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Advanced chain-growth computer simulation methodologies have been employed for a systematic
statistical analysis of the critical behavior of a polymer adsorbing at a substrate. We use finite-
size scaling techniques to investigate the solvent-quality dependence of critical exponents, critical
temperature, and the structure of the phase diagram. Our study covers all solvent effects from the
limit of super-self-avoiding walks, characterized by effective monomer-monomer repulsion, to poor
solvent conditions that enable the formation of compact polymer structures. The results significantly
benefit from taking into account corrections to scaling.

The study of polymer adsorption on a flat solid sur-
face has been extensively investigated for more than 60
years [1]. Understanding generic properties of this pro-
cess is not only relevant for potential technological and
biological applications [2–6], but also for more basic in-
sights into phenomena such as adhesion, surface coating,
wetting, and adsorption chromatography [7]. In dilute
solution, polymers are independent of each other and sur-
face effects affect the structure formation process individ-
ually. Conformational properties are thus basically influ-
enced by heat-bath temperature, solvent quality, and the
strengths of monomer-monomer and monomer-surface in-
teractions. In general, at sufficiently high temperatures
and good solvent conditions, the polymer chain favors a
disordered random (typically expanded) geometric struc-
ture and it is, for the gain of translational entropy, des-
orbed. However, below a certain threshold temperature,
an attractive interaction with the surface can energeti-
cally overcompensate the entropic freedom of the chain
and chain segments get adsorbed at the surface. In conse-
quence, a continuous adsorption-desorption (A-D) tran-
sition [8] occurs at a critical temperature Ta, separating
the desorbed phase, which is dominant for T > Ta, from
the phase governed by adsorbed polymer conformations
for T < Ta.
An appropriate order parameter for this A-D transition

is ns = Ns/N , where Ns is the number of monomers in
contact with the surface and N is the total length of
the chain. In discrete representation, a monomer is in
contact with the substrate if a monomer and a substrate
bead are nearest neighbors on the lattice. In the desorbed
phase (T > Ta), ns → 0 for very long chains (N → ∞).
The power laws 〈Ns〉 ∼ Nφ or 〈ns〉 ∼ Nφ−1, where φ
is a crossover exponent [8], are expected to hold at the
transition temperature Ta.
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In three dimensions, the consistent estimation of a pre-
cise value of the crossover exponent is a longstanding
and still open problem. Various values around φ ≈ 0.5
have been proposed [8–17] (including the long-term con-
jecture of φ = 0.5 being super-universal and independent
of dimension [10]), but the posted uncertainties are much
smaller than the deviations among the estimates. This
indicates that there might be a systematic issue which has
not yet been properly addressed. The numerical value of
φ depends strongly on the precise estimate of the critical
temperature Ta.
In most previous studies only good solvent conditions

were considered, i.e., the intrinsic interaction between
nonbonded monomers has been widely neglected. How-
ever, it is also important to understand how the scaling
behavior depends on the solvent conditions and their in-
fluence on the transition properties as represented in the
phase diagram, parametrized by temperature and solvent
quality.
In this Letter, we systematically study the solvent de-

pendence of critical properties of the A-D transition of
linear, flexible polymer chains grafted to a substrate. Our
results aim at providing the quantitative foundation for
the understanding of the critical adsorption behavior of
entire classes of hybrid polymer-substrate systems. For
this purpose, we utilize the similarity of the A-D transi-
tion with phase transitions in magnetic systems [16, 18],
and employ finite-size scaling theory for the character-
ization of the critical properties. Corrections-to-scaling
effects are considered as well to take into account the
finite length of the simulated polymers chains.
The polymer model consists of N identical beads occu-

pying sites on a three-dimensional (simple-cubic) lattice.
The polymer chain represents an interacting self-avoiding
walk with short-range interactions between pairs of non-
bonded monomers and monomers and substrate sites.
Solvent conditions are changed by varying the energy
scales of these competing interactions.
Adjacent monomers in the polymer chain have unity

bond length. We consider a grafted polymer with one
end covalently, and permanently, bound to the surface.
Each pair of nearest-neighbor nonbonded monomers pos-
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sesses an energy −ǫm. Thus, the key parameter for
the energetic state of the polymer itself is the number
of monomer-monomer contacts, Nm. The flat homoge-
neous and impenetrable substrate is located in the z = 0
plane, and monomer locations are restricted to z > 0.
All monomers lying in the z = 1 plane are considered to
be in contact with the substrate, and an energy −ǫs is
attributed to each one of these surface contacts. Hence,
the energetic contribution due to the interaction with the
substrate is given by the number of surface contacts of
the polymer, Ns.
The total energy of the model can be written as

Es(Ns, Nm) = −ǫsNs − ǫmNm = −ǫs(Ns + sNm), (1)

where s = ǫm/ǫs is the ratio of the respective monomer-
monomer and monomer-substrate energies. Actually, s
controls the solvent quality in such a way that larger
s values favor the formation of monomer-monomer con-
tacts (poor solvent), whereas smaller values lead to a
stronger binding to the substrate. For convenience, we
set ǫs = 1 meaning that all energies are measured in units
of the monomer-substrate interaction.
For the simulation of the model, we used the contact-

density chain-growth algorithm [6], which extends earlier
chain-growth methods [19–23]. Consequently, the con-
tact density (or number of states) g(Ns, Nm) is directly
obtained in the simulation for any possible pair Ns and
Nm. It is independent of temperature and the ratio of the
interactions s. Thus, the temperature T and the solubil-
ity parameter s are external parameters that can be set
after the simulation is finished. We generated 108 − 109

chains with lengths N = 16, 32, 64, 128, 256, 400, and
503 monomers.
The contact density g(Ns, Nm) is a versatile quan-

tity in that all relevant energetic thermodynamic ob-
servables can be obtained by simple reweighting. For
instance, for a given pair Ns and Nm, the restricted
partition function Zr

T,s(Ns, Nm) can be defined as

Zr
T,s(Ns, Nm) = g(Ns, Nm) exp[(Ns + sNm)/kBT ], from

which the canonical partition function is obtained as
ZT,s =

∑

Ns,Nm

Zr
T,s(Ns, Nm). Similarly, the mean value

of any quantity Q(Ns, Nm) can also be computed by
reweighting,

〈Q〉 =
1

ZT,s

∑

Ns,Nm

Q(Ns, Nm)g(Ns, Nm)e(Ns+sNm)/kBT .

(2)
In the following, we set kB = 1. Apparently, contact
entropy, free energy, average number of surface contacts
Ns, average number of monomer-monomer contacts Nm,
heat capacity, cumulants, etc. are examples of functions
that are easily calculable for any values of T and s once
g(Ns, Nm) is known.
The scaling properties of generic energetic quantities,

such as maxima of specific-heat curves [24, 25], have
proven to be rather unsuitable for a systematic scaling
analysis [26], whereas the scaling behavior of the parti-
tion function turned out to be more insightful [14, 15].

We investigate the scaling properties of the order parame-
ter and its derivatives similarly to Ref. [16]. However, go-
ing beyond the standard approach, we take into account
corrections to scaling and use for our analysis convenient
temperature derivatives of the order parameter, as well
as scaling properties of the A-D transition temperature
and the fourth-order cumulant of the order parameter.
From the simulation results we estimate 〈ns〉, the

fourth-order Binder cumulant

U4(T ) = 1−

〈

n4
s

〉

3 〈n2
s〉

2 , (3)

and the logarithmic temperature derivative

Γns
=

d ln〈ns〉

dT
(4)

for each polymer length N . It is well known that, accord-
ing to finite-size scaling (FSS) theory for second-order
phase transitions, the order parameter 〈ns〉 should scale
close to the critical temperature as

〈ns〉 = Nφ−1fns
(x)

[

1 +Ans
(x)N−ω

]

, (5)

where corrections to scaling due to the finite polymer
length have been taken into account. The corresponding
fourth-order cumulant of the order parameter U4 given
by Eq. (3) should be independent of the chain length N
for very long chains [27], and the maximum value of Γns

,
given by Eq. (4), supposedly scales like

Γmax
ns

= N1/δfd(x)
[

1 +Ad(x)N
−ω

]

. (6)

In these equations, φ is the crossover exponent as defined
in Ref. [15], δ is the equivalent of the critical exponent
of the correlation length, ν, in ordinary magnetic con-
tinuous phase transitions, and fns

(x) and fd(x) are FSS
functions with x = (T − Ta)N

1/δ being the scaling vari-
able. The second term in the brackets in Eqs. (5) and (6)
approximates all corrections to scaling by a single term,
where ω is the leading correction-to-scaling exponent and
Ans

(x) and Ad(x) are non-universal functions (see, for
instance, Ref. [28]).
Accordingly, for the critical temperature the following

scaling law holds, which is also used in analogy to con-
tinuous transitions in magnetic models,

TN = Ta +N1/δfT (x)
[

1 +AT (x)N
−ω

]

. (7)

Thus, the procedure we can follow is quite standard.
From the simulations, we determine the exponent 1/δ
by using Eq. (6), which depends only on Γmax

ns

. In this
case, we consider fd(x) and Ad(x) as constants (we do not
expect them to vary appreciably since the maximum po-
sitions should occur at temperatures close to the critical
one). With this exponent at hand, the critical tempera-
ture Ta is obtained from Eq. (7) and with it we estimate
the crossover exponent φ by using Eq. (5), in which case
we can choose x = 0.
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FIG. 1. (Color online) Logarithm of the maximum value of
the order parameter derivative Γns

, defined in Eq. (4), and
logarithm of the order parameter 〈ns〉 as functions of the log-
arithm of the polymer length N for different s values. The
dots correspond to the simulation results and the lines are the
best fits according to Eqs. (5) and (6), without corrections to
scaling (linear fit, assuming Ad(x) = 0) and with scaling cor-
rections (Ad(x) 6= 0). The given numerical estimates include
the corrections to scaling.

As a test for the performance of the scaling approach
for the data obtained in our simulations, let us first
discuss results for good solvent conditions, s = 0. In
this case, we can compare with previously published re-
sults obtained with different methods. Figure 1 shows
the logarithm of the maximum value of the derivative
given in Eq. (4) as a function of the logarithm of the
polymer length N for different solvent conditions, in-
cluding the s = 0 case for which the linear fit yields
1/δ = 0.448(3). Taking into account corrections to scal-
ing we find 1/δ = 0.478(2), which indicates that cor-
rections to scaling are relevant. Both estimates are,
however, significantly smaller than the value reported in
Ref. [16], 1/δ = 0.56, which was obtained by a different
approach.
The fourth-order Binder cumulant, as a function of

the temperature, is shown in Fig. 2. One can clearly see
that there is a systematic crossing of the curves for the
longer chains with N ≥ 32 with the curve of the short-
est, N = 16. Considering these crossings as finite-length
estimates TN of the adsorption transition temperature,
we plot the crossing points for N ≥ 32 in Fig. 3. For the
N dependence we make use of the ansatz (7) with our
previous estimate of the exponent 1/δ ≈ 0.478.
It is obvious that the inclusion of corrections to scaling

is necessary in this case and our estimate Ta = 3.494(2)
is very close to the most recently reported value Ta =
3.500(1) by Klushin et al. [15], who employed a different
estimation method.
After the critical temperature has been evaluated, we

can utilize the scaling relation (5) to determine the
crossover exponent φ. The results are included in Fig. 1.
Although not visible in the scale used in the figure, the
corrections to scaling are important in this case, too. The
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FIG. 2. (Color online) Fourth-order Binder cumulant U4 as
a function of the temperature T for different chain sizes for
s = 0.
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FIG. 3. (Color online) Transition temperature estimates TN

as a function of N−1/δ for s = 0. The dots correspond to
the crossings of the fourth-order Binder cumulant for chain
lengths N ≥ 32 with the result for N = 16, as shown in
Fig. 2. The lines are the best fits according to Eq. (7), without
corrections to scaling (linear fit, i.e., AT (x) = 0) and with
scaling corrections (AT (x) 6= 0).

thus computed value φ = 0.492(4) is also comparable
with the estimate given in Ref. [15], φ = 0.483(2).
From the above results, we can conclude that the

present approach and the data obtained from our sim-
ulations reproduce the scaling behavior for the special
case of a non-interacting self-avoiding walk (s = 0) very
well. Results for the critical temperature of adsorption
and the crossover exponent are in good agreement com-
pared to the values previously obtained by means of other
procedures.
Our method has the advantage that we can also an-

alyze the structural behavior under other solvent condi-
tions for the polymer by varying the solvent parameter
s without the need of performing any additional simula-
tion. The scaling behavior of the thermodynamic quanti-
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FIG. 4. (Color online) Critical temperature Ta as a func-
tion of s for the adsorption-desorption transition. Results
for s = 0 from Refs. [15, 16] are also shown for comparison.
Note that for most data points, the error is smaller than the
symbol size. Inset conformations of the 503mer are repre-
sentative for the respective regions of parameter space. The
qualitative differences indicate additional transitions inside
the adsorbed/desorbed polymer phases. For s < 0, super-
self-avoiding conformations are dominant.

ties for other s values is qualitatively similar to the s = 0
case presented in Figs. 1–3, but the character of the ad-
sorption transition changes. For poor solvent, i.e., s > 0,
desorbed and adsorbed polymer conformations are much
more compact. The self-interacting polymer undergoes a
collapse and additional freezing transition and both tran-
sitions compete with the adsorption transition, depend-
ing on the solvent conditions. From the estimates for
transition temperatures and critical exponents, we find
that the specific parametrization of the critical behav-
ior depends on the solvent quality. As Fig. 1 shows, the
values of the exponents obtained for s = −1, 0, and 1
are significantly different. Obviously, the solvent quality
has a noticeable quantitative influence on the adsorption
behavior.

If s is negative, the monomer-monomer interaction
is repulsive, and the polymer avoids forming nearest-
neighbor contacts. This mimics the effect of a good sol-
vent. In the limit s → −∞, the system is represented by
what we may call a “super-self-avoiding walk” (SSAW)
model, where the contacts between nearest neighbors are
forbidden. This effectively increases the excluded vol-
ume. The adsorption temperature of this system is ex-
pected to be smaller than for s = 0. To our knowledge,
this case has not yet been studied and there are no re-
sults to compare with. However, as our results suggest,
the corresponding critical adsorption temperature of this
intrinsically nonenergetic SSAW should be Ta . 3.31.

Relaxing this constraint by increasing the value of s ef-
fectively increases the conformational entropy at a given
energy in the phase of adsorbed conformations more than
in the desorbed phase. In consequence, the slope of
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FIG. 5. (Color online) Critical exponents φ and 1/δ as a
function of the solvent parameter s. Results for s = 0 from
references [15, 16] are also shown for comparison.

the microcanonical entropy (or the density of states) be-
comes smaller near the transition point, which, in turn,
results in a larger adsorption temperature. The phase
diagram plotted in Fig. 4 shows exactly this behavior
for the adsorption temperature. Results for s = 0 from
Refs. [15, 16], also included in this figure, fit very well into
the extended picture of polymer adsorption we present
here.
For all s values, the adsorption transition is a second-

order phase transition. Therefore, we are going to discuss
in the following the s dependence of the critical exponents
in the entire range of the solvent parameter. Figure 5
depicts the behavior of the exponents φ and 1/δ if s is
changed. We find that their values vary along the second-
order transition line, meaning that this transition seems
to be nonuniversal. Moreover, both exponents exhibit
a peak near s ∼ 1.5. This can be an indication of the
presence of a multicritical point in this region [29–32]. In
fact, various additional crossovers between different ad-
sorbed phases in the high-s regime are expected. Anal-
yses for a finite system [33] show a complex structure
of adsorbed compact phases in this regime, but simula-
tions of sufficiently large systems which would allow for
a thorough finite-size scaling analysis are extremely chal-
lenging. Therefore, the discussion of the nature of sepa-
rate tricritical points or a single tetracritical point with
coil-globule transition lines extending into the desorbed
and the adsorbed phases and the crystallization behavior
near the adsorption line is future work.
In all fits of the correction-to-scaling exponent ω, we

have not noted any significant dependence on the param-
eter s, in contrast to φ and 1/δ. Furthermore, the fits are
not sensitive to variations of ω. Thus, the fits of all other
quantities were performed with the value ω = 0.5(1).
In this paper, we have systematically studied criti-

cal properties of the adsorption transition of polymers
under all solvent conditions, which was made possible
by generalized-ensemble chain-growth simulations of a
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coarse-grained lattice model. By using finite-size-scaling
theory and properly taking into account the corrections
to scaling, we have determined the critical exponents and
critical temperature under various solvent conditions. A
major result is the construction of the phase diagram
in the continuous spaces of temperature and the param-
eter s that quantifies the solvent quality. Comparison
with previous results for the singular case of s = 0 shows
good agreement, but also the necessity of introducing an
additional scaling relation and including corrections to
scaling.
The structure of the phase diagram and the depen-

dence of the critical exponents on the solvent parameter
suggest that the critical line does not seem to be uni-
versal under general solvent conditions. Moreover, the
exponents exhibit a peak near s values, where the com-
pactness of the polymer conformations changes, indicat-
ing the existence of possible multicritical points of coil-

globule and freezing transitions in the desorbed and ad-
sorbed regimes intersecting the adsorption transition line.
The rather strong variation of the critical exponents, as
well as the corresponding critical temperature near this
region, can be the cause for the difficulty encountered in
quantifying the criticality of the model, even for s = 0.
Naturally, additional simulations in the ordered adsorbed
region might be helpful for precisely determining the be-
havior of the transition lines close to the multicritical
point, which is a separate study worth in its own right.
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[30] T. Vrbová and S. G. Whittington, J. Phys. A: Math.

Gen. 31, 3989 (1998).
[31] R. Rajesh, D. Dhar, D. Giri, S. Kumar, and Y. Singh,

Phys. Rev. E 65, 056124 (2002).
[32] A. L. Owczarek, A. Rechnitzer, J. Krawczyk, and

T. Prellberg, J. Phys. A: Math. Gen. 40, 13257 (2007).
[33] P. H. L. Martins and M. Bachmann, Phys. Chem. Chem.

Phys. 18, 2143 (2016).


