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The pressure and internal energy of an ultracold plasma in a state of quasi-equilibrium are eval-
uated using classical molecular dynamics simulations. Coulomb collapse is avoided by modeling
electron-ion interactions using an attractive Coulomb potential with a repulsive core. We present
a method to separate the contribution of classical bound states, which form due to recombination,
from the contribution of free charges when evaluating these thermodynamic state variables. It is
found that the contribution from free charges is independent of the choice of repulsive core length-
scale when it is sufficiently short-ranged. The partial pressure associated with the free charges is
found to closely follow that of the one-component plasma model, reaching negative values at strong
coupling, while the total system pressure remains positive. This pseudo-potential model is also
applied to Debye-Hückel theory to describe the weakly coupled regime.

I. INTRODUCTION

Accurate models for the thermodynamic and transport
properties of strongly coupled plasmas are essential for
describing their evolution as a continuous fluid [1]. Ultra-
cold neutral plasma (UCP) experiments provide an ex-
cellent test bed for validating such models because it is
possible to precisely probe them using optical diagnostics
in table-top experimental set-ups [2]. Verifying models
using UCPs can also advance the understanding of other
strongly coupled systems, such as high energy density
plasmas [3–5], which arise in extreme environments and
can be difficult to diagnose precisely. One of the most
intriguing features is that UCPs are electron-ion systems
in which each component can be in, or near, the strong
coupling regime. Thus, they can provide insights into
two-component physics beyond the reach of the common
one-component plasma (OCP) approximation [6, 7]. In
this paper, we develop a method to simulate an electron-
ion plasma in a state of quasi-equilibrium using classical
molecular dynamics (MD) simulations. This is applied
to evaluate the pressure and internal energy of the sys-
tem, as well as to distinguish the contributions from free
charges and bound states [8]. These show that the free
charge thermodynamics closely resemble predictions from
the OCP model, but that classical bound states (analo-
gous to the Rydberg atoms in an UCP) must also be
accounted for to preserve physical limitations such as a
positive total pressure.

UCPs are typically created by the photo-ionization of
laser cooled atoms confined in a magneto-optical trap [9–
11], and can have densities up to 1011cm−3. Ion temper-
atures at formation range from µK to mK, and the ini-
tial electron temperature typically ranges from 0.1-1 K.
After formation, the plasma components are no longer
confined, and the expansion has a cooling effect [12, 13].

∗ sanat-tiwari@uiowa.edu

However, this is overwhelmed by other heating mecha-
nisms. Both ions and electrons are rapidly heated by dis-
order induced heating [14], and electrons are additionally
heated by three-body recombination (3BR) throughout
the plasma lifetime [15]. As a result, these are rapidly
evolving, partially ionized plasmas with electrons in a
weakly to moderately coupled state, and ions in a mod-
erately to strongly coupled state. Previous simulation
and modeling efforts have largely focused on describing
the system evolution, including expansion, disorder in-
duced heating, and eventual recombination to a collapsed
neutral-like state [15–17].

Here, we instead focus on developing a method to study
the properties of an UCP at fixed conditions, i.e., density
and temperature. The motivation is to connect theories
for thermodynamic and transport properties, which make
predictions at fixed conditions, with experiments, which
measure these properties over short enough time inter-
vals that the conditions can be considered fixed. Exper-
iments typically focus on measuring the free charges [2].
It is interesting from a theoretical viewpoint – and neces-
sary for comparison with experiment – that one separates
the bound state contributions from the free charge con-
tributions when describing transport or thermodynamic
properties. The primary challenge is that the equilib-
rium state of the system is a recombined neutral gas
[15, 18, 19]. A successful model must somehow limit the
recombination so that a free charge population remains,
but do so in a way that one can connect that simulated
equilibrium state with an interval of time during the evo-
lution of the plasma in an experiment.

To accomplish this, we model electron-electron and
ion-ion interactions with the Coulomb potential and
electron-ion interactions with a pseudo Coulomb poten-
tial that also includes a repulsive core

vee = vii =
e2

r
(1a)

vei = −e
2

r

[
1− exp

(
− r2

(αa)2

)]
. (1b)
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Here, r is the separation between two particles, e is the
electron charge, a = (3/4πni)

1/3 is the average spacing
between two ions or two electrons, ni is the number den-
sity of ions with ne = ni, and α is an adjustable param-
eter that sets the e-i repulsion length scale. Simulations
were conducted in a periodic box with both electrons and
ions held to the same fixed temperature using a Nosé-
Hoover thermostat [20]. Due to computing constraints,
the ion mass was set to be 10 times the electron mass.
Since mass does not influence the equilibrium properties
of the system, which are the focus of this work, this re-
duced mass is inconsequential. Electrons are hotter than
ions in real UCP experiments (ion coupling strength Γi

up to 5 and electron coupling strength Γe up to 0.1), but
we concentrate on equilibrium here because our interpre-
tation of data will utilize aspects of equilibrium statistical
mechanics. Future work will extend the model to treat
unequal electron and ion temperatures.

The electron-ion potential in Eq. (1b) is similar to the
Kelbg potential used to model dense, degenerate plas-
mas [21, 22]. However, an important difference arises
here. In dense plasmas, the length scale αa is associated
with the de Broglie wavelength characterizing quantum
mechanical diffraction. At dense plasma conditions, the
de Broglie wavelength is of the same order as the inter-
particle spacing, so αa is of order unity. As a result,
α significantly influences the predicted thermodynamic
properties and transport rates. In contrast, in a UCP
the de Broglie wavelength is orders of magnitude smaller
than a. In our model, α is a model parameter that does
not represent a physical scale.

The main idea behind this model is that as α de-
creases, the properties of the free charge components of
the system asymptote to values that are independent of
α. Hence, these asymptotic values represent the state of
the charged components at fixed conditions. The main
result of this paper is the demonstration of this asymp-
totic plateau in the partial pressure and internal energy
associated with the free charges as the parameter α is
reduced. What does change as α shrinks is the fraction
of the plasma in a bound state. Decreasing α increases
the depth of the potential well in the electron-ion inter-
action, resulting in more classically bound pairs, or clus-
ters. We observe that the bound state population has a
lower temperature than the free population. This, along
with a decreasing fraction of free charged states, leads to
a slight slope in the thermodynamic variable profiles as
α decreases. Nevertheless, the model provides a means
to access properties of the charged particles (plasma) at
fixed conditions via the asymptotic values obtained at
small α, while also providing a means of controlling the
bound state fraction. In essence, because it determines
the bound state concentration(fraction), the value of the
model parameter α provides a connection with a certain
time interval of an ultracold plasma experiment.

Interpretation of the data requires a means to separate
bound states from free charges. Here, we calculate the
electron-electron, ion-ion and electron-ion radial distri-

bution functions, gij(r), and apply a simple model based
on an energy argument to separate free and bound states.
The pressure and internal energy are then computed di-
rectly from the radial distribution functions. The results
provide a proof of principle of this technique. Future
developments may address methods to directly separate
free and bound states in the simulations, as well as to
treat non-equilibrium systems that more closely repre-
sent experimental conditions.

This paper is organized as follows. Section II applies
the model to Deybe-Hückel theory, which treats weakly
coupled plasmas. This serves to demonstrate key aspects
of the model using a familiar analytic formalism. Sec-
tion III provides details of the MD simulations. Section
IV presents the results of applying the model using MD
simulations at strongly coupled conditions. Finally, we
conclude and provide some future prospects in Sec. V.

II. WEAKLY COUPLED PLASMA

At equilibrium, the coupling strength can be quantified
by the Coulomb coupling parameter

Γ =
e2/a

kBT
, (2)

which is the ratio of the Coulomb potential energy at
the average interparticle spacing to the average kinetic
energy. Here the coupling strength Γ is defined based
on each individual species density and temperature and
Γ = Γe = Γi (Subscripts ‘e’ and ‘i’ represent electron
and ion species). Properties of weakly coupled plasmas,
Γ � 1, are well described by models based on a series
of binary interactions between particles. In this section,
we first revisit aspects of two- and three-body interac-
tions that will be useful for interpreting the more com-
plex N-body simulations in Sec. IV. We also apply the
model potentials to Debye-Hückel theory, demonstrating
their essential features: the separation of bound and free
states and the asymptotic values of the free-charge ther-
modynamic state variables as α is reduced.

A. Classical bound states

Binary encounters between electrons and ions can be
classified as either free or bound. Since the effective po-
tential, Ueff(r) = vei(r) + l2/(2meir

2), has a global min-
imum, the sign of total energy, E = meiu

2/2 + vei(r),
of the e-i pair determines whether the orbit is bound or
free [23]. Here, mei = memi/(me + mi) is the reduced
mass, u = |ve − vi| is the relative initial particle speed,
and l is the angular momentum. Figure 1 shows an ex-
ample of each type of interaction for an electron-ion pair
interacting via the Coulomb potential. In Figs. 1a and
b, the initial conditions are such that E > 0 and E < 0
respectively, resulting in free and bound orbits.
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FIG. 1. Trajectories of an electron (blue) and ion (red) in-
teracting through the Coulomb potential at conditions rep-
resenting (a) free scattering and (b) a bound state. Arrows
show the direction of electron motion from its starting point
(blue dot). The ion to electron mass ratio is chosen to be 105

for this case. Distances are in units of aN = 10−5m.

FIG. 2. Trajectories demonstrating various outcomes of three-
body interactions between two electrons (red and black) and
one ion (blue): (a) A classical electron-ion bound state in-
teracts with an energetic electron, which frees the previously
bound electron and forms a loosely bound state with the ion.
(b) A classical electron ion-bound state interacts with an en-
ergetic electron, resulting in all free states. (c) An external
electron interacts with a loosely bound state, gaining kinetic
energy from the interaction and causing the bound pair to
become more tightly bound. (d) An ion and two electrons
all begin in a free state but form a bound pair via the three-
body recombination. The ion to electron mass ratio is cho-
sen to be 100 for this case. Distances are normalized with
aN = 1.3366 × 10−5m.

B. Three-body interactions

Binary collisions alone do not allow for the formation
of bound states from free states, since the total energy
of the binary pair is fixed. However, this can change
if a third particle is present. Four types of three-body
interactions are pictured in Figure 2. Figure 2d illus-
trates the interaction of two electrons and an ion – all

initially free – to form a bound electron-ion pair. The re-
duced potential energy of the newly bound pair is trans-
ferred to the second electron as additional kinetic energy.
This is a classical realization of three-body recombination
(3BR), which is an important heating mechanism in ul-
tracold plasmas [13, 16, 24]. At thermal equilibrium, the
formation of bound states is balanced by the reciprocal
process, classical impact ionization, which is pictured in
Figure 2b. The net result of these three-body interac-
tions is that the bound pairs are less energetic than free
particles, leading to overall heating of the free charges in
the plasma, especially the electrons. At equilibrium, the
bound subset may have a lower temperature than the free
population. This will be discussed further in Sec. IV B.

C. Radial distribution functions

The radial distribution function represents the density
profile surrounding individual charged particles. It is also
related to the potential of mean force, which is the poten-
tial obtained when taking two particles at fixed positions
and averaging over the positions of all other particles [25]

F12 =

∫ [
−∇r1U(r1, . . . , rN )

]
e−U/kBT

Z
dr3 . . . drN (3)

= −kBT∇r1 ln g(|r1 − r2|) ≡ −∇r1φ(r1 − r2).

Here, g(r) is the radial distribution function, φ is the
potential of mean force, Z =

∫
exp(−U/kBT )dr1 . . . drN

is the configurational integral and U ≡
∑

i,j v(|ri − rj |).
In weakly coupled plasmas, the potential of mean force

is the Debye-Hückel potential with a screening length
equal to the total Debye length. This can be obtained
using a standard fluid approach with a Boltzmann dis-
tribution of electrons and ions [26], or from the po-
tential of mean force computed from the weakly cou-
pled limit of the hypernetted-chain (HNC) approxima-
tion (φ/kBT � 1) [27]. For the bare potentials in Eq. (1),
the associated weakly coupled limit of the potentials of
mean force are

φii(r)

kBT
=
φee(r)

kBT
=

Γ

r/a
exp

(
−
√

3Γr/a
)

(4a)

φei(r)

kBT
' −φii(r)

kBT

{
1− exp[− (r/αa)

2
]
}
. (4b)

The expression for φei(r) relies on a scale separation be-
tween the repulsive core and screening length (αa� λD).
The RDFs can be obtained directly from Eq. (4) via their
association with the potential of mean force gij(r) =
exp(−φij/kBT ). Note that since both species are as-
sumed to have the same temperature, gee = gii and gei =
gie. Figure 3 shows the RDFs for (a) electron-electron
(or ion-ion) pairs with coupling strength Γ = 0.02 and
Γ = 0.5 (red and blue lines respectively), (b) electron-
ion pairs with Γ = 0.02 and (c) electron-ion pairs with
Γ = 0.5. The electron-ion RDFs (gei) clearly show a peak



4

10-2 100

Radial distance, r/a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
e-

e/
i-i

 R
ad

ia
l d

is
tri

bu
tio

n 
fu

nc
tio

n,
 g

ee
(r)

(a)

Γ = 0.02
Γ = 0.5

10-2 100

Radial distance, r/a

100

101

e-
i R

ad
ia

l d
is

tri
bu

tio
n 

fu
nc

tio
n,

 g
ei

(r)

(b)

Γ=0.02α=0.006
Γ=0.02α=0.01
Γ=0.02α=0.02

10-2 100

Radial distance, r/a

100

101

e-
i R

ad
ia

l d
is

tri
bu

tio
n 

fu
nc

tio
n,

 g
ei

(r)

(c)

Γ=0.5α=0.1
Γ=0.5α=0.2
Γ=0.5α=0.6

FIG. 3. Radial distribution functions at weakly coupled conditions obtained from Eq. (4). (a) Electron-electron/ion-ion RDFs
for Γ = 0.02, 0.5. (b) Electron-ion RDFs for Γ = 0.02 and various α. (c) Electron-ion RDFs for Γ = 0.5 and various α. Like
species RDFs (gee/ii) have no α dependence as they interact through the bare Coulomb potential.
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FIG. 4. Free (yellow) and bound state (cyan) contributions to
gei(r) with Γ = 0.5 and α = 0.1. The horizontal and vertical
lines delineate gei = 1 and rc, respectively.

at the location αa with the amplitude of this peak in-
creasing sharply either as α decreases or as the coupling
strength increases. These peaks represent the classical
bound states that form in the potential well at separa-
tion αa.

Next, we discuss a method to distinguish contributions
due to free and bound charges in the RDFs, which will
later be used to distinguish the contributions of each pop-
ulation to the thermodynamic state variables. As dis-
cussed in Sections II A and II B, the condition for an e-i
pair to be bound is E < 0, which can occur as the re-
sult of interaction with a third particle. In a many-body
picture, the potential of mean force models the average

interaction energy of an e-i pair in the presence of the
surrounding plasma. Applying this to the condition for
bound states from Sec. II B suggests that particle inter-
actions for which |φei(r12)| > kBT are expected to be
bound and those with |φei(r12)| < kBT free on average.
We use this as a criterion to separate gei(r) into free and
bound contributions according to

max {gfree
ei } = exp (1) . (5)

In other words, a critical distance rc defined by
|φei(rc)| = kBT delineates a separation between bound
and free populations: Particles in the region r > rc are
considered free and those with r < rc bound. Figure 4
provides an example for Γ = 0.5 and α = 0.1, showing
the separation between bound and free contributions to
the radial density profile.

Equation (5) provides a phenomenological ansatz
which makes a sharp division between free and bound
contributions and does not include any statistical varia-
tion. A more realistic model would include a transition
region of a certain width. For example, there might be
several pairs of opposite charges not bound even when
their kinetic energy is less than their average potential
energy and vice-versa. Such a statistical width would be
expected to lead to a variation in thermodynamics quan-
tities being estimated based on criterion Eq. (5). This
will be discussed further in subsections IV D and IV E.

The bound state fraction can be estimated directly
from the e-i RDFs by taking the ratio of the number
of bound particles to the total number of particles

Xb =

∫ rc
0

[gei(r)− 1] dr∫∞
0

[gei(r)− 1] dr
. (6)
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Where Xb is the bound state fraction of the total sys-
tem of particles. Figure 5 illustrates how the fraction of
bound states varies with the repulsive core parameter α.
At a given coupling strength, there is a transition regime
where the bound state fraction increases sharply. The
upper edge of this region indicates a nearly recombined
plasma (i.e., classical neutral gas) while the lower edge
indicates a fully ionized plasma. The transition is ob-
served to occur when α ' 0.05Γ based on this data in
the range Γ = 0.01− 1.

D. Excess pressure

At equilibrium, the pressure can be computed directly
from the RDFs. It consists of an ideal component and
an excess component: P = Pideal + Pex, where Pideal =
nkBT , and the excess pressure is [25, 28]

Pex = −2

3
π
∑
i,j

ninj

∫ ∞
0

v′ij(r)gij(r)r
3dr , (7)

where v′ij denotes the radial derivative of the bare poten-
tials.

Figure 6a shows how the excess pressure Pex varies
with α for three values of Γ. Based on these curves, we
identify three parametric regions. In the rightmost re-
gion III, the repulsive core scale length is larger than the
average particle separation (α ≥ 1). Here, the long-range
nature of the repulsive cores generates a significant pos-
itive excess pressure. A physical example of this regime
is dense degenerate plasmas where the de Broglie wave-
length exceeds the average interparticle spacing. In the
leftmost region I, the repulsive core length scale is much
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FIG. 6. (a) Excess pressure for weakly coupled conditions
calculated from Eqs. (1), (4), and (7). (b) Excess internal
energy variation with α and Γ using Eq. (4). In each, dashed
lines are for the combined free-plus-bound system. Solid lines
contain just the free-charge contribution.

smaller than the average particle spacing (α� 1). Here,
the electron-ion potential well is very deep, leading to
significant recombination and a corresponding negative
excess pressure. This is the region of interest for mod-
eling ultracold neutral plasmas. In the intermediate re-
gion II, the excess pressure takes a constant value that is
slightly negative but larger than −1, indicating that the
total pressure remains positive in this regime.

The solid lines in Fig. 6a show the contribution to the
excess pressure associated with free charges, which was
obtained using the energy criterion in Eq. (5). Although
the excess pressure diverges toward large negative val-
ues when the bound states are kept (dashed lines), it
is found to be independent of the repulsive core scale
parameter α when they are removed (solid lines). The
asymptotic value associated with the free charge popu-
lation corresponds to that of the intermediate region II.
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FIG. 7. Dependence on Γ of (a) the excess pressure and (b)
excess internal energy at α = 0.1. Black lines with stars are
for the total (bound plus free) system, blue lines with cir-
cles are just the free charge contributions, and the magenta
line with squares indicates the bound state contributions only.
Red dashed lines are the OCP values. Shaded regions indi-
cate where the thermodynamic state variables are calculated
using RDFs obtained from Debye-Hückel description, while
unshaded regions contain molecular dynamics results. Dotted
lines represent an extension of Debye-Hückel theory into the
strongly coupled regime. The blue shaded regions show how
the excess pressure and internal energy of the free charges
varies when the R.H.S. of Eq. 5 is varied from exp (0.5) to
exp (2).

This asymptotic value is the partial excess pressure as-
sociated with the free charge population. The αa value
separating this intermediate region from region I is asso-
ciated with the spatial location where the potential en-
ergy of the attractive Coulomb interaction significantly
exceeds the average kinetic energy.

In a typical electron-ion radial distribution function,
the peak associated with bound state contributions in-
creases several orders of magnitude as αa varies from
higher values of αa ∼ 1 to short ranged values αa << 1
(see Fig. 11c). If we consider the influence of a statistical

variation in the value used to define the bound popula-
tion in the exponent of Eq. (5), we find that the result
for the partial excess pressure associated with each con-
tribution (free or bound) is insensitive to the particu-
lar value chosen. For example, considering a range from
eφ/kBT = 0.5 to 2, the corresponding g(rc) value at
the cutoff will vary from 1.6 - 7.4. A change in cutoff
over this range of values has a negligible influence on the
asymptotic value of the partial excess pressure of the free
charges shown in Fig. 6. This aspect will be discussed and
quantified further in subsections IV D and IV E.

In our model, α is a set parameter that is not associ-
ated with a physical scale. However, consider for a mo-
ment associating the thermal de Broglie wavelength with
the repulsive core scale length. The ratio of the ther-
mal de Broglie wavelength and the interparticle spacing
λdb/a = [2πh̄2/(miekBT )]1/2/a is a measure of the influ-
ence of quantum mechanical wave effects of the ion fluid.
Here, mie = memi/(me +mi) ' me is the reduced mass.

Applying αa = λdb, provides Γa/λdb ' 2/
√
T [eV].

Thus, the boundary α = λdb/a ' 0.05Γ is simply associ-
ated with the temperature T ' 0.01 eV. If T <∼ 0.01 eV,
the plasma is in region I and the excess pressure is highly
negative, indicating the system will collapse (i.e., recom-
bine). If T >∼ 0.01 eV, the plasma is in the plateau region
II with a small negative excess pressure, but a positive to-
tal pressure. Ultracold plasmas fall deep in region I. The
additional challenge at strong coupling (Γ >∼ 1) is that
the intermediate region becomes narrow, and the Debye-
Hückel approximation breaks down. In this region, we
will separate the contributions from free charges (plasma)
and classical bound states using the same methods out-
lined in this section, but apply them to RDFs calculated
with MD simulations.

Figure 7a shows the excess pressure dependence on Γ
at a fixed value of α = 0.1. Data in the shaded regions
was obtained using the Debye-Hückel model and data
in the non-shaded regions was obtained using molecular
dynamics simulations. The black line with pentagram
markers shows the total excess pressure including free
and bound states. The blue line with circles denotes the
excess partial pressure of the free charges. The magenta
line with square markers represents bound state contri-
bution. At weak coupling, the excess pressure is small,
but grows significant as strong coupling is approached
The role of free and bound contributions to the excess
pressure in the strongly coupled regime will be further in
Sec. IV D.

E. Internal energy

The same arguments used to describe excess pressure
in the previous section can be carried over to describe
excess internal energy. The excess internal energy for an
electron-ion plasma can be written in terms of the RDFs
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as [28]

Uex

N
=

2π

n

∑
i,j

ninj

∫ ∞
0

gij(r)

(
vij(r)− T

∂

∂T
vij(r)

)
r2dr .

(8)
Here N is the total number of particles in the system of
volume V such that n = N/V . Note that in the present
context α is constant, so the interaction potentials vij
are independent of temperature and the second term in
Eq. (8) is zero. However, in a dense plasma context αa '
λdb, so the interaction potentials depend on temperature
and this term would be nonzero.

Fig. 6b shows the variation of internal energy with the
repulsive core parameter α for different values of coupling
strength Γ. As was the case with the excess pressure,
the internal energy of the full system (free plus bound)
diverges sharply as α decreases, but it asymptotes to a
constant when the bound state contribution is removed.

We emphasize that a well-defined thermodynamic
pressure and energy for weakly coupled plasmas tradi-
tionally rely on being able to neglect the inter-particle
interactions in comparison with their kinetic energy. The
analysis of this section illustrates that the inherent dif-
ficulties of a point-particle description of a plasma are
still formally present at weak coupling, as evidenced by
the negative divergence of the pressure and energy as
α→ 0. In practice, quantum mechanical effects prevent-
ing Coulomb collapse at close distances are responsible
for the stability of matter [29].

III. SIMULATION METHOD

Three dimensional classical MD simulations were car-
ried out using the open source code LAMMPS [30].
LAMMPS is massively parallel (both CPU and GPU
based) and is efficient for large-scale particle simulations.
The simulation geometry was a 3D cubic box with pe-
riodic boundary conditions. Each simulation used 104

electrons and 104 ions, and the typical time step was
0.005ω−1

pe . These parameters were chosen to ensure en-
ergy conservation as well as to fully resolve the dynamics
of the lightest species (i.e. electron) during the simula-
tion [31]. Simulations were conducted by first equilibrat-
ing the system using a Nosé-Hoover thermostat to achieve
a desired temperature corresponding to a particular Γ
value [20]. The temperature of each species s at each

timestep was calculated from 3
2NskBTs = 1

2ms

∑Ns

i v2
si,

where vsi is the instantaneous particle velocity. After
equilibrium was achieved, the thermostat was turned
off and the RDF was computed. The PPPM (particle-
particle, particle-mesh) method [32] was used to calculate
the long range interactions. The interaction potentials
used were those from Eq. (1), with α an input parame-
ter. The ion mass was taken to be 10 times the electron
mass. However, here we present results at equilibrium,
in which case we found that the mass ratio did not in-
fluence the RDFs, as expected from classical equilibrium
statistical mechanics.

These simulations were limited to values of α no less
than 0.1 due to energy conservation requirements. We
found that at smaller values of α it became prohibitive
to resolve the timescales of tightly bound pairs to the
degree required for energy conservation. Nevertheless,
this value was small enough to reach the desired plateau
regime.

IV. STRONGLY COUPLED PLASMA

We now apply the concepts and techniques discussed
in Section II to moderately and strongly coupled plasmas
using classical MD simulations.
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FIG. 9. Electron temperature for free (red dashed line) and
bound (blue line) species in a simulation with Γ = 1 and
α = 0.1. The black line shows the total electron temperature
in the system.
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FIG. 10. The evolution of the electron temperature in an
ultracold plasma simulation at Γ = 10 and various values of
α. The heating rate increases as the repulsive core distance αa
shrinks. The system is kept under the thermostat for the first
250 ω−1

pe and then lifted to allow free temperature evolution.

A. Classical bound states

Compared to a weakly coupled plasma, a strongly cou-
pled plasma whose particles interact through the pair po-
tentials of Eq. (1) is expected to form more bound states.
This is because the depth of the electron-ion potential
well scales linearly with Γ. Indeed, comparing Fig. 8b to
Fig. 4, doubling Γ yields nearly a factor of four increase
in the peak value of gei(r) for the same value of α, in-
dicating that a larger fraction of the plasma is confined
to tight orbits like those pictured in Fig. 8a. In addi-
tion to the many binary bound pairs, we observed that
clusters of bound pairs can form stable structures under
strong coupling conditions. These can take the form of
long chains, or rings. These structures will be discussed
in more detail in a later work.

In the present studies we limit our results up to mod-
erate coupling strengths only. The reason is that as we
move towards stronger coupling strength, the system’s
increased affinity for forming bound states results in a
“plasma” that is primarily composed of clumped bound
pairs. Removal of the bound states would then effectively
take the majority of charged particles out of evaluation
of thermodynamic properties, reducing the effective cou-
pling strength of the free charges below their nominal Γ
value. Thus our simulation results will not remain prac-
tical for higher Γ values. Physically, this is related to the
rapid rate of recombination at these conditions.

B. Three-body interactions

MD simulations permit us to investigate the cumula-
tive effect of the three-body interactions studied in isola-
tion in Section II B. To do so, we used a microscopic cri-
terion (instead of Eq. (5)) to classify individual electron-
ion pairs as either free or bound. This method was only
used for the purpose of getting the data for Figure 9.
For a selected pair of particles, we computed Ueff(r) and
E as though the two particles’ motion were unaffected
by the surrounding plasma. Repeating for many such
pairs, we calculated the kinetic energy for the popula-
tion of free electrons and bound electrons. The results
for Γ = 1 and α = 0.1 are plotted in Figure 9. This shows
that free electrons carry approximately twice as much ki-
netic energy than those bound to an ion for this set of
parameters. This is in agreement with our expectations
from the three-body dynamics described in Section II B,
where electrons that end up in a bound state were ob-
served to give up kinetic energy to other nearby electrons
via scattering. Figure 9 also shows that the two electron
populations’ temperatures remain fixed (aside from fluc-
tuations). This indicates that not only is the system as
a whole in equilibrium, but the free and bound electron
sub-systems have each attained their own thermal equi-
librium.

We also find that if the thermostat is lifted, the plasma
will heat; as evidenced by the temperature evolution
plots in Figure 10. It can be seen that when the ther-
mostat is switched off at time t ≈ 250ω−1

pe , the electron
temperature increases rapidly if α is sufficiently small.
Only the electron temperature is shown because the ion
temperature curves are identical. The heating rate in-
creases as α decreases, implying that the heating of the
system arises from the liberation of Coulomb potential
energy via classical three-body recombination. At suffi-
ciently large values of α, the heating effect is insignificant
even after removing the thermostat, as in the α = 0.2
line of Figure 10, as well as the for the parameters of
Figure 9. However, for smaller values of α, the heat-
ing effects become more and more significant because the
deeper potential well in the electron-ion interaction pro-
vides a larger potential energy source that is converted to
kinetic energy via heating. This figure demonstrates the
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FIG. 11. Radial distribution functions gee(r) (top) and gei(r) (bottom) for equilibrium electron-ion plasma, showing variation
with α (left) and Γ (right).

rapid evolution of ultracold plasmas, and that the con-
cept of quasi-equilibrium relates to a narrow time win-
dow. In contrast, the same concept is much more clearly
defined in dense degenerate plasmas with slow recombi-
nation rates [28, 33].

We note that the use of particle trajectories to separate
free and bound charges is used only in the temperature
calculations of this subsection. There are three reasons:
1) it is computationally expensive; 2) bound pairs tend
to be difficult to track because they survive only a few
plasma periods before being broken up; 3) at higher cou-
pling, the binary encounter picture is inappropriate, since
bound pairs tend to clump and form complex structures.
For these reasons, the remainder of the thermodynam-
ics results in this section are based on the bound/free
separation criterion Eq. 5 as discussed further below.

C. Radial distribution functions

Figure 11 shows the RDFs for electron-electron and
electron-ion pairs obtained from classical MD simulation
of an ultracold plasma. The upper panels show the RDFs
for electron-electron pairs while the lower panel shows
the RDFs for electron-ion pairs. Subplots (a) and (c)

show the effect of varying α at fixed Γ, and vice-versa for
subplots (b) and (d).

In addition to the peak in gei(r) near r = αa, the
figures show an additional peak in gee/ii(r). This fea-
ture of the like-charge RDFs is a consequence of the sys-
tem’s tendency to cluster. Tightly bound e-i pairs are
essentially dipoles, which attract other dipoles and cause
clumping to occur. This permits, for example, two bound
electrons to lie near each other in spite of their mutual
repulsion.

Though interesting, this secondary peak in gee/ii(r)
complicates the procedure for separating bound and free
populations at the RDF level. In order to use Eq. (5) to
remove bound states from gei(r), we must also remove
them from gee/ii(r) in an internally consistent way. To
do so, we first enforce Eq. (5) as before, yielding a cutoff
distance rc,ei. Next, we determine a second cutoff dis-
tance rc,ii(= rc,ee) that maintains quasineutrality within
the individual bound and free subpopulations. That is,
we determine rc,ii/ee such that

4πni

∫ ∞
rc,ii

gii(r)r
2dr − 4πne

∫ ∞
rc,ei

gei(r)r
2dr = −1 (9a)

4πni

∫ ∞
rc,ei

gei(r)r
2dr − 4πne

∫ ∞
rc,ee

gee(r)r
2dr = 1. (9b)
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FIG. 12. Dependence of the excess pressure (a) and excess in-
ternal energy (b) on the repulsive core parameter α at various
coupling strengths. Dashed lines indicate results for the com-
bined free-plus-bound system and the solid lines with markers
indicated results isolating the free-charge components of the
system.

Again, the hypothesis here is that approximately all con-
tributions to gii(r) below rc,ii are due to clustering of
bound pairs.

D. Excess pressure

The excess pressure for moderately coupled ultracold
plasmas was evaluated using Eq. (7). The input RDFs
for these moderately coupled media were obtained from
equilibrium MD simulations. In Fig. 12a, the total ex-
cess pressure (including both free and bound charges) is
plotted as a function of α for Γ = 1, 2, 5. The line plots
with markers show the excess pressure calculated after
removal of bound states from the RDFs. The bound-
and free-state RDFs have been separated using Eqs. (5)
and (9). Like the weakly coupled regime from Fig. 6, the

excess pressure for the free charge population is found to
plateau to an α-independent value for small α. Molecular
dynamics simulations become computationally challeng-
ing due to energy conservation issues for small values of
the parameter α (less than α = 0.1). This limits the ac-
cessible range of α and is the reason the pressure shown
in Fig. 12a does not reach the divergent regime at smaller
α seen in the weakly coupled study (Fig. 6a).

Fig. 7a shows the excess pressure dependence on Γ with
α fixed at a value of 0.1. The pressure of the total plasma
remains positive (Pex > −1) at all values of Γ shown.
The blue line with circles and magenta line with squares
are the partial excess pressures due to free and bound
charges, respectively. This figure shows that the partial
excess pressure due to the free charge contribution closely
follows the OCP results, i.e., Pex < 0 and that the to-
tal partial pressure associated with the free charges be-
comes negative around Γ ≈ 4. The collapsing nature of
free electron-ion gas is responsible for this negative ex-
cess pressure. The partial excess pressure due to bound
states is always found to be positive, much like what one
would expect for a gas of neutral atoms. As the cou-
pling strength increases, a large fraction of plasma forms
bound states and hence they contribute more to keep the
total excess pressure positive. The figure also shows that
the MD results show a consistent trend that merges with
the Debye-Hückel results at weak coupling.

We have also tested the robustness of the criterion
in Eq. (5) by varying the value in the exponent repre-
senting eφ/kBT , from 0.5 to 2. This window represents
statistical uncertainty in the boundary separating free
and bound populations. In other words, this variation in
eφ/kBT provides an approximate statistical width to the
critical cutoff distance rc which is used to separate free
and bound states from an electron-ion radial distribution
function. The shaded region in Fig. 7a shows the vari-
ation in excess pressure for free charges as we vary the
value of exponent eφ/kBT of criterion in Eq. (5). The
small width of this shaded region suggests that the results
do not change significantly. Thus we conclude that the
physics-based argument for the criterion eφ/kBT ∼ 1 and
the insensitivity of results to the particular value chosen
provides additional confidence in the robustness of this
method.

E. Internal energy

The excess internal energy was also evaluated using the
RDFs obtained from MD along with Eq. (8). Figure 12b
shows how the excess internal energy of the total (free
plus bound) plasma depends on α at Γ = 1, 2, 5. The
lines with markers represent the excess internal energy
of free charges found by removing the contribution of
bound states to gij(r). Similarly to previous results for
excess pressure, the removal of bound states again leads
to values of Uex that are independent of α in the α → 0
limit.
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Fig. 7b shows the excess internal energy at different
values of coupling strength Γ with α = 0.1. Similar to
excess pressure, the excess internal energy of the free
states (blue line with stars) is close to the OCP value
(red dashed line). At increased coupling strength, an
increase in the bound state fraction causes the internal
energy to become increasingly negative. Similar to sub-
section IV D, the partial excess internal energy for free
charges includes a shaded region representing the results
obtained as the value of the exponent eφ/kBT in Eq. (5)
ranges from 0.5 to 2. Again, the small width in the vari-
ation of the excess pressure due to free charges suggests
that the criterion used in Eq. (5) is insensitive to statis-
tical variations in deciding the critical cutoff distance rc
in electron-ion radial distribution functions.

V. CONCLUSIONS

Using Debye-Hückel theory for the weakly coupled
regime and equilibrium MD simulations for the strongly
coupled regime, we observed that the Coulomb collapse
of a classical electron-ion plasma can be prevented by
applying a repulsive core force at close distance (αa) in
the electron-ion interaction. Furthermore, the removal
of the bound state contribution to the radial distribution
functions was shown to provide predictions for the ther-
modynamic state variables that are independent of the
model repulsive core length scale.

These results provide a method to separate the con-
tribution of free charges from classical bound states in
the evaluation of pressure and internal energy of a clas-

sical electron-ion plasma. This enables quasi-equilibrium
analysis of classical electron-ion plasmas, as are found in
ultracold neutral plasma experiments (Γi up to 5 and Γe

up to 0.1). Such an analysis is useful for connecting the-
oretical predictions, which are made at fixed conditions,
with experimental measurements, which are made over
short enough time intervals that the conditions may be
considered fixed. The work lays important groundwork
for the further development of two-component models for
ultracold plasmas based on a classical point-particle pic-
ture of the microscopic dynamics. Future work will ex-
tend our studies to a two-temperature electron-ion sys-
tem, which is closer to the conditions of an ultracold neu-
tral plasma experiment. This study was also limited to
moderate coupling strengths due to the formation of com-
plex bound-state structures at higher coupling strengths.
Future studies will investigate these structures in further
detail.
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