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Abstract. 

We demonstrate that kinetic aggregation forms superaggregates that have structures 
identical to static percolation aggregates, and these superaggregates appear as a separate phase in 
the size distribution. Diffusion limited cluster-cluster aggregation (DLCA) simulations were 
performed to yield fractal aggregates with a fractal dimension of 1.8 and superaggregates with a 
fractal dimension of D = 2.5 composed of these DLCA supermonomers. When properly 
normalized to account for the DLCA fractal nature of their supermonomers, these 
superaggregates have the exact same monomer packing fraction, scaling law prefactor, and 
scaling law exponent (the fractal dimension) as percolation aggregates; these are necessary and 
sufficient conditions for same structure. The size distribution remains mono-modal until these 
superaggregates form to alter the distribution. Thus the static percolation and the kinetic 
descriptions of gelation are now unified. 

 

I. INTRODUCTION 

Aggregation is a simple process in which particles in a sol, an aerosol or colloid, come 
together and stick to form larger particles. If the particles do not coalesce but keep their original 
shape (nearly) when they stick, this simple process yields a remarkable structure for the 
aggregates: a scale invariant, fractal structure with a quantifiable scaling dimension, the fractal 
dimension, D, which is less than the spatial dimension, d. Furthermore, if the system is left 
undisturbed for a long enough time, another marvel occurs: the sol becomes a volume filling 
solid structure, a gel. The primary reason that the gel forms is because with D < d, the growing 
aggregates consume the available space until none is left. Then the connectivity length scale 
diverges and a gel of “infinite” extent is formed. This is the kinetic description of the sol-gel 
transition 1-4.  

Another successful description of gelation is the percolation model5-7.One version of this 
model fills the available space with a point lattice. Then spherical monomers with diameter equal 
to the lattice spacing are placed, one by one, randomly on the lattice. Monomers occupying 
adjacent points touch hence are joined and become part of the same aggregate. It is found that at 
some critical concentration pc, an infinite, space filling aggregate with a fractal dimension of D = 



2.5 is created; this is the gel. Given that the monomers are placed on the lattice without regard to 
any time scale, the percolation model is a static model and hence does not describe the kinetics 
from sol to gel. Nevertheless, it successfully describes many critical-phenomena-like, power law 
divergences of various physical properties as the concentration of monomers p approaches the 
critical concentration. These results imply that the structure of a gel is that of a percolation 
aggregate with D = 2.5, not that of, for example, a diffusion limited cluster-cluster aggregation 
(DLCA) aggregate formed kinetically with D = 1.8. 

Both the kinetic and percolation models gel with the emergence of a small fraction of 
giant clusters separate from the growing distribution of clusters present before gelation. 
Although this phase-transition-like behavior can result from the kinetics of simple binary 
collisions 8, 9, it has been rigorously connected to a thermodynamic functional 10.  A complete 
description of gelation would incorporate the relevant aspects of both descriptions. Can the 
kinetic model, which successfully describes the sol’s approach to the gel, yield  percolation 
aggregates which successfully describes critical phenomena near the gel point and will these 
aggregates be a distinct phase in the size distribution? 

Our work with soot aerosols has extended the viability of the kinetic description of the 
sol-gel transition11-16. Experiments involving both light scattering and electron microscope 
studies of soot aerosol aggregation in the late stages of aggregate growth explicitly demonstrated 
superaggregates with a fractal dimension of D = 2.5, the same as the percolation value. The term 
“superaggregate” was coined because superaggregates are hybrids composed of smaller 
aggregates with a different, D = 1.8 fractal morphology. Simulations12, 14 support these results 
and conclude that superaggregates form via DLCA which passes from aggregate dilute regime 
(when the mean aggregate size is much less than the mean aggregate nearest neighbor 
separation), where the D = 1.8 aggregates are formed, to the aggregate dense regime (size 
comparable to separation) leading to gelation. When the volume fraction of the DLCA 
aggregates is unity, the system is at the ideal gel point and the DLCA aggregates, assumed to be 
monodisperse and spherically shaped (hence the qualification “ideal”), obtain a size, the radius 
of gyration at the ideal gel point Rg,G, given by1, 14  
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In Eq. (1) a is the monomer radius (assumed spherical), k0 is the scaling prefactor, described 
below in Eq. (2) and fv is the monomer volume fraction. Equation (1) is consistent with earlier 
studies 2, 17 that indicated that the kinetic and percolation approaches can merge at the “critical 
growth stage” that occurs late in the aggregation process were the aggregate volume fraction 
approaches unity. There the aggregates become “huge monomers” with size Rg,G that percolate to 
form the gel. 

What appears to be missing from a complete kinetic description of the sol-gel transition is 
to show that the kinetics can yield aggregates that are structurally (morphologically) identical to 



percolation aggregates. Indeed, the equivalent fractal dimension of D = 2.5 for both the static 
percolation aggregate and the kinetically grown superaggregate is very suggestive of structural 
equivalence, but by no means conclusive. This begs the question: how does one determine 
structural identity for fractal aggregates? We have answered that question by showing there is a 
three parameter description that completely specifies the structure18. Two of the parameters, the 
fractal dimension D and a prefactor k0 19, which is related to shape20, appear in the scaling 
relation for the aggregate: 

𝑁 =  𝑘!(𝑅! 𝑎)!     (2) 

In Eq. (2) N is the number of monomers per aggregate (the monomer count), Rg is the radius of 
gyration of the aggregate, and a is the radius of the monomer. The third parameter is the 
monomer packing fraction, φ, within the aggregate. Thus if aggregates created by two different 
schemes have the same D, k0 and φ, they are structurally equivalent. 

In this work we show that the canonical DLCA algorithm yields superaggregates with 
fractal dimension, prefactor and monomer packing fraction identical to static bond percolation 
aggregates. The “monomers” of the superaggregates are DLCA aggregates with D = 1.8 that 
make up the superaggregate. This percolated superaggregate occurs for a large range of 
monomer volume fractions. 

II. METHODS 

Static percolation aggregates were created by placing spherical monomers with radius 𝑎 
randomly on a three dimensional cubic lattice until the system reached the percolation 
concentration pc. For a three dimensional cubic lattice pc=0.311621, 22. It has been shown that a 
cubic lattice has a nearly identical percolation threshold and aggregate morphology to that of 
randomly packed spheres in continuous three dimensional space23. The simulation box size was 
set to various sizes to create different size aggregates. 

The kinetically formed aggregates were created using an off-lattice, DLCA algorithm20, 

24. Initially 107 spherical monomers were randomly placed into a three dimensional simulation 
box. The monomer volume fraction, fv was controlled by the box size. As DLCA starts, the 
number of aggregates Nc including lone monomers is counted. An aggregate is randomly chosen 
and simulation time is incremented by Nc

-1. The probability that an aggregate moves is inversely 
proportional to the aggregate’s radius of gyration and is normalized to insure the monomers will 
always move upon selection. If the aggregate moves, it travels randomly one monomer diameter 
2a. When two aggregates collide, they irreversibly stick and Nc is decremented by 1. Results are 
applicable in the continuum limit where the frictional drag is given by the Stokes–Einstein 
expression with a drag proportional to the radius of gyration.  

 

 

 



III. RESULTS 

Figure 1 shows the number of monomers N in a kinetic aggregate versus aggregate Rg 

normalized by monomer radius a on a log-log plot for initial monomer volume fractions of fv = 
0.003, 0.01, 0.02, 0.1. This is a test of Eq. (2) for these aggregates. The trend of the data starts as 
the canonical DLCA with D = 1.8 and k0 = 1.35, but at large sizes, the aggregates transition to D 
= 2.5. This demonstrates the crossover from normal DLCA aggregates with D = 1.8 and k0 = 1.35 
to superaggregates with D = 2.5 as found before. The empirical transition size from D = 1.8 to D 
= 2.5 is in agreement with that calculated by Eq. (1). 

The simple average size <R0> of the normal DLCA aggregates is marked for each 
ensemble plot in Fig.1. We propose that <R0> represents the average size of the normal DLCA 
aggregates that comprise the monomers of the superaggregate. Thus we call these normal DLCA 
aggregates “supermonomers”. These supermonomers follow the trend of Eq. (2) with ko = 1.35 
and D = 1.8 that has been reported before for DLCA systems18, 19, 25.  

Figure 1 also shows that after several DLCA supermonomers come together to form a 
superaggregate with Rg > Rg,G, they follow the trend of Eq. (2) with D = 2.5, but the prefactor k0 
depends on where the Rg,G  crossover happens, which in turn is controlled by the initial monomer 
volume fraction as described in Eq. (1). These values are marked in Fig. 1. Small fv leads to small 
k0 for the superaggregates.  

                                              

 



 
Figure 1. Aggregate monomer count N versus aggregate radius of gyration Rg normalized 

by monomer radius a on log-log plots. Linear regimes imply the power law as described in Eq. 
(2), the slope is the exponent, the fractal dimension D.  All systems start at small Rg/a with D = 
1.8 and a prefactor k0 = 1.35. In (a) the initial monomer fraction was fv = 0.003 and the system 
reached a D = 2.5 with a prefactor of k0 = 0.05 regime at large Rg/a. In (b) fv = 0.01 and reached 
D = 2.5 with k0 = 0.10. In (c) fv = 0.02 and reached D = 2.5 with k0 =0.15. In (d) fv = 0.1 and 
reached D = 2.5 with k0 = 0.50. In all plots the average supermonomer size <R0> is marked.  

 

The same data appear in Fig. 2a, however, here the Rg is broken into equal sized bins and 
for each Rg bin the average N is calculated. This binning was done for clarity; it allows the plots 
for the different fv to be resolved from each other. In Fig. 2b Rg is normalized by the average 
supermonomer radius <R0>and plotted against N normalized by average supermonomer number 
count <N0>. Under the normalization with <R0> and <N0>, a universal trend becomes apparent 
as the superaggregates, regardless of the monomer volume fraction fv, follow the percolation 
aggregates’ trend quantified by k0 = 0.6 and D = 2.5 for each. Note that the data in Fig. 2a 
indicate that the aggregates must contain at least ten to thirty constituent particles before they can 
differentiate themselves. Thus we find that the percolation result and the supermonomer 
normalized kinetic results are identical. 



 
Figure 2. In (a) Rg data from Fig. 1 is binned and the average N for each bin is plotted for 

clarity. The data in (a) indicates that small aggregates i.e. N <10-30, cannot differentiate 
themselves between D = 1.8 and D =2.5. In (b) the Rg values from (a) are normalized by the 
supermonomer radius <R0>, and 𝑁 is normalized by the supermonomer count <N0>. These 
renormalized plots now all fall onto a single trend. Furthermore, the trend overlaps that for 
aggregates made via the simple, cubic lattice, static percolation algorithm. The fit to Eq. (2) for 
all these yields D = 2.5 and k0 = 0.6.  

 

In 3d space the number of monomers in a volume with radius r is N(r) = φ (r/a)3 where φ 
is the packing fraction.  For fractal aggregates this generalizes to18, 26 

𝑁 𝑟 =  𝜑(𝑟 𝑎)!    (3) 

The monomer pair correlation function g(r) is the probability that another monomer will 
be present a distance r from a given monomer. Thus for aggregates, g(r) is proportional to the 
average number of monomers in a shell of radius r and thickness dr. 
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With Eqs. (3) and (4), the pair-correlation becomes  

    𝑔 𝑟 = !"
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For an isotropic aggregate the correlation function is constrained by the normalization 
condition that the volume integral of g(r) equals N. To achieve this normalization for Eq. (5) the 
finite size of an aggregate must be accounted for. Therefore a cutoff function is added. It is 
customary to use a stretched exponential function as the cutoff function. Thus   

   𝑔 𝑟 = !"
!!!!
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where the stretching exponent γ has been shown to be an indicator of a aggregate’s shape 
anisotropy18, 20.  

In Fig. 3 the pair correlation functions g(r) for pure DLCA (volume fraction fv = 0.001), 
DLCA leading to superaggregates, and a percolation aggregate are shown. We apply the same 
approach used in18. In Figs. 3a and 3f the fits to Eq. (6) for the monomer packing φ and power 
law exponent D – 3 are shown for a pure DLCA aggregate and a static percolation aggregate, 
respectively. The fit for the pure DLCA aggregates follow the power law corresponding to D = 
1.8, consistent with the results from Figs. 1 and 2, and packing fraction φ = 0.718. The fit for the 
percolation aggregates exhibit a power law corresponding to D = 2.5 and monomer packing 
fraction φ = 0.3, which is the canonical results for these types of aggregates27.  

The superaggregates in Figs. 3b-e were generated kinetically as described above with fv = 
0.003, 0.01, 0.02, 0.1 and have g(r) in concordance with Eq. (6) with power laws and monomer 
packing fractions that agree with DLCA at small r until a crossover begins at about <R0>. Then 
at Rg,G  > <R0> the trend in g(r) for larger r follows a power law that corresponds to D = 2.5.  

A pair-correlation function of supermonomers gG can be found by replacing monomer 
radius a with <R0> and using the normalization condition 

    𝑔! 𝑟 4𝜋𝑟!𝑑𝑟 = !
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    (7) 

This leads to 
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From Eq. (8) it is possible to find the supermonomer packing fraction represented by φ0. 
The supermonomer packing fraction for monomer volume fractions fv = 0.003, 0.01, 0.02 and 0.1 
were all found to be φ0 = 0.3 in agreement with the monomer packing fraction of the static 
percolation aggregates, suggesting that superaggregates are percolation aggregates with DLCA 
aggregates as supermonomers.



 
Figure 3. The pair correlation function g(r) for aggregates (circles symbols) taken from 

DLCA simulations with fits lines derived from Eq. (6) and (8). The monomer packing fraction φ 
= 0.7 is found for all DLCA aggregates below the superaggregate crossover between <R0> and 
Rg,G. In (a) an aggregate taken from a DLCA system with fv = 0.001 that has not developed into 
superaggregates. For (b) to (e), g(r) of aggregates with fv = 0.003, 0.01, 0.02 and 0.1, 
respectively, the average supermonomer size <R0> and radius of gyration at the gel point Rg,G are 
marked. The crossover from D = 1.8 to D = 2.5 is flanked by <R0> on the left and Rg,G on the 
right at larger r. In (f) the g(r) of a static percolation aggregate is plotted and is described by φ0 = 
0.3 and D = 2.5 which matches the DLCA superaggregates well.  

The equality of the three parameters D, k0 and φ between the percolation aggregate and 
the monomer renormalized superaggregates demonstrates that the kinetically formed 
superaggregates have structures identical to the static percolation aggregates. 

Finally, Fig. 4 shows the size distribution behavior for the two intermediate monomer 
volume fractions fv = 0.01 and 0.02. The aggregation proceeds as indicated by the total number 
of clusters, Nc, decreasing. For large Nc, hence early times, the distributions are mono-modal. 
However, bi-modality is seen at later stages with the advent of large clusters. The number of 
these clusters is small as seen in the particle count spectra, while the fraction of mass in the 
larger size mode is significant as seen in the particle mass spectra. This is the well-known, phase-
transition-like behavior that occurs when a sol becomes a gel, i.e. at gelation8-10. This few in 



number, large in mass population are the superaggregates with their hybrid morphology 
displayed in Figs. 1, 2 and 3, above. 

 
Figure 4. Particle count spectra (upper plots) and particle mass spectra (lower plots) for two 
monomer volume fractions fv = 0.01 and 0.02. Nc is the total number of clusters remaining in the 
aggregation run.  

 

IV. CONCLUSIONS 

In summary, with these results, one complete description of gelation that incorporates the 
relevant aspects of both the kinetic and percolation descriptions is provided: Diffusion limited 
cluster aggregation (DLCA) produces fractal aggregates with a fractal (scaling) dimension of 
1.8; these are DLCA aggregates, a well-known result. Because this scaling dimension is less than 
the spatial dimension, continued aggregate growth ultimately leads to a DLCA aggregate volume 
fraction of unity; this is the ideal gel point. Kinetic aggregation near this point leads to 
superaggregates with a fractal dimension of D = 2.5 composed of DLCA supermonomers. These 
superaggregates, when properly normalized to account for the DLCA fractal nature of their 
supermonomers, have the exact same structure as static percolation aggregates as specified by 



the monomer packing fraction, scaling law prefactor, and scaling law exponent. Furthermore, 
they comprise a distinct population, few in number but large in mass, of the aggregate size 
distribution which is not present before gelation. Thus the kinetics provides one complete 
conceptual framework for gelation. There is no need to artificially add a static percolation 
aggregate at the end of a kinetic growth period; percolation is a natural result of kinetic growth. 
These two descriptions of gelation are now joined. 

It is reasonable to expect that any other cluster-cluster aggregation mechanism, such as 
reaction limited cluster-cluster aggregation (RLCA), that  yields a fractal dimension less than the 
spatial dimension will also yield superaggregates with the same percolation aggregate structure 
but with different, “supermonomer” fractal dimension. 
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