity that we have
studied, v = 8/tmax = 2−17, the systems are far from
equilibrium but, as we will show, they fall within the
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FIG. 13. Three different rescaled sets of data (indicated by
different shapes of the graph symbols) obtained by bootstrap
sampling of a large number of data bins for system sizes
L = 72 (black), 80 (red), and 96 (blue). The three lines
are the best fits to the form ln〈q2res〉 = −(2/σ) ln(vLσ) + b,
and the values of σ, b shown for each case corresponds to a
χ2-minimum such as the one in Fig. 12.
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FIG. 14. The exponent σ(r) for r = 1, 2, 4 along with a fit to
the form (17). The individual exponents (fitting parameters)
are z = 8.35(7), and ΘS = 0.42(8), where the error bars were
computed by repeated fits with Gaussian noise added [with
standard deviation equal to the error bars on σ(r)].

power-law scaling regime described by the middle line in
Eq. (15). Graphing on a log-log scale, we then expect
all points to fall on a common line with slope x given by
Eq. (16) if the horizontal axis is appropriately rescaled
as vLσ. We use the required r = 1 line slope −2/σ to
constrain the fit to the form −(2/σ) ln(vLσ) + b, i.e., for
given σ in the scaling procedure b is the only adjustable
parameter. We scan over a dense grid of σ values, per-
form the constrained line fit for each case, and keep track
of χ2 to locate the minimum value; see Fig. 12 for an il-
lustration. The optimum σ value is the result.

Alternatively, according to the second form of the
middle line in Eq. (15), we could also just consider
ln(L2〈q2res〉) versus ln(1/v) and extract the slope x = 2/σ
(and again a good χ2 value would be an indication of be-
ing within the power-law scaling regime). The approach
discussed here can, however, also be generalized to in-
clude low-velocity data, where the power-law scaling no
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FIG. 15. Scaling collapse of the EA order parameter for r = 2
and r = 4. The scaling exponents are σ(r = 2) = 8.57(3) and
σ(r = 4) = 8.42(2).
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FIG. 16. Scaling collapse of the excess energy for r = 2 and
r = 4. The scaling exponents are σ′(r = 2) = 10.57(10) and
σ′(r = 4) = 10.44(6).

longer holds but the behavior is still described by the
scaling function g(vLσ), of which the power-law consti-
tutes the limiting form for large vLσ. This latter part
can be fitted to a line, and points deviating from it for
smaller vLσ can be simultaneously fitted to a polynomial

[6]. Here we just consider the linear part, while in Fig. 4
we also included lower-v data but did not constrain the
collapse by the line slope, instead obtaining the slope as
a post-fit consistency check.
Figure 13 shows three different data sets along with the

corresponding slope-constrained line fits. The middle set
of points is the original data set, while the left and right
sets correspond to the extreme cases out of 200 bootstrap
samples. The standard deviation of σ computed from the
bootstrap samples directly gives the error bar; in this case
σ = σ(1) = 8.79(8). This value is completely consistent
with the value in the caption of Fig. 4, but the error bar
is larger because only the linear regime was used and the
number of data points is smaller.
Note that the same coupling realizations are used in

SA runs with all velocities (where v is if the form 2−n for
positive integers n), and the data points for the same
system size but different v are therefore strongly cor-
related (the sample-to-sample fluctuations being much
larger than the MC sampling noise). The covariance pre-
dominantly corresponds to common up or down fluctua-
tions of the value of the order parameter, and therefore
the optimum line slope, as extracted above, is not sig-
nificantly affected, and it is not necessary to use the full
covariance matrix in the fitting procedure. The boot-
strapping procedure properly account for the covariance
since the same reandom bins are randomly chosen for all
velocities for a given L.
Using the same system sizes and velocities and repeat-

ing the same procedures for r = 2 and 4, we obtain
σ(2) = 8.52(6) and σ(4) = 8.48(7). Combining these
results and performing a fit to the expected r depen-
dence of σ(r), Eq. (17), we obtain z = 8.35(7), and
ΘS = 0.42(8), as shown in Fig. 14. These values are
consistent with those presented in Sec. IV, but again the
error bars are larger due to the smaller amount of data
used. We can then conclude that the inclusion of also
smaller sizes and lower velocities (including some data
away from the power-law regime) in Fig. 4 did not change
the exponents to a noticeable degree relative to the case
here, where only large system sizes far from equilibrium
were used.

Appendix B: Results for r = 2 and r = 4

For completeness we here present the data for r = 2
and r = 4, analyzed in the same way as the r = 1 data
in Figs. 4(b) and 6. Data-collapse plots for the EA order
parameter and the excess energy are presented in Figs. 15
and 16, respectively. The exponent values are given in
the figure captions.
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and G. Rinaldi, J. Phys. A: Math. Gen. 29, 3939 (1996).

[29] H. G. Katzgraber, L. W. Lee, and I. A. Campbell, Phys.
Rev. B 75, 014412 (2007).

[30] I. Morgenstern and K. Binder, Phys. Rev. B 22, 288
(1980).

[31] R. N. Bhatt and A. P. Young, Phys. Rev. B 37, 5606
(1988).

[32] J. Poulter and J. A. Blackman, Phys. Rev. B 72, 104422
(2005).

[33] T. Jörg, J. Lukic, E. Marinari, and O. C. Martin, Phys.
Rev. Lett. 96, 237205 (2006).

[34] F. Roma, S. Risau-Gusman, A. J. Ramirez-Pastor, F.
Nieto, and E. E. Vogel, Phys. Rev. B 82, 214401 (2010).

[35] K. Hukushima, K. Nemoto, J. Phys. Soc. Jpn. 65, 1604
(1996).

[36] R. G. Palmer and J. Adler, Int. J. Mod. Phys. C 10, 667
(1999).

[37] A. W. Sandvik, Europhys. Lett. 45, 745 (1999).
[38] M. N. Barber, in Phase Transitions and Critical Phenom-

ena, edited by C. Domb and J. Lebowitz, Vol. 8 (Aca-
demic, London, 1983).

[39] L. Saul and M. Kardar, Phys. Rev. E 48, R3221 (1993).
[40] H. G. Katzgraber, L. W. Lee, and A. P. Young, Phys.

Rev. B 70, 014417 (2004).
[41] L. A. Fernandez, E. Marinari, V. Martin-Mayor, G.

Parisi, and J. J. Ruiz-Lorenzo, Phys. Rev. B 94, 024402
(2016).

[42] F. Parisen Toldin, A. Pelissetto, and E. Vicari, Phys.
Rev. E 84, 051116 (2011).

[43] A. K. Hartmann, Phys. Rev. B 77, 144418 (2008).
[44] C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, and

R. Zecchina, Phys. Rev. Lett. 115, 128101 (2015).
[45] C. Baldassi, C. Borgs, J. Chayes, A. Ingrosso, C. Lu-

cibello, L. Saglietti, and R. Zecchina, Proc. Natl. Acad.
Sci. U.S.A. 113, 7655 (2016).

[46] C. Chamon, E. R. Mucciolo, A. E. Ruckenstein, and Z.-
C. Yang, arXiv:1604.05354.


