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Abstract

We use classical molecular dynamics (MD) to study electron-ion temperature equilibration in

two-component plasmas in regimes for which the presence of coupled collective modes has been

predicted to substantively reduce the equilibration rate. Guided by previous kinetic theory work,

we examine hydrogen plasmas at a density of n = 1026cm−3, Ti = 105 K, and 107 K < Te < 109

K. The non-equilibrium classical MD simulations are performed with inter-particle interactions

modeled by quantum statistical potentials (QSPs). Our MD results indicate: 1. a large effect

from time-varying potential energy, which we quantify by appealing to an adiabatic 2-temperature

equation of state, and 2. a notable deviation in the energy equilibration rate when compared to

calculations from classical Lenard-Balescu theory including the QSPs. In particular, it is shown

that the energy equilibration rates from MD are more similar to those of the theory when coupled

modes are neglected. We suggest possible reasons for this surprising result, and propose directions

of further research along these lines.
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I. INTRODUCTION

The phenomenon of electron-ion temperature equilibration is important for the study of

inertial confinement fusion (ICF), since the asymmetric manner in which α-particle fusion

products deposit energy naturally creates such a temperature-split (T -split) at certain key

regions and times within an imploding capsule [1, 2]. While much of the ICF capsule material

is DT, the 50-50 mixture of deuterium and tritium, the presence of an outer, so-called,

ablator layer in such capsules creates the possibility of admixture of higher-Z (ionic charge)

elements (C, Be, and/or dopants like Ge and W) into the DT fuel. This in turn introduces

significant complexities for the theoretical description of the T -equilibration process, because

such ions serve to make the plasma more strongly-coupled. Since modeling of electron-ion

T -equilibration is a necessary part of integrated simulations of ICF, the problems of T -

equilibration in both low-Z and high-Z/low-Z mixtures are therefore of concern [3].

Recent work on T -equilibration has involved both kinetic theory of various types [4–8],

and MD simulations with like-charges and the pure Coulomb interaction [8, 9] as well as

opposite-charge simulations with quantum statistical potentials (QSPs) to mock up the ef-

fects of quantum diffraction [10–14]. All but a few of these studies [7, 11, 14] confined

themselves to pure hydrogen (or the proton-positron system [8, 9]). Even for H, the demon-

stration of agreement between MD results and kinetic theory took some time [10–13], in

part because the effect of using the QSPs changes the result slightly even in weak coupling

[11]. For the classical like-charge proton-positron system, demonstration of agreement was

somewhat more straightforward, motivating a clear connection between the classic Landau-

Spitzer equilibration rate [15] derived from the Fokker-Planck equation, and a generalized

Lenard-Balescu [16] scheme in which both dynamical screening and 2-body static correla-

tions (in the form of local field corrections) are included [8]. Furthermore, it was shown that

for many regimes of interest to ICF, the complex dynamical screening of the 2-component

(electron + proton) plasma could be replaced by the static response of the electrons alone,

yielding identical results [8, 9, 12, 13]. This is hardly surprising, since in a given electron-

proton collision, the ”spectator” electrons are expected to move much faster than the much

heavier ”spectator” protons. It is in this sense that a description of the collision rate in terms

of a Coulomb-logarithm, lnλei = ln (bmax/bmin), is sensible, where the maximum impact pa-

rameter, bmax, is identified with the static electron-only Debye length. Such simplifications
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in turn form the basis for analytic in-line models of electron-ion T -equilibration widely used

in ICF simulation codes [1, 2].

However, as was pointed out early on by Dharma-wardana and Perrot [4, 17], this failure

of the ions to participate in the screening may not hold in general. Indeed, coupled modes

of the electron-ion system are known to exist in the form of ion acoustic waves (analogous

to phonons in a solid), and their presence is expected to alter the equilibration rate relative

to that predicted by a theory in which independent electron and ion plasma waves are solely

responsible for the exchange of energy in a 2-T plasma. A regime in which coupled modes

were argued to be important is that accessed in the intense laser irradiation of condensed

matter [18]: solid density, and Te � Ti. Roughly a decade after this work, Gregori, Gericke,

Vorberger and coworkers (in various combinations) [19–21] used the Lenard-Balescu kinetic

equation to study both the nature of the effect of coupled modes on T -equilibration, and

the precise regime where they are expected to be important for weakly-coupled systems.

By analyzing the detailed structure of the 2-component dynamical dielectric function, the

authors of Ref.[20] presented this condition for the importance of coupled modes for a plasma

with electrons and a single species of ions [22]:

Ti . 0.27 · ZiTe, (1)

for non-degenerate electrons; here, Zi is the charge of the ion. For hydrogen (Zi = 1), Te

must be at least 4 times larger than Ti for coupled modes to have an effect. This is not

the typical scenario in ICF, at least within the region of undoped DT fuel. However, if Zi

is greater than 4, the above condition suggests that theoretical treatments which neglect

coupled modes, such as Landau-Spitzer, may be suspect even for Te ∼ Ti.

In the work of Ref.[20], comparisons were made between the so-called coupled-mode the-

ory (perturbative treatment of Lenard-Balescu including dynamical screening) and the Fermi

Golden Rule (FGR) theory [4] (analogous treatment, but where the ion f-sum rule is used

to reduce the screening to that of the static response of the electrons [8, 20]). The systems

considered were hydrogen at a particle density, n = 1026 cm−3, and species temperatures:

Ti = 105 K, and 105 K < Te < 1010 K. It was predicted that the presence of CMs reduces

the energy equilibration rate by up to ∼ 50% relative to that predicted by the FGR theory

and other approaches akin to Landau-Spitzer. The fact that it is a reduction is easy to

understand: Ion-acoustic waves are modes in which a significant fraction of the electrons
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form screening clouds which move with the ions. Such concerted motion is not conducive to

resistive heating of ions by electrons (or vice versa), for precisely the same reason that energy

transfer is not permitted in a simulation in which the Born-Oppenheimer approximation is

invoked (electrons slaved to the ion dynamics). The work of Ref.[20] is the first we know of

to attempt to fully quantify this effect for hydrogen plasmas.

As we have already implied, the presence of CMs renders the theoretical description

sufficiently complex so that a simple analytic representation of the T -equilibration rate is

no longer possible. The potential importance for ICF simulations, however, has prompted

researchers to search for approximate expressions which capture the salient features of the

reduction in the rate due to ion-acoustic waves [19, 23]. The work of Chapman et al. in

Ref. [23] is particularly notable for its accuracy in this regard, but its application in ICF

simulations [24] incurs significant computational expense relative to the simpler theories

which neglect CMs such as Landau-Spitzer and its many variants [12, 13, 15].

Because the aforementioned predictions of the CM effect in T -equilibration used a variant

of kinetic theory which is expected to be exact only in the limit of weak coupling [16], it

is reasonable to ask if these predictions are accurate in practical realizations of out-of-

equilibrium hydrogen plasmas. To this end, Vorberger and Gericke searched through the

existing MD results [8, 9, 11–14, 25] to assess if simulations within the regime of interest for

CMs had been performed [26]. Their conclusion was that only one simulation might have

exhibited the CM effect [25]. This observation, together with the fact that experimental

measurements of T -equilibration in plasmas are practically nonexistent, emphasizes the need

for dedicated MD simulations specifically tailored to measure the effect of CMs on the

relaxation rates. This would in turn aid in the development of more accurate in-line models

for use in ICF codes, by buttressing our confidence in the theories used to construct such

models [19, 23], and/or critiquing their assumptions if their predictions are shown to be

inaccurate.

In this work, we study temperature equilibration with non-equilibrium classical MD sim-

ulations for plasmas which are chosen to lie squarely within the regime indicated by Eq.1:

hydrogen at a density of n = 1026 cm−3 and Te � Ti. These are chosen to coincide with

the plasmas studied in Ref.[20]. We model the inter-particle interactions in these plasmas

by Dunn-Broyles diffractive [27] and Minoo et al. exchange [28] QSPs [29]. For each plasma

studied, we compare our MD results to both the coupled-mode Lenard-Balescu (CM-LB)
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theory of T -equilibration and the FGR (neglecting CMs) theory. Since we invoke an ap-

proximate description of these hydrogen plasmas in which the electrons are classical particles

that interact via effective T -dependent interactions, we take care to apply the CM-LB and

FGR theories to the classical QSP system rather than to the quantum-Coulomb system as

done in Ref.[20], to ensure that effects arising from the assumption of classical electrons and

altered effective interactions are included appropriately [11].

We present and discuss several prominent MD results here, for these specific hydrogen

cases:

1) The temperature relaxation is asymmetric, dTe/dt 6= −dTi/dt, indicating sizable con-

tributions to dTe/dt and dTi/dt from time-varying potential energy, V . This effect is beyond

the weak-coupling treatment of standard Lenard-Balescu (which only conserves kinetic en-

ergy), but it has been discussed and studied before in numerous theoretical contributions

[3, 7, 21], and has been noted in at least one previous classical MD study [14]. We define and

extract an effective ”two-temperature thermodynamic” potential, E(Ti, Te) (with associated

heat capacites, Ce = ∂E/∂Te|Ti and Ci = ∂E/∂Ti|Te), from the MD, and show (for one of

these hydrogen cases) that it can be understood from straightforward modeling. Additional

predictions made with a quantum screened-Coulomb model and with Orbital-Free Density

Functional theory indicate that these effects from time-varying potential energy should be

noticeable for true quantum-Coulomb hydrogen plasmas in these conditions as well.

2) Despite this success, we see that the kinetic ion temperature [30] and the configura-

tional ion temperature [31] disagree, in that the instantaneous static structure of the ions is

not that as expected for plasmas with Ti as defined by the ion velocity distribution function.

Rather, it is reminiscent of a plasma with a somewhat lower Ti. Nevertheless, the analysis

in 1) succeeds because the derivatives, Ce and Ci, are relatively insensitive to the differences

in temperatures; i.e., E is linear over wide ranges of Te, Ti.

3) We determine the instantaneous ion velocity distribution in the MD during tempera-

ture relaxation, and quantify its departure from the equilibrium Maxwell-Boltzmann distri-

bution. While this deviation does slightly affect the Lenard-Balescu prediction for temper-

ature relaxation, explicit calculations using a polynomial expansion show that it should not

significantly alter the equilibration rates (at least within the weak-coupling approximation

inherent in Lenard-Balescu).

And most importantly,
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4) We quantify the energy relaxation rate in MD by decomposing the total energy into

species-dependent pieces, E = Ei + Ee, in which the electron-ion potential energy, Vei, is

shared equally between the species [21]. It is shown that dEi/dt (= −dEe/dt) is far closer

to the FGR predictions than to the CM predictions, in stark contrast to expectations.

The remainder of this paper is organized as follows: Section II presents our MD method-

ology, including a discussion of the multiple methods we use to initialize our 2-T simulations.

Section III contains a discussion of the perturbative treatment of the Lenard-Balescu equa-

tion used to predict the instantaneous time rates of change of electron and ion temperatures;

here we focus on computational issues specific to predictions in the CM regime. A presenta-

tion of the results of our MD simulations and the comparison to the theoretical predictions

(FGR and CM-LB) appears in Section IV; this includes a discussion of the sizable effects

of time-dependent potential energy, a study of the (negligible) effects of non-Maxwellian

velocity distributions, and a discussion of possible reasons for the greatly reduced effect of

coupled modes as compared to predictions [20]. We conclude in Section V.

II. MOLECULAR DYNAMICS SIMULATIONS

Coupled mode temperature equilibration includes the possibility of non-degenerate elec-

trons, making classical molecular dynamics (MD) simulations a useful comparator. We

employ the ddcMD code [32] with the PPPM method [33] for large-scale charged-particle

simulations [34]. We mostly consider a subset of hydrogen cases studied by Vorberger and

Gericke [20], ρ = 1026/cc, Ti = 105K, and Te = 107 to 5 × 108K. The associated MD time

steps range from 5 × 10−6 to 1 × 10−6 fs. Most simulations include 5.12 × 105 hydrogens,

but the first case is studied using 4.096× 106 hydrogens. This improves statistical sampling

and reduces noise in the final results.

Even for non-degenerate electrons, the attractive electron-ion interaction requires some

accommodation of quantum effects. Accordingly, we use the Dunn-Broyles diffractive quan-

tum statistical potential (QSP) [27]. We include the two-body repulsive exchange piece

introduced by Minoo et al. [28]. This prescription is used in the early temperature equili-

bration work of Hansen and McDonald [10] and much of our work on this subject [11, 13]. It is

an extension of the potentials (designed to reproduce quantum equilibrium pair correlations

using classical particles) to a non-equilibrium situation. The potentials are parametrized for
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some desired target ion and electron temperatures, T targ
i 6= T targ

e . The results for species α

and β are then:

Vαβ(r, T ) =
ZαZβe

2

r

[
1− exp

(
−2πr

Λαβ

)]
+

kBT ln(2) exp

(
−4πln(2)r2

Λ2
αβ

)
δαeδβe, (2)

where µαβ = mαmβ/(mα + mβ), and kB is Boltzmann’s constant. The QSP is dependent

on temperatures through the de Broglie wavelength, Λαβ =
√

2π~2/µαβkBTQSP . (The

temperature, TQSP , is taken to be T targ
i when α and β are both ions, and simply T targ

e if

either is an electron.) In practice, these potential parameters are held constant at target

values during a simulation even as the instantaneous temperatures vary widely with time.

The time-independent Hamiltonian then ensures energy conservation for microcanonical

simulations. Although this prescription is not in keeping with the behavior of true quantum

electron wave-packets as the electrons are cooled or heated, our aim in this work is simply

to evaluate and critique the use of various theories in predicting T -equilibration for systems

with a fixed set of interaction potentials [35]. This was exactly the approach adopted in

Ref.[11] as well.

Despite the well-defined Hamiltonian, a unique definition/preparation of a nonequilib-

rium two-temperature system may not always be feasible; specification of the effective tem-

peratures leaves many degrees of freedom unconstrained. Practically when NVE (constant

particle number, volume, and energy) microcanonical simulations are allowed to evolve freely

for a sufficient time, systems of a particular total energy, E, can often be found that pass

through a desired target state, T targ
e 6= T targ

i . This state can be considered unique as long

as other out-of-equilibrium degrees of freedom set by the initial conditions have relaxed

much faster than the global temperature difference. For example, intraspecies velocity equi-

libration can be much faster than electron-ion interspecies. This gives an effectively unique

two-temperature state in weakly-coupled cases. However when the potential energy is sub-

stantial, differences between the configurational temperature [31] and the kinetic values [30]

may exist and be relevant. In particular, the CM regime includes, by design, long wave-

length, underdamped, quasi-harmonic ion acoustic waves (IAW). Being underdamped, these

modes would also be only weakly coupled to anything that might serve as a thermal bath.

Hence, it is reasonable to suspect that different wavelength IAW might evince different ef-
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fective temperatures during equilibration, and that structure factors and radial distribution

functions will not correspond to those of a unique temperature. Normally, this might be

ignored on phase space arguments (for small |k|, the number of modes, ∝ |k|3, and the

associated heat capacity is small), but the CM regime relies on having a sufficient number of

slowly-equilibrating degrees of freedom that the overall interspecies equilibration is affected.

Signatures of the potential energy are broadly visible in our CM temperature relaxation

simulations. If a system is not carefully prepared, there is a prominent underdamped os-

cillation in the ion kinetic temperature at the start of the NVE evolution. Similar effects

are seen when the electron temperature is abruptly altered [36]; the resulting change in

the screened ion-ion potential switches the asymptotic pair distribution to some new gii(r).

Transient evolution away from the old stationary ion distribution towards the new one in-

cludes underdamped oscillations from IAW. Such oscillations in our CM simulations are

precisely compensated by variations in the ion potential energy, Vi ≡ Vii + Vie/2, clearly

showing the role of IAW collective modes. (Similar transients are not seen in the electron

subsystem, which has much weaker coupling.) Yet another signature of the potential energy

is that the temperature relaxation rates are not equal and opposite, Ni
dTi
dt
6= −Ne

dTe
dt

, even

after transient oscillations are mitigated. This will be discussed in more detail in Sec. IV.

Because of these complications, we consider three distinct approaches to MD sample

preparation. In a few test cases, we start from near-stationary states subject to separate,

species-dependent thermostats, similar to past analyses. However in our hydrogen CM cases,

the ions require exceptionally strong thermostats to keep them cold. A Langevin thermo-

stat [37] has the advantage of driving each species towards a Maxwell-Boltzmann velocity

distribution. Unfortunately, the strong Langevin drag term has a time constant much less

than a typical IAW period, and so the IAW are severely overdamped. In equilibrium, a

quasi-harmonic mode of wavenumber k should have an RMS-expected thermal amplitude

given by equipartition of energy. But given the overdamped ion dynamics, transient density

perturbations will persist for times that scale as 1/k2, meaning that long-wavelength density

fluctuations do not fully equilibrate during a simulation. In contrast, the Berendsen ther-

mostat [38] simply scales all particle velocities of a given species so that their total kinetic

energy is instantaneously related to the thermostat, K ≡ 3
2
kBT . In this case, quasihar-

monic oscillations are largely undamped by the thermostat, and long-wavelength density

fluctuations are left to equilibrate by means of weak, intrinsic anharmonicities. This will
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give rise to different transient IAW behavior as the system relaxes. Thirdly, we prepare

the most extreme two-temperature state possible so as to maximize the time for transient

artifacts to decay. Systems are started with the ions in a simple cubic lattice, frozen in

place at Ti = 0; i.e., all long wavelength IAW are initialized with exactly zero amplitude.

The electrons are then equilibrated in a microcanonical MD simulation. Each initial state

is characterized by its total energy, E, and is rigorously defined as part of a constrained,

equilibrium ensemble. Once the ions are released, we expect monotonic and continuous

temperature relaxation with time. In particular, the family of instantaneous equilibrating

states can be completely characterized by any two of the variables, E, Te, Ti. This is akin to

having an effective, two-temperature thermodynamic potential, E(Te, Ti), which can then

be used to compute derivatives by finite differencing across different microcanonical simula-

tions. This last preparation method is used for the majority of the simulations because of

this advantage.

For example, a hydrogen case with n = 1026/cm3, Tp = 105 K, and Te = 107 K has been

tested with all three preparation methods; all three give similar results. The total energy is

tuned for each system until their electron temperatures are the same to within 0.1% when

the target Ti is reached. The residual oscillations in Ti(t) differ slightly in their magnitudes

at the target conditions, but dTi/dt can be measured across approximately one oscillation

period to minimize any dependence on that amplitude. With that approach, the total

potential energies at target are equal among the different preparation methods to within 0.1

eV/hydrogen (per hydrogen= per proton= per electron), and the measured dTi/dt are 5.45,

5.45, and 5.48 eV/fs for lattice, Langevin, and Berendsen initial configurations, respectively.

Thus any possible, long-lived differences in IAW amplitudes in the CM regime seem to have

no effect on the potential energy of the system or the overall equilibration rates.

A typical result for the lattice preparation procedure is shown in Fig. 1 for the ion tem-

perature and for a series of ion-ion pair correlation functions, gii(r). At t=0, the constraint

on the ions is released, and the ion temperature quickly begins to rise. Simultaneously, there

are long-period, transient oscillations initially visible in Ti. The initial lattice structure is

lost well before the target condition of Ti = 8.6 eV (∼ 105 K) is reached in Fig. 1. By

that time, the remnants of the long-period oscillations are also only of order ± 5 meV. In

practice, Ti(t) at this time is closely linear plus a sinusoidal component; the slope at target

is thus rendered insensitive to any long-period transient by making a linear fit over at least
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FIG. 1: Effective proton temperature, Ti = 2/3〈Ekini 〉, versus time for a single NVE run of

8.192×105 particles (protons plus electrons). Oscillations in Ti correspond to underdamped tran-

sient relaxations in the ion-ion radial distribution function. Insets show the pair distribution

function, gii(r, t); showing signs of crystalline order at early times. Long-range correlations are lost

within 1.5 fs. The last inset shows the target conditions for this case, Tp = 105 K, Te = 107 K,

which occur at t=1.74 fs.

a complete cycle. Additionally, we note that the detailed shape of gii(r) for times after the

transient behavior has subsided is almost completely independent of the sample preparation

scheme. In this sense, the non-adiabatic effects manifest in gii(r) that we discuss later (in

Section IV B) are also not the result of transient effects, and are therefore representative of

uniquely-defined states.

For non-equilibrium plasmas, temperature relaxation is directly related to the under-

lying heat flow only in the weak-coupling limit. In the CM cases we study, Γii = 12.5

(= Z2e2

kBTiR
where R =

[
3n
4π

]1/3
is the average nearest-neighbor distance between ions), and the

evolving potential energy is comparatively large. This evolution is associated with observed

asymmetric temperature changes, NikBdTi/dt 6= −NekBdTe/dt. To better quantify this, we

will expand the MD analysis to include estimates of
(
∂V
∂Ti

)
Te

and
(
∂V
∂Te

)
Ti

, analogous to a

two-temperature excess heat capacity.

A single NVE simulation can only be used to compute dV/dt (or i.e., the gradient along
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FIG. 2: Temperature histories are shown in light gray for three separate, microcanonical MD

simulations differing in total energy by a few eV/e-i pair. The temperature curves appear noisy

because of intrinsic, short-time fluctuations that are easily averaged over. Linear least squares fits

to portions of the time series are shown as black lines; dT/dt is computed analytically from these

fits. The fitted curves each reach the target ion temperature Tp = 105 K) at times marked by ×.

They reach the target electron temperature (Te = 107 K) at times marked with +. By design,

these times coincide for the middle microcanonical system.

the prescribed temperature trajectory, ~∇V · (dTi/dt, dTe/dt)
ᵀ). Other derivatives in Te,

Ti space require cross-comparison of different microcanonical ensembles. Fig. 2 shows the

temperature histories of three separate, microcanonical simulations, spanning a range in E

of about 4 eV/hydrogen. Each system is prepared with a lattice of ions at zero temperature;

given the different total energies, the initial electron temperatures are well-separated among

the three systems. The middle Te curve corresponds to the unique system total energy for

which Te and Ti both reach their respective target values at essentially equal times. The

adjacent curves approximately cover some range Te(t = 0) − ∆ to Te(t = 0) + ∆. Since

the change to each system is small, ∆ � Te − Ti, the relaxation rates, dTe/dt, are nearly

equal for the three runs, and the curves are nearly parallel. Similarly, because the Ti(t = 0)

initially coincide, all three ion temperature curves are nearly indistinguishable.

As discussed above, a linear, least-squares fit is made to each temperature series, T (t),
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to suppress any transient oscillations; this is shown in Fig. 2 with short segments in black.

We analytically obtain dT/dt at the target conditions from these fits. The × and + symbols

in Fig. 2 also mark the times along each fitted curve when the target temperature value is

reached for ions or electrons, respectively. The instantaneous states at the marked points can

then be used to compute temperature-dependent derivatives. Using the × points, we would

obtain E(Ti = 105 K, Te) at three distinct Te, while the + points give E(Ti, Te = 107 K)

at three values of Ti. In practice, E(Ti, Te) is linear in Te and Ti (and vice versa) for a

family of instantaneous states over a small range of energies, [E − ∆ : E + ∆], for ∆ of

order 1 eV per hydrogen. Thus, we apply another linear least squares fit to E(Ti)|Te=107 or

E(Te)|Ti=105 for multiple microcanonical systems within ±1 eV/hydrogen. We then compute

∂E/∂T analytically. Since the kinetic energy component satisfies K ≡ 3
2
kBT , the resulting

derivatives also give estimates for
(
∂V
∂Ti

)
Te

and
(
∂V
∂Te

)
Ti

.

III. LENARD-BALESCU THEORY

To analyze our MD results, as well as to exercise and test existing theories of the CM effect

in T -equilibration, we employ the Generalized Lenard-Balescu (GLB) theory [16] outlined

in detail in Ref.[8]. In this approach, the time rate of change of the ion temperature, dTi/dt,

in a 2-T plasma is related via the fluctuation-dissipation theorem to the density response

functions of the individual species. For the case of two species, electrons and ions, the result

is [8]:

dTi

dt
= − ~

3π3nα

∫ ∞
0

k2dk

∫ ∞
0

ωdω

[
vei(k)

D(k, ω)

]2

[1−Gei(k, ω)]×

[
N

(
~ω

2kBTi

)
−N

(
~ω

2kBTe

)]
Imχ0

e(k, ω)Imχ0
i (k, ω), (3)

where D(k, ω) is the 2-species dielectric function,

D = [1− vee(1−Gee)χ
0
e][1− vii(1−Gii)χ

0
i ]

−v2
ei(1−Gei)(1−Gie)χ

0
eχ

0
i , (4)

involving the inter-particle interactions v, free particle density response functions χ0, and

Local Field Corrections (LFCs) G. N(x) is a statistical factor arising from the fluctuation-

dissipation theorem, and is equal to coth(x) for Fermions and 1/x for classical particles [39].
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The response functions and LFCs are defined by the equation,

δnα = δn0
α + χ0

α

∑
β

vαβ[1−Gαβ]δnβ, (5)

where the argument of each quantity is (k, ω). Here, δn0
α are the density fluctuations in the

absence of interactions, while δnα are the density fluctuations in the presence of interactions

[8, 39], with species indexed by α and β.

Eq.5 expresses the self-consistent rearrangement of charge resulting from screening in

the multi-component plasma; if the LFCs (Gαβ) are set to zero, this is the Random Phase

Approximation (RPA). The treatment of Eq.3 with LFCs set to zero is equivalent to the

Lenard-Balescu theory of T -equilibration used in Refs.[7, 20, 21, 23]. This is the theory

we use to compare to MD for our hydrogen cases where QSPs have been used. For the

like-charge Coulomb cases, it is essential for us to use non-zero LFCs (particularly Gei) in

order for the integral over k in Eq.3 to be finite for large-k [8]. These implementations of

GLB are identical to those we made in an earlier work [11].

The free-particle response functions, χ0, appearing in Eqs.3, 4, and 5 are the usual ones

[39],

χ0
α(k, ω) = lim

η→0+

[
2
∑
k′

fα(k′ + k)− fα(k′)
~2(k′+k)2

2mα
− ~2k′2

2mα
− ~ω − iη

]
, (6)

where fα(k) is the occupation number for particles of energy ~2k2/2mα at the temperature

Tα. For our practical implementation for quantum particles, we use the Pade approximant

fits for χ0 appearing in Dandrea, Ashcroft, and Carlsson [40]; for classical particles, we

use the analytic expressions found in Ref.[41]. Since we have shown in the past [11] that

the inclusion of (static, in that case) LFCs does not improve agreement with MD for T -

equilibration rates for hydrogen plasmas as modeled with QSPs, we set the Gαβ = 0 in the

remainder of this work.

As discussed in numerous works (e.g., Refs.[7, 8, 11]), the expression of Eq.3 reduces to

that of far simpler expressions in many situations of interest. First, if the ions are taken

to be much more massive than the electrons, as is physically the case, and the conditions

are not those described by Eq.1 [20], the f-sum rule for ions can be used to perform the ω-

integral analytically by evaluating the electron quantities at ω ≈ 0. This is strictly correct

when CMs are neglected, and arises from the fact that the plasma frequency of electrons

far exceeds that of the ions, leading to the FGR result [4, 20]. This FGR expression, now
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a single integral over k (see for instance Eq.12 in Ref.[8]), can then be massaged into the

familiar Landau-Spitzer equilibration rate in the limit of weak plasma coupling [8]:

dTi

dt
=
Te − Ti

τei

, (7)

where
1

τei

=
8
√

2πniZ
2
i e

4

3memi

[
kBTe

me

+
kBTi

mi

]−3/2

lnλei, (8)

and lnλei = ln(bmax/bmin), as described above. Here, the screening length, bmax, arises from

the small-k part of the dielectric function, D, in Eq.3. The bmin comes from either the large-

k part of Imχ0
e (de Broglie wave length; quantum-Coulomb case), or the large-k part of

1−Gei (classical turning-point; classical-Coulomb case) [8]. For the classical-QSP case, bmin

arises from the large-k behavior of vei(k) (∼ de Broglie wave length) [11]. The expressions of

Eqs.7 and 8, as well as the full GLB expression of Eq.3, respect kinetic energy conservation,

consistent with the assumption of weak plasma coupling.

If CMs are important, as is predicted to be the case for 2-component plasmas satis-

fying Eq.1, a reduction of Eq.3 to a Landau-Spitzer-like expression is not possible [23].

However, as long as the plasma is not too strongly-coupled, it is expected that the full

double-integral expression of Eq.3 should still produce reliable predictions, and indeed it

is essentially this theory which was used by Vorberger and Gericke to derive the regime

indicated by Eq.1. In Ref.[20], these authors emphasized that the correct inclusion of CMs

(in the form of ion acoustic waves) in T -equilibration within Lenard-Balescu is quite nu-

merically challenging, because the structure of the ω-integrand possesses peaks which are

infinitesimally sharp at small-k, where the effect is most important. This can be seen most

easily by examining the structure of the energy loss function, L(k, ω) ≡ Im[1/D(k, ω)] =

−Im[D]/([ImD]2 + [ReD]2). If vei is set to zero, this function has separate electron and

ion plasmon peaks at the respective plasma frequencies, when ReD = 0 and ImD is very

small. However when vei 6= 0, the low-k portion of the ion plasmon sharpens while losing

its intensity, and moves to much lower frequency, ceasing to contribute substantively to the

dTi/dt integral.

We illustrate the contributions to this integral by examining the k-integrand, F (k), de-

fined such that
dTi

dt
=

∫ ∞
0

F (k)dk, (9)
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i.e., the k-dependent function that results from performing the ω-integral in Eq.3. Figure 3

shows F (k) computed for the (quantum-Coulomb) hydrogen plasma (here, taking all Gαβ=

0) with n = 1.0× 1026 cm−3, Ti = 105 K, and Te = 107 K. The blue curve is the result of the

FGR theory, which assumes no CMs and arises from Eq.12 in Ref.[8], reproduced here as:

dTi

dt
=

(Ti − Te)

3π2mi

∫ ∞
0

dkk4

[
vei(k)

εe(k, 0)

]2(
∂Imχ0

e

∂ω

)
ω=0

, (10)

where εe is the one-component RPA plasma dielectric function of the electrons (εe = 1 −

veeχ
0
e). The red curve shows F (k) computed with Eq.3 using the numerical prescription

outlined in Ref.[11], in which a logarithmic ω-mesh is used to compute the ω-integral, but

no special attention is paid to ensuring that the ω-poles for small k are resolved properly

[42]. The sharp peaks and valleys in F (k) at the smaller k values arise from the improper

treatment of the pole for which D is very close to zero; as k is changed, the pole alternately

moves close to and farther from the nearest ω-mesh point, resulting in inaccurate integration.

This can be corrected by treating the pole explicitly [20]. In our simple treatment here, we

approximate this feature as a Lorentzian peak in the loss function, L(x) = 1
π

Γ/2
(x−x0)2+(Γ/2)2

.

While L(k, ω) doesn’t appear directly in Eq.3, multiplying and dividing by ImD allows us

to rewrite Eq.3 in the following way:
dTi

dt
∝∫ ∞

0

v2
ei(k)k2dk

∫ ∞
0

ωdω

|D(k, ω)|2
∆N(ω)Imχ0

e(k, ω)Imχ0
i (k, ω)

≡
∫ ∞

0

v2
ei(k)k2dk · I(k),

where

I(k) =

∫ ∞
0

ωdω∆N(ω)ImεeImεi
|D(k, ω)|2

=

∫ ∞
0

ωdω∆N(ω)ImεeImεi
ImD

·
[

ImD

|D(k, ω)|2

]
≡
∫ ∞

0

dωR(k, ω) · L(k, ω).

Here, ∆N is the difference of statistical factors appearing in Eq.3, and the individual species

dielectric functions are defined by,

εe = 1− veeχ
0
e,

εi = 1− viiχ
0
i .
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R(k, ω) is the ω-integrand of Eq.3, but with the loss function factored out. L(k, ω) −→

L(ω − ω0) ∼ δ(ω − ω0) when Re[D] goes through 0 and Im[D] −→ 0. Thus,

I(k) −→ π

A
R(k, ω0),

when Re[D] ∼ A(ω−ω0). The width of the Lorentzian is ImD(ω0)/A, and can be compared

to the quadrature mesh size, ∆ω. We then take the corrected integral to be: [Uncorrected

integral on the ω-mesh] - [integral of the approximated form on the ω-mesh] + [analytically-

derived correction]. This strategy produces the green curve in Fig.3. Note that this curve

still possesses peaks and valleys at the identical locations to those of the red curve, but their

magnitudes are greatly suppressed. The remaining bumps are an artifact of the approxima-

tion, L(k, ω) −→ L(ω − ω0); a better representation of the true asymmetrically broadened

ion acoustic wave peak yields still smoother results [20, 23]. However, we note that the final

integral,
∫∞

0
F (k)dk, is equal to within 0.1% for red and green curves. Thus, the main fea-

ture of CMs, the extinguishing of the small-k contributions to dTi/dt (relative to that of the

FGR theory; see Fig.3) [20], is captured even for a naive evaluation of Eq.3. This is less true

as Te is raised and the ratio Te/Ti is increased; we have noted up to 10% deviations in some

cases, when using the naive evaluation. Therefore all of the results we present here make

use of the pole-correction strategy above; we will see below that they agree quantitatively

with the predictions of Ref.[20] for quantum-Coulomb hydrogen plasmas.

Since we are (a) reinvestigating prior predictions for quantum plasmas, and are (b) com-

paring to the results of our classical MD studies with QSPs, we carry forth the above GLB

prescription in two modes: 1. with quantum statistics and quantum response functions

together with the bare Coulomb interaction, and, 2. with classical statistics and classical

response functions together with the QSPs. This is in the spirit of our earlier MD/theory

work on T -equilibration not in the CM regime [11], where we found that the use of Dunn-

Broyles QSPs and classical statistics substantively reduced the equilibration rates relative

to the quantum-Coulomb predictions [43]. Because our aim in this work is to use MD to

validate theories which have predicted the CM effect in T -equilibration, it is crucial for us

to separate possible reductions in rates resulting from the use of classical MD and QSPs

from the actual coupled-mode effect itself. In this sense, the classical-QSP system is to be

thought of as a theoretical surrogate in which the CM effect is studied. If agreement between

classical-QSP MD and classical-QSP Lenard-Balescu is demonstrated, our confidence in the
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FIG. 3: The k-integrands, F (k), of various Lenard-Balescu expressions for the equilibration rate

for the quantum hydrogen plasma with n = 1.0 × 1026 cm−3, Ti = 105 K, and Te = 107 K.

Red curve: F (k) computed by Eq.3, using the ”naive” evaluation scheme outlined in Ref.[11].

Green curve: F (k) from Eq.3, but computed with the pole-correction scheme outlined here. Blue

curve: F (k) from the FGR expression of Eq.10. The integrals under the two coupled-mode (CM)

Lenard-Balescu F (k) curves shown here (red, green) are equal to within 1% for this case.

quantum Lenard-Balescu predictions of the CM effect for real plasmas is strengthened.

IV. RESULTS AND DISCUSSIONS

A. MD results for the Vorberger-Gericke [20] hydrogen plasmas (n = 1026 cm−3,

Ti = 105 K, 107 K < Te < 109 K)

We report T -equilibration for the family of hydrogen plasmas with density n = 1026

cm−3, Ti = 105 K, and Te between 106 K and 5× 108 K. These plasmas were considered in

Ref.[20] using LB, and were predicted to equilibrate at rates substantially slower than those
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Te (eV) 1× 107 2× 107 3× 107 5× 107 1× 108 2× 108 5× 108

MD ion 5.63± 0.05 6.65± 0.03 6.92± 0.06 6.77± 0.02 6.09± 0.04 5.42± 0.02 4.32

MD ele 7.78± 0.06 9.72± 0.08 10.30± 0.08 10.37± 0.05 9.63± 0.11 8.49± 0.09 6.75

MD E 12.46± 0.04 15.43± 0.05 16.25± 0.03 16.28± 0.04 14.83± 0.11 13.10± 0.07 10.45± 0.08

LB-CM 4.839 6.027 6.321 6.305 5.818

LB-FGR 9.840 11.475 11.732 11.474 10.451

TABLE I: Temperature relaxation rates, |dT/dt|. All units are eV/fs. Ei = 3/2kTi + Vi where

Vi = Vei/2 + Vii, and |dEi/dt| = |dEe/dt|. When the energy rate of change is plotted in Fig. 5, it

is expressed as 2
3 |dE/dt| to compare to temperature derivatives.

Te (eV) 1× 107 2× 107 3× 107 5× 107 1× 108 2× 108 5× 108

dV/dTp|Te 0.629± 0.03 0.698± 0.03 0.765± 0.05 0.810± 0.04 0.895± 0.04 0.915± 0.04 0.832± 0.06

dV/dTe|Tp 0.027± 0.02 −0.027± 0.02 0.00± 0.03 0.00± 0.03 0.016± 0.02 0.12± 0.08 −0.026± 0.03

TABLE II: Excess heat capacity in eV/fs. Species temperature is defined by 3/2kT ≡ kinetic

energy; the ideal heat capacity is 3/2.

as predicted by the FGR approach and a variant of Landau-Spitzer.

First we discuss our version of the LB predictions for these cases. The solid curves of

Figure 4 display the energy transfer rate per electron, as a function of Te, computed in two

ways: 1. Solid red line: with the CM Lenard-Balescu theory (Eq.3 with zero LFCs), and 2.

Solid blue line: with the FGR theory (Eq.10). Both curves result from the quantum-Coulomb

evaluation of these equations. These curves compare very favorably with the corresponding

curves in Fig.4 of Ref.[20]. The only notable discrepancy is at low-Te, and is due to the fact

that our FGR evaluation neglects electron degeneracy, unlike that of Ref.[20]. As indicated

in the previous Section, our numerical treatment of the sharp low-k poles in the dielectric

function of Eq.3 is sufficiently accurate to agree with the more carefully resolved results of

Ref.[20]. The dot-dashed curves of Figure 4 show our calculations for the same plasmas,

but for the classical-QSP cases, assuming Dunn-Broyles diffractive terms [27] and Minoo et

al. exchange contributions [28] evaluated at the electron temperatures, Te. These are the

QSPs used for our classical MD studies for these plasmas, to be discussed directly below.
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FIG. 4: Instantaneous energy transfer rate per e− for hydrogen plasmas with n = 1026 cm−3 and

Ti = 105 K, as a function of Te. Solid red curve: quantum-Coulomb prediction using the CM

Lenard-Balescu approach; solid blue curve: quantum-Coulomb prediction with the FGR prescrip-

tion. Dot-dashed red curve: classical-QSP prediction using the CM Lenard-Balescu approach;

dot-dashed blue curve: classical-QSP prediction with the FGR prescription.

The red dot-dashed curve is the CM-LB result, while the blue dot=dashed curve is the FGR

prediction. Note that for both curves, the energy transfer rates are substantially lower than

those of the quantum-Coulomb results plotted in Fig.4. This reduction is very similar to

that noted for the hydrogen cases studied in Ref.[11] when comparing quantum-Coulomb to

classical-QSP Lenard-Balescu predictions (for the same choices of QSPs).

Fig.5 shows the predictions of Fig.4 once again, but now expressed as |dT/dt| for the

species rather than as an energy transfer rate. Also displayed are our MD results obtained

using the ion-lattice preparation method discussed in Section II. We extract these rates as

in Fig. 2, by fitting the MD time series around the target conditions; they are therefore

some effective time-average of noisy MD dTi/dt, −dTe/dt, and dE/dt, respectively. We
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FIG. 5: Instantaneous dT/dt calculated from classical-QSP Lenard-Balescu, and extracted from

MD using the identical QSPs for hydrogen plasmas with n = 1026 cm−3, Ti = 105 K, and Te as

shown on the x-axis. The uppermost, thick, dashed, black curve is for LB-FGR, and the lowest,

thick, solid, black curve is for LB-CM theory. The disconnected black point corresponds to a

local field corrected LB-CM calculation using two-temperature HNC. Only the ion-ion local field

correction is included. Red symbols with error bars and thin solid lines correspond to MD for

dTi/dt, and blue symbols with error bars and thin dashed lines correspond to MD for −dTe/dt.

The green symbols with error bars and thin dotted lines show the MD results for the time rate

of change of total energy, scaled by 2/3 from Table IV A to correspond to a ”temperature”, i.e.

2
3dEe/dt. (The relation dEi/dt = −dEe/dt holds exactly).

note that dTi/dt from the MD is slightly higher than the prediction from Lenard-Balescu

including CMs, while −dTe/dt is far higher still. The two MD temperature derivatives ap-

proach equality for more weakly-coupled plasmas; indeed, essentially symmetric relaxations

(dTe/dt = −dTi/dt) were noted in earlier work on hydrogen plasmas [8, 9, 11–13]. In our

cases here, however, the ions are sufficiently cold that such an asymmetric temperature relax-
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ation is expected [7, 21, 23]. This results from the sizable potential energy in the (somewhat

strongly-correlated) screened ions, which diminishes as the ions are heated. The effect on

dTe/dt and dTi/dt is simple to analyze using conservation of energy, within the rubric of the

2-T hypothesis we have invoked.

Since, after initial preparation, our MD simulations represent closed systems which evolve

microcanonically, the total system energy, E, is conserved, and we have:

E(Te, Ti) = Ke(Te) +Ki(Ti) + V (Te, Ti), (11)

dE

dt
= 0

=

[
3

2
Ne +

(
∂V

∂Te

)
Ti

]
dTe

dt
+

[
3

2
Ni +

(
∂V

∂Ti

)
Te

]
dTi

dt
, (12)

where Ke and Ki are electron and ion kinetic energies, and are functions only of their

respective temperatures, and V is the total system potential energy, which we assume to be

a unique function of Te and Ti [44]. Equating the two summands gives,[
3

2
Ne +

(
∂V

∂Te

)
Ti

]
dTe

dt
= −

[
3

2
Ni +

(
∂V

∂Ti

)
Te

]
dTi

dt
, (13)

which leads to a prediction for the asymmetry in the T -derivatives:

∣∣dTe
dt

∣∣∣∣dTi
dt

∣∣ =

[
3
2
Ni +

(
∂V
∂Ti

)
Te

]
[

3
2
Ne +

(
∂V
∂Te

)
Ti

] . (14)

For our hydrogen cases, Ne = Ni, and since Lenard-Balescu conserves only kinetic energy,

our LB prediction (black curve in Fig.5) is consistent with the V = 0 version of Eq.14,∣∣dTe
dt

∣∣
LB∣∣dTi

dt

∣∣
LB

=
Ni

Ne

= 1. (15)

The asymmetry in the T -relaxation is due to the nonzero V , and in particular to the specific

derivatives of V which appear in Eq.14.

Before we discuss these potential energy derivatives further, we note that our MD results

for energy relaxation, dEi/dt = −dEe/dt, are far closer to the FGR predictions than to

those of Lenard-Balescu when coupled-modes are included. This is seen in Fig.5, in which
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the dotted green line and circles display the MD values for 2/3 × dEi/dt (with kB = 1),

where the species-specific internal energies are defined by Eq. 16 exactly as in Ref.[21]:

Ei = Ki + Vii +
1

2
Vei,

Ee = Ke + Vee +
1

2
Vei. (16)

While the LB predictions (either CM or FGR) are only consistent with Ei = Ki and Ee = Ke,

it is reasonable to expect that the energy transfer rates might be well predicted by LB,

since the primary drivers for the energy exchange, Coulomb collisions, are included therein.

Indeed, it is for this reason that the LB predictions of Ref.[20] were represented as energy

transfer (rather than temperature equilibration) rates; those authors left open the possibility

that non-ideal specific heats would have to be included to relate the dEe,i/dt from LB to

the dTe,i/dt, as they did subsequently in their work of Ref.[21]. However, our MD results

for these cases clearly show the dEe,i/dt themselves to be in disagreement with the coupled-

mode LB predictions. This is discussed further in Section IV.C. We emphasize that these

conclusions can only be drawn by making the proper comparisons: classical-QSP LB vs.

classical-QSP MD [11].

B. Elucidation of 2-T equation of state for the Te = 107 K case

In this subsection, we explore one of the particular cases studied above: n = 1026 cm−3,

Ti = 105 K, and Te = 107 K; this system has intra-species plasma coupling constants

Γee ∼ 0.125, and Γii ∼ 12.5. To establish that the large discrepancies between dTi/dt

and −dTe/dt in the MD results, as shown in Fig.5, can be accounted for by considering

the
(
∂V
∂Ti

)
Te

and
(
∂V
∂Te

)
Ti

in Eq.14, we extract these quantities independently using two

approaches: 1. from additional molecular dynamics simulations, and 2. from (adiabatic,

quasistatic) theoretical estimates. Regarding 1, potential energy derivatives at fixed Te or Ti

can be inferred from families of T -equilibration MD simulations performed at closely-spaced

initial conditions, as described in Sec. II. This produces the values
(
∂V
∂Ti

)
Te

= 0.586kB/e−

and
(
∂V
∂Te

)
Ti

= 0.0328kB/e− for this case. Our values for |dTe/dt| and dTi/dt are 7.92 eV/fs

and 5.59 eV/fs respectively, giving a LHS of Eq.14 of 1.42; plugging our values for
(
∂V
∂Ti

)
Te

and
(
∂V
∂Te

)
Ti

into the RHS gives 1.36.

22



Regarding the second (theoretical) approach, V can be computed from the three radial

distribution functions, gee(r), gii(r), and gei(r), since the inter-particle QSPs are 2-body in

nature [45]:

V =
ntot

2

∑
α,β

xαxβ

∫
d3rgαβ(r)vαβ(r), (17)

where α and β indicate species (e, i), ntot =
∑

α nα, and xα = nα/ntot. We use a 2-

temperature variant [46] of the Hypernetted Chain (HNC) approximation [47] to determine

the gαβ(r) to be input into this expression. Here, the equations have been generalized to

include mass-weighted temperatures Tij = (mjTi + miTj)/(mi + mj), which is roughly equal

to Te for this case. This approximation is valid for systems in which each species can

be described by distinct Maxwellians [48], and both the mass discrepancies(me � mi)and

temperature discrepancies(Te � Ti) of the systems of interest in our work reinforce this

assumption. With these HNC-derived gαβ(r) and Eq.17 [49], V is determined at the nominal

Ti = 105 K and Te = 107 K. Repeating the whole calculation at Ti + δTi and Te + δTe then

produces
(
∂V
∂Ti

)
Te

= 0.5352kB/e− and
(
∂V
∂Te

)
Ti

= 0.009728kB/e−. While
(
∂V
∂Te

)
Ti

is rather

different from that of the direct MD determination outlined above,
(
∂V
∂Ti

)
Te

is quite similar;

the smallness of
(
∂V
∂Te

)
Ti

relative to 3/2 then results in the prediction
∣∣dTe
dt

∣∣ / ∣∣dTi
dt

∣∣ = 1.33,

once again slightly below the MD value of 1.42.

While the aforementioned theory-MD agreement is reasonable for
(
∂V
∂Ti

)
Te

and
(
∂V
∂Te

)
Ti

,

it is interesting to look directly at the gαβ(r) from the MD, since our HNC calculations

of these quantities are necessarily somewhat approximate. Fig.6 shows gee, gei, and gii for

the n = 1026 cm−3, Ti = 105 K, Te = 107 K case. Solid lines show the results of our

QSP-MD, where the average over snapshots was performed over a duration small enough to

render Te and Ti determinations essentially instantaneous. The dashed lines show our HNC

calculations for this case using the identical QSPs; these are the functions which we input

into Eq.17 to obtain our estimates of V for these conditions. Note that while gee and gei

are in excellent agreement, gii is considerably more structured in our MD. At first blush,

one might expect such a result, since the bare ion-ion plasma coupling is quite large here

(∼ 12.5), while Te is possibly high enough to render the electrons nearly equivalent to a

negative uniform compensating background which is incapable of affecting much in the way

of screening. This last statement is borne out in Fig.7, showing the evolution of the 1st peak

in gii(r) from MD; as Te is raised from 107 K to 108 K, the behavior seems to asymptote to
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FIG. 6: Plots of g(r) from MD and HNC for the Te = 107K case.

what we must assume is the Te −→ ∞ ion one-component plasma (OCP) result. However,

since the Te = 107 K gii[MD] is already much closer to the Te = 5 × 108 K gii[MD] than

it is to the gii[HNC] shown in Fig.6, it is possible that our HNC predictions of gii(r) might

be rather inaccurate. Two points are worth noting here: 1. The near-independence of gii

(from the MD) on Te in this regime suggests that the ion-OCP model is in fact a good one

for gii; this in turn means that the consequences of the detailed assumptions inherent in the

non-equilibrium 2-T variant of HNC we employ (see the Abstract and the work of Ref.[46])

are minimized. 2. HNC of the 1-T (here equal to Tion) variety is known to work exceedingly

well for the OCP when the plasma coupling is ∼ 12.5 and far greater. Thus, we can trust

that the discrepancy between gii[MD] and gii[HNC] is likely not due to a failure of HNC for

the chosen values of n and Ti.

We therefore explore the possibility that the actual ion-ion correlations in the MD for

this case are not those of an ion-OCP with Ti = 105 K. Fig.8 shows gii[MD] once again

(solid blue curve), together with an ion-OCP gii(r) as computed with HNC, but at a lower

Ti = 6.777 × 104 K (solid green curve). They are nearly identical, suggesting that the

ions in the non-equilibrium MD calculation are spatially correlated in a manner notably

different from that expected from a system in thermal equilibrium at Ti = 105 K. Indeed,
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FIG. 7: Close-up of the ion-ion pair distribution functions, for Ti = 105 K and a series of electron

temperatures.

our nominal value of Ti = 105 K is computed from the ion kinetic energies. We thus find

the kinetic temperature to be different from the configurational temperature here. While

we have seen that this has only a modest affect on the analysis of time-varying potential

energy in this regime (vis a vis the various T -derivatives of V ) [50], we are open to the

possibility that such a difference could alter an estimation of the energy exchange rate. As

of this writing, we do not have a theoretical tool to assess this, nor do we have a detailed

understanding of how, in practice, a sizable difference between kinetic and configurational

temperatures could come about. To at least establish that this difference arises from non-

adiabatic effects, we have conducted MD studies for this same plasma, but with the proton

mass increased by a factor of 8 relative to its physical value. The results for gii(r) are shown

as the black dashed curve in Fig.8. Note that this mi = 8mp plasma is less structured than

the mi = mp plasma; HNC calculations for the ion OCP (not shown) at this density match

the black dashed curve well when Tconfig ∼ 7.5 × 104 K, intermediate between Tkinetic and

Tconfig for the associated plasma with the physical ion mass. It is therefore clear that the

fundamental source of Tconfig 6= Tkinetic is the dynamics of the energy exchange process itself.

This interesting subject awaits further study.

We have demonstrated that the asymmetric initial relaxations indicated in Figs. 2 and 5
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FIG. 8: The instantaneous MD ion-ion pair distribution function, gii(r), for the hydrogen plasma

with n = 1026 cm−3, Ti = 105 K, and Te = 107 K (solid blue curve; essentially obscured by the

green curve), compared with the ion OCP gii(r) for the identical n, but with Ti = 6.777 × 104 K

(solid green curve). Also shown is the MD result for the same plasma, but with the mass of the

protons artificially increased by a factor of 8 (dashed black curve).

result from the Ti-dependence of the potential energy in our classical QSP-MD simulations

for hydrogen. This is not surprising, since Ti (105 K) is quite low for all of these cases,

particularly for such a high density (1026 cm−3). However, since these conclusions are based

on a classical-QSP model of hydrogen, it is natural to ask: Would such an asymmetry be

present in a real hydrogen plasma in these conditions? We address this by adapting the above

theoretical estimate, pertaining to Eq.17, to the quantum-electron case by mapping onto an

effective one-component (ion-only) Yukawa system as in the work of Ref.[45]. HNC is used

once again to compute gii(r), this time interacting via screened interactions determined from

linear response. The electronic part of the free energy is taken from the fit of Tanaka and

Ichimaru [51]. Details of our procedure are left to the Appendix. This produces potential
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energy derivatives which are broadly similar to those quoted above,
(
∂V
∂Ti

)
Te

= 0.4351kB/e−,(
∂V
∂Te

)
Ti

= 0.02868kB/e−, and derivatives of the total energy (including the quantum electron

kinetic energy terms) of
(
∂E
∂Ti

)
Te

= 1.7176kB/e−,
(
∂E
∂Te

)
Ti

= 1.4347kB/e−, indicating a ∼ 20%

asymmetry between −dTe/dt and dTi/dt [52].

Orbital-Free Density Functional Theory (OF-DFT) [53–55] provides another way for

us estimate the energetics of 2-T quantum hydrogen plasmas. We employ a treatment

that invokes the Born-Oppenheimer approximation, which decouples the electronic and nu-

clear motions. The nuclei evolve classically, and the electronic contribution derives from a

minimization of a quantum free-energy functional in terms of the full electron probability

density. We employ a modified Thomas-Fermi-Dirac form that includes the Perrot finite-

temperature kinetic-entropic contribution and a local-density exchange-correlation compo-

nent. The Born-Oppenheimer dichotomy does not permit the direct examination of nonadi-

abatic processes such as electron-ion equilibration. However, since the OF-DFT MD allows

setting Te and Ti independently for a given simulation, we can elicit the temperature de-

pendence of the total internal energy within this adiabatic scheme. For these comparisons,

we consider 432 H atoms (Ni) in a periodic box for trajectories of 104 time steps of length

0.012 fs. We have also tested convergence in atom number (128 to 1024), time step, and

trajectory length and found variations in the total internal energy E and pressure of less

than 1%. By using a range of closely-spaced Ti for a fixed Te, we find ( ∂E
∂Ti

)
Te

= 2.07 ± 0.2

kB/e
−. As in the above HNC estimates, the variation of E with Ti at fixed Te is sizable.

We therefore expect that a real hydrogen plasma under these conditions will also exhibit an

initial asymmetric T -relaxation.

As we mentioned in the Introduction, our main reason for studying out-of-equilibrium

plasmas in this manner is to assess and improve upon models currently used in contin-

uum simulations of, e.g., ICF[1, 2]. In such simulations, equation of state (EOS) models

are invoked which typically arise from single-temperature constructs which assume that all

thermodynamic functions are derived from Helmholtz free energies of the form [57]:

F (ρ, T ) = E0(ρ) + Fi(ρ, T ) + Fe(ρ, T ). (18)

Here, E0 is the ”cold” piece representing the density-dependence of the energy of ions fixed

in position (= 0 for a low-density gas). Fi represents the free energy due to ionic motion

(phonons in a solid; more general ionic excitations in a liquid). Fe represents the free energy
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of electronic excitations. Implicit is the assumption that ionic and electronic excitations

are decoupled; this neglects, for instance, any change in inter-ionic forces that may occur

when electrons are strongly excited. When electron-ion T -splits are invoked in most ICF

simulations [1], the following approximation is often made to construct a ”2-T free energy”

from the 1-T free energy above [57]:

F2T (ρ, Ti, Te) ≡ E0(ρ) + Fi(ρ, Ti) + Fe(ρ, Te), (19)

leading immediately to

E2T (ρ, Ti, Te) = E0(ρ) + Ei(ρ, Ti) + Ee(ρ, Te). (20)

This assumption of Eq.19 is only reasonable when the EOS itself is practically ideal gas-like.

When Te and Ti are very different and the material is somewhat strongly-coupled, it is highly

suspect.

Applying this to T -equilibration, the analysis leading to Eq.14, together with the as-

sumption of Eq.20, gives ∣∣dTe
dt

∣∣∣∣dTi
dt

∣∣ =

(
∂Ei

∂Ti

)
ρ(

∂Ee

∂Te

)
ρ

≡
C i
ρ

Ce
ρ

, (21)

the ratio of ionic to electronic specific heats, each evaluated at their respective (e, i) temper-

atures. For the hydrogen case studied in detail above, we have verified that this prescription

produces C i
ρ(Ti = 105K) ∼ Ce

ρ(Te = 107K) ∼ 3
2
kB/e

−, and therefore
Ci
ρ

Ce
ρ
≈ 1, when standard

EOS models for hydrogen are used [58]. Thus, such an implementation would fail to pre-

dict an initial asymmetric T -equilibration in this case. The essential missing element is the

reduced electron screening (and hence increased effective ion-ion interaction) resulting from

Te � Ti which is not captured in a treatment assuming Fi(ρ, Ti, Te) = Fi(ρ, Ti), for which

the screened ion-ion interaction is assumed to be derived from a Te = Ti or Te = 0 theory.

This highlights the importance of improving both the in-line models of the equilibration

rate, and the EOS model to include more sensible 2-T effects at least at the adiabatic level

treated, e.g., in our HNC and OF-DFT calculations.

C. Energy relaxation versus temperature relaxation

As we mentioned when discussing Fig.5, the energy relaxation rate (here multiplied by

2/3 to compare it to temperature relaxation) is quite a bit higher than that as predicted by
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Lenard-Balescu using the full coupled-mode treatment. And in fact, it is rather closer to the

predictions of FGR, in which coupled-modes are neglected, in contrast to the conclusions of

Ref.[20] for these same plasmas. We now discuss this further.

The definitions we use for the internal energies of electrons and ions, respectively, are those

of Eq.16. Since Ee +Ei = Etotal, it follows from energy conservation that dEi/dt = −dEe/dt.

It is worth noting that this is true for any definition in which Vei is split between electrons

and ions, not just the 50%-50% split. As we have seen from the previous discussion, this

perfect asymmetry is not enjoyed by dTi/dt and dTe/dt, due to the time-dependence of

the total V . We have picked this particular split of Vei in the internal energies because

the authors of Ref.[21] argue that this choice alone makes their general expression for the

energy equilibration rate (Eq.27, and the more approximate Eq.37 in Ref.[21]) look most

like the one derived for weakly-coupled plasmas [59] (Eq.3 in this work, or Eq.7 in Ref.[20]);

if the response functions of the more general expressions are replaced by the RPA response

functions, the weakly-coupled result is obtained.

The lack of agreement between this expression and the dEe,i/dt from MD for these cases

indicates that the response functions at the RPA level are not sufficient. This too was

anticipated in the work of Ref.[21], wherein (for hydrogen plasmas with equal densities, but

10 times lower Ti) the inclusion of static ion-ion local field corrections (LFCs) derived from

HNC was shown to increase the predicted equilibration rate above that of the RPA CM

prediction (see black and red curves in Fig.1 of Ref.[21]). Our analogous predictions appear

as the isolated black diamond in Fig.5; only a very slight increase above the RPA CM-LB

result (solid black curve and circles) is seen, and the agreement with the energy equilibration

rate from MD is therefore still quite poor. Inclusion of all the pairs of static LFCs, Gee,

Gei, and Gii, within the dielectric function of Eq.4 produces almost identical results. We

are left to conclude that the standard theories for energy equilibration in 2-T plasmas do

not apply to at least the semiclassical model of the hydrogen plasmas considered in Ref.[20].

This is troubling for researchers bent on constructing and validating models for energy

and temperature equilibration in plasmas with strongly-coupled ions [23, 24]. In the next

subsection, we suggest a possible reason for the inability of the CM Lenard-Balescu theory

(with RPA screening and/or with static LFCs) to correctly describe the cases of our study;

we propose that a variant of dynamic local field corrections may be needed here instead. It

is worth noting that even in more weakly-coupled regimes, our earlier T -equilibration MD
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vs. LB comparisons also showed the inclusion of static LFCs to be inadequate (in that case,

worse than the RPA result) for oppositely-charged 2-component plasmas [11].

As seen in Fig.5, there are two conditions which are approximately satisfied for all the

plasmas studied here (if we use the CM-LB results, specifically): 1. dTi/dt[MD] ≈ dTi/dt[LB]

(= 2/3 × dEe,i/dt[LB]), and 2. −dTe/dt[MD] ≈ 2/3 × dEe,i/dt[MD]. We currently have no

understanding as to why these relations are roughly satisfied, however it is interesting to

note that the simultaneous satisfaction of these conditions puts constraints on the 2-T EOS,

as expressed in the internal energies of Eq.16. If we assume that

Ee = Ee(Te, Ti),

and

Ei = Ei(Te, Ti)

[as in our above assumption, V = V (Te, Ti)], application of the chain rule, together with

total energy conservation, produces the equations [21]:

dEe

dt
≡ −ZMD =

(
∂Ee

∂Te

)
Ti

dTe

dt
+

(
∂Ee

∂Ti

)
Te

dTi

dt
,

dEi

dt
≡ ZMD =

(
∂Ei

∂Te

)
Ti

dTe

dt
+

(
∂Ei

∂Ti

)
Te

dTi

dt
. (22)

Conditions 1 and 2 above can be expressed as: 1. dTi/dt[MD] ≈ dTi/dt[LB]= 2/3 × ZLB,

and 2. dTe/dt[MD] ≈ −2/3 × dEi/dt[MD]= −2/3 × ZMD. Plugging these conditions into

Eqs.22 and eliminating the ratio ZMD/ZLB yields:(
∂Ee

∂Ti

)
Te

[
3

2
+

(
∂Ei

∂Te

)
Ti

]
≈ −

(
∂Ei

∂Ti

)
Te

[(
∂Ee

∂Te

)
Ti

− 3

2

]
. (23)

As a concrete example, our HNC estimations, a la Eq.17, for the Ti = 105 K, Te = 107 K

case give for this relation (all numbers expressed in units of kB),

−0.043×
[

3

2
+ 0.0011

]
≈ −2.08×

[
1.53− 3

2

]
,

or

−0.0645 ≈ −0.0624,

demonstrating once again that our HNC-based theoretical modeling of the non-ideal 2-T

EOS is on solid ground [60]. More fundamentally, the relative magnitudes of the various
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derivatives in Eqs.22 and 23 suggest that the much simpler diagonal form of Eq.22 is quite

accurate for these plasmas,

dEe

dt
≡ −ZMD ≈

(
∂Ee

∂Te

)
Ti

dTe

dt
≈ 3

2

dTe

dt
,

dEi

dt
≡ ZMD ≈

(
∂Ei

∂Ti

)
Te

dTi

dt
≈ 2

dTi

dt
. (24)

While these observations are clearly borne out in our MD results, we do not claim to under-

stand their origin in a deep sense, beyond the trivial fact that derivatives with respect to

Te are much smaller than derivatives with respect to Ti, due to the small ratio of electronic

to ionic coupling. Furthermore, their satisfaction does not explain the surprisingly large

ZMD/ZLB that we have found.

The bare ion-ion plasma coupling for the cases studied heretofore is Γii ∼ 12.5. While we

have argued that this is low enough for an accurate treatment of static correlations within

the rubric of HNC, it is possibly too high for a treatment of the equilibration rates using

Eq.3 to be accurate. With this in mind, we also consider the semiclassical hydrogen plasma

with n = 1026 cm−3, Ti = 106 K, and Te = 108 K. This possesses a bare Γii ∼ 1.25, but

with a ratio, Te/Ti, equal to that of the Ti = 105 K, Te = 107 K case. Table III shows

our results. Once again, the energy equilibration rate from MD (expressed as an equivalent

temperature derivative: 9.97 eV/fs per kB) is closer to the FGR rate (10.36 eV/fs) than to

the CM-LB rate (8.81 eV/fs). And once again, the two approximate conditions discussed

directly above are roughly satisfied. Though the difference between dTi/dt and −dTe/dt is

far smaller in absolute magnitude due to the smaller ion coupling here, the treatment of

Ref.[20] and our Eq.3 is still sorely incomplete. It remains to be seen if any plasma studied

with non-equilibrium classical MD exhibits the coupled-mode effect in the manner predicted

by classical Lenard-Balescu theory with RPA screening.

D. Effects of collisional broadening

As discussed in Ref.[20] and in Section III of this work, the low-energy, long-wave length

ion acoustic wave feature in the CM-LB treatment is responsible for the marked reduction in

equilibration rates relative to the FGR prediction. Furthermore, this excitation is predicted

to be exceedingly sharp in ω (i.e., long-lived in time), within the standard RPA treatment
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LB dTi/dt (no LFCs) FGR dTi/dt (no LFCs) dTi/dt from MD −dTe/dt from MD (2/3)× dEi/dt from MD

8.81 10.36 8.73 9.81 9.97

TABLE III: Instantaneous dT/dt (in eV/fs) calculated from classical-QSP Lenard-Balescu, and

extracted from MD using the identical QSPs for a hydrogen plasma with n = 1026 cm−3, Ti = 106

K, and Te = 108. Also shown in the rightmost column is the instantaneous rate of change of the

internal energy of the ions, expressed as 2
3dEi/dt, to compare it to the temperature derivatives

(Note that the relation dEe/dt = −dEi/dt holds exactly, so we only display dEi/dt).

for the 2-component dielectric function which forms the denominator of Eq.3. It is impor-

tant to note, however, that MD studies of one- and two-component plasmas in equilibrium

have shown that lifetimes of collective modes are greatly reduced relative to those of RPA

when the plasma is strongly-coupled. For example, the works of Refs.[61–64] demonstrate

large deviations of dynamic structure factors, S(k, ω), from their RPA predictions in the

neighborhood of plasmon peaks. Specifically, these peaks are substantially broadened and

reduced in height when the plasma coupling, Γ, is of order a few (see, e.g., Fig.2c and Fig.2d

in Ref[62]). Though the static LFCs we have employed in our LB calculations do modify the

RPA peak structure in S(k, ω), they do so primarily by moving the pole positions, rather

than by broadening these peaks in frequency. It is therefore of interest to know what effect

such a broadening might have on our predictions of T -equilibration.

To wit, we employ a simple scheme for affecting such a broadening, that of replacing ω −→

ω+iγi in χ0
i , the density response function of the ions. Here, γi represents a phenomenological

inverse collisional lifetime. Since this replacement in the Lindhard response of Eq.6 is known

to violate local charge conservation, we use instead the modified expression for this function

[65] which appears in Refs.[66] and [67]. This new function, χ̃0
i (k, ω + iγi), is then input

into both the numerator [Imχ0
i (k, ω)] and the denominator [D(k, ω)] of Eq.3, the CM-LB

expression for dTi/dt. The electron response function, χ0
e(k, ω), is left unchanged in this

expression, because the electrons are far more weakly-coupled in the cases we consider here

(Te � Ti; Γee ∼ 0.125 or less).

Figure 9 shows a series of F (k) k-integrands for the n = 1026 cm−3, Ti = 105 K, Te = 107

K quantum-Coulomb hydrogen case, to be compared to those of Fig.3 above. All have been

generated with the aforementioned prescription in which χ̃0
i (k, ω+ iγi) is used in the context
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FIG. 9: The k-integrands, F (k), of Eq.3 for the quantum-Coulomb hydrogen plasma with n = 1026

cm−3, Ti = 105 K, and Te = 107 K. Here, the Lindhard χ0
i (k, ω) is replaced by the corresponding

function, χ̃0
i (k, ω + iγi), of Ref.[66, 67]. Each curve represents a different choice of γi, expressed in

atomic units (Hartrees; see figure key). Note that the F (k) for γi = 10−12 Ha (solid black curve;

not seen) and the F (k) for γi = 10−6 Ha (red curve) are essentially identical.

of Eq.3. Thirteen orders of magnitude in γi (in atomic units, Hartrees) are represented.

There is a clutch of curves with 10−3 < γi < 10 located close to the FGR F (k) (black

dot-dashed curve), and a collection of curves with γi � 10−3 which are essentially indis-

tinguishable from each other and from the RPA CM-LB prediction. Figure 10 shows the

integrals under these curves,
∫∞

0
dkF (k) (which are equal to the effective Coulomb-logarithm

for this case) as a function of γi/ωp, where ωp is the ion plasma frequency. The y-axis value

of ∼ 0.65 denotes the effective lnλei corresponding to the CM-LB prediction, while the FGR

value is in the neighborhood of lnλei = 0.95. Thus, it appears that the phenomenological

collisional broadening applied solely to the strongly-coupled ions can indeed extinguish the

CM effect, if the collision frequency is in the appropriate range.
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FIG. 10: The effective Coulomb-logarithms, lnλei, for the quantum-Coulomb hydrogen plasma with

n = 1026 cm−3, Ti = 105 K, and Te = 107 K. Here, the Lindhard χ0
i (k, ω) in Eq.3, is replaced by

the corresponding function, χ̃0
i (k, ω + iγi), of Ref.[66, 67]. Each point on the curve represents a

different choice of γi, expressed in atomic units (Hartrees). The CM-LB RPA result is represented

by the nearly flat line at the lower-left of the plot; the FGR result is at lnλei ∼ 0.95.

As an independent estimate of this ion collision frequency, we turn to MD simulations

of ion OCPs with plasma conditions similar to ours in this case (Γ ∼ 12.5). The work of

Ref.[61] displays MD data for S(k, ω) for a plasma with Γ = 9.7 (see their Fig.5). We are

concerned primarily with k values of the order of ∼ 1/rS, given our discussion surrounding

our Fig.3. Both k = 0.6187/rS and k = 1.3837/rS were considered in Ref.[61]. To affect a

comparison, we evaluate χ̃0
i (k, ω + iγi) for the Γ = 9.7 OCP at these specific k, and for a

range of γi. From these, we compute the interacting χ̃i functions (which would correspond

to the RPA χ in the limit of γi −→ 0), using the usual relation,

χ̃i(k, ω) =
χ̃0

i (k, ω)

1− v(k)χ̃0
i (k, ω)

. (25)

The dynamic structure factors are then computed from these polarizabilities using the
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fluctuation-dissipation theorem [39]. Good agreement with the MD results of Ref.[61] are

found when γi is chosen to be roughly (0.1− 0.2)× ωp. The plot of Fig.10 shows this to be

in the range where the FGR result is expected. Yet another estimate for γi can be obtained

by appealing to the relationship between this quantity and the self-diffusion constant, D,

outlined in chapter 9 of Ref.[68] and alluded to in Ref.[69]:

γ =
kBT

mD
, (26)

where m is the ion mass. Using the diffusion constant for the Γ = 9.7 plasma quoted in

Table II of Ref.[61], we obtain γi = 0.26 × ωp, once again in the range clearly favoring the

FGR result. Finally, our own MD computation of S(k = 0.3/rS, ω) for the Γ = 12.5 OCP

shows a plasmon peak with a full-width at half maximum of ∼ 0.1× ωp, again indicating a

γi in this same range.

We therefore deem it highly likely that collisional broadening among the strongly-coupled

ions is responsible for extinguishing the coupled-mode effect. It may prove fruitful in future

studies to explore more complex k-dependent models for γi [63, 64] as well as more sophisti-

cated (beyond-RPA) treatments of the plasma dispersion relation to refine these predictions

of Sii(k, ω) further, as they apply to the equilibration problem. More fundamentally how-

ever, it is unknown at present if the GLB prescription, as exhibited in Eq.3, is truly up to the

task of handling such problems; our lifetime-broadened Sii(k, ω) is essentially equivalent to

some specific dynamical local-field correction [Gii(k, ω)] as appearing in Eqs.3 and 4, but for

sufficiently strong plasma couplings, even this picture is likely to be inadequate for readily

accessible G(k, ω).

E. Effect of non-Maxwellian velocity distributions

Because the plasmas we consider here have such large initial T -splits, and the cases we

have studied exhibit distinct kinetic and configurational ion temperatures, it is of interest to

know if the assumption of Maxwellian velocity distributions (which we have made thus far

in the theoretical estimates) is truly well-founded for the time intervals over which MD data

has been taken. It is conceivable that the disagreements we have seen, LB vs. MD, result

in part from the inadequacy of the Maxwellian assumption. To this end, we examine the

velocity distributions from MD, fe(v) and fi(v), at representative times for the trajectory
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corresponding to the n = 1026 cm−3, Ti = 105 K, Te = 107 K case. Figure 11 shows the ion

distribution (purple) from our MD simulation, together with the Maxwellian (green) at the

Ti corresponding to the total ion kinetic energy at this t. A small but systematic deviation

between the two is noticeable. Figure 12 shows the residual (purple curve minus green curve

in Fig.11) over this same energy range (purple).

The green curve in Fig.12 is our smooth fit to this residual, constructed by expanding

the multiplicative deviation of fi(v) from the Maxwellian, f
(0)
i (v), in a series of Laguerre

polynomials,

fi(v) = f
(0)
i (v)

∞∑
n=0

Ai
nL

(1/2)
n

(
miβiv

2

2

)
. (27)

We find that the residual is best fit with just the first non-unity term in this expansion. The

cyan curve in Fig.11 shows f
(0)
i (v) plus our fit to the residual. The electron distribution at

this same time (and for all times) has practically no residual at all; this is to be expected

from the fact that the ions move much more slowly than the electrons and are therefore

slower to come into intra-species equilibrium [71].

Using the mathematical techniques employed in Ref.[72], we predict that the ion residual

shown in Fig.12 increases the LB prediction of dTi/dt by only ∼ 3 %, relative to that of the

perfect Maxwellian with T = Ti. Details of this calculation are given in the Appendix. This

then demonstrates that intraspecies equilibration is indeed much faster than the timescale

for interspecies heat exchange of primary interest in this work, as expected. Thus, despite

the large initial T -splits which could in principle have skewed the MD velocity distribu-

tions appreciably at later times, we conclude that the plasmas we study here are indeed

amenable to theoretical T -equilibration treatments which assume Maxwellian velocity dis-

tributions. However, the failure of the ion static structure [represented by gii(r)] to reflect

the correlations of a system of ions in thermal equilibrium at the kinetic temperature, Ti, is

another matter entirely, and is undoubtedly a manifestation of non-adiabatic effects which

are beyond the scope of our current theoretical tools (a la Eq.3).

V. CONCLUSIONS

We have presented non-equilibrium classical molecular dynamics results for temperature

equilibration of hydrogen plasmas at a density of n = 1026 cm−3. Inter-particle interactions

were taken to be quantum statistical potentials (QSP) of the Dunn-Broyles [27] and Minoo
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FIG. 11: ion kinetic energy distributions from MD (purple), together with the closest-fit

Maxwellian.

et al. [28] forms [35]. The initial temperatures considered, Ti = 105 K and Te between 107 K

and 5×108 K, were chosen to coincide with those studied in a paper of Vorberger and Gericke

[20] in which they used the Lenard-Balescu equation to predict that the energy equilibration

rate for such systems is substantially lowered due to the presence of ion acoustic waves.

Our Lenard-Balescu calculations for the associated classical-QSP plasmas also predict a

corresponding reduction, but fail to agree with the energy equilibration rates from our MD.

Inclusion of static local-field corrections in the (generalized) Lenard-Balescu calculations

does little to improve this. However, replacing the Lindhard ion density response function,

χ0
i , by one in which collisional broadening is assumed largely extinguishes the coupled-mode

effect.

The large differences between Te and Ti complicate the preparation of non-equilibrium

systems compared to what has been studied the past [11, 13]. Thus, we discussed the

relative merits of three schemes for initializing the MD simulations. The evaluation of the
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FIG. 12: The KEion-dependent residual, together with a fit comprised (chiefly) a single Laguerre

polynomial.

Lenard-Balescu equilibration rate is also more complex when the plasmas considered are in

this regime; our strategy for computing it was described, and comparisons were made to the

analogous strategies and results outlined in Ref.[20].

We found that for the cases we studied with MD, there is a sizable effect on dTe/dt

and dTi/dt from time-varying potential energy, not treated in the usual Lenard-Balescu

approach, but discussed in detail in various recent works [7, 14, 21]. We used a variety of

approaches to quantify this effect, and we also demonstrated that it should be present for real

quantum hydrogen plasmas in these conditions as well (i.e., not just for the classical-QSP

model of hydrogen with which we have conducted our MD simulations of T -equilibration).

In addition, we observed that the static structure of the ions in our classical MD simulations

is notably different (more structured) from that corresponding to ions in thermal equilibrium

at the instantaneous kinetic-Ti. This may very well result from strong non-adiabatic effects

in the systems under consideration, the implications of which must be studied further.
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Our MD results and associated comparisons to theory constitute a crucial step in vali-

dating and critiquing new models for temperature equilibration [23, 24] aimed at treating

plasmas for which the electron-electron and electron-ion couplings may be weak, but the

ion-ion coupling is somewhat stronger. In addition to being of potential interest to the field

of laser-produced plasmas (where, generally, Te � Ti initially), this sets the stage for the

investigation of plasmas containing multiple ion species where some of these ions have a siz-

able average charge. Such cases have also been predicted to be strongly affected by coupled

collective modes (see Eq.1). However, we are now faced with the troubling result that the

coupled-mode effect itself seems to be greatly exaggerated in the available theories, at least

for the 2-species plasmas we have considered in this work. It is entirely possible that the

ion acoustic waves which constitute the coupled modes here are so severely underdamped

as to be veritably decoupled from the other modes (e.g., plasmons) in the system; in this

case, such modes may not thermalize sufficiently to steal oscillator strength away from the

plasmons, as they are assumed to do in the coupled-mode Lenard-Balescu treatment [20].

Still another potential explanation is that stemming from the calculations we have outlined

in Section IV D, collisional broadening within the strongly-coupled ion subsystem.

It remains to be seen if a more sophisticated treatment of the coupled electron-ion den-

sity response [21] yields more favorable comparisons with MD, or if the linear response

assumption itself is questionable in these Te � Ti cases.
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Appendix A: Model for the internal energy of a 2-T hydrogen plasma

To approximate the internal energy of a real Coulomb system, we follow a derivation

similar to that given by Ashcroft and Stroud [45]. The general Hamiltonian of a Coulomb

39



system (classical or quantum) can be written as

H =
∑
i

p2
i

2m
+

1

2

∑
i 6=i′

e2

|ri − ri′ |
− E0 (A1)

+
1

2

∑
j 6=j′

Z2e2

|Rj −Rj′|
+ E1 + E0 (A2)

−
∑
i,j

Ze2

|ri −Rj|
− E1 (A3)

+
∑
j

P 2
j

2M
, (A4)

where ne is the mean electron number density, E0 is the self-energy of a uniform background

of charge density nee given by

E0 =
1

2

∫
dr

∫
dr′

(nee)
2

|r− r′|
, (A5)

and E1 is the interaction between the ions and this background

E1 =
1

2

∑
j

∫
dr

Ze2ne
|r−Rj|

. (A6)

Here, {ri} and {Rj} denote electronic and ionic coordinates respectively with {pi} and {Pj}

being their momenta and m and M being their masses. The lines of (A1-A4) have been

arranged to yield components that are individually finite in the thermodynamic limit. For

example, line (A1) is simply the Hamiltonian of a free electron gas, Hfeg, embedded in a

neutralizing uniform background. The next two lines (A2-A3) can be expressed in Fourier

space as

Vii =
Z2

2

∫
dk

(2π)3
vee(k) [n̂ion(k)n̂ion(−k)−Nion] , (A7)

Vei = −Z
2

∫
dk

(2π)3
vee(k)n̂ion(k)n̂e(−k), (A8)

where n̂ion(k) and n̂e(k) are the ion and electron density operators respectively, Nion is the

total number of ions, and vee(k) = 4πe2/k2.

Generally speaking, the statistical mechanics of a two-temperature system is poorly de-

fined [44]. However, for the electron-proton system of interest, we can simplify the calcu-

lations by approximating the ions as classical point particles and temporarily fixing their

coordinates, which is reasonable given their mass discrepancy (M/m ≈ 1836) and lower
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temperature (Ti/Te ≤ 1/100). The ensemble average over the electron degrees of freedom in

terms of Te generates the internal energy of the electron gas 〈Hfeg〉 = NionUfeg(ne, Te), the

electron density 〈n̂e(k)〉 and leaves the remaining variables unchanged. This procedure is

equivalent to the Born-Oppenheimer approximation.

We next approximate the electron density in terms of the ion density operator through a

response function as

〈n̂e(k)〉 ≈ −Zvee(k)χ(k;ne, Te)nion(k). (A9)

In general, this response function would be calculated in terms of cross-correlations between

the ions and electrons and thus depend on both temperatures; however, the response will

be dominated by the electron temperature for the problem of interest due to the previously

mentioned disparate quantities [46, 48]. Next, the ionic coordinates are released, and an

ensemble average is taken in terms of the ionic degrees of freedom and Ti. Using the definition

of the ion-ion static structure factor

Sij(k) ≡ 1√
NiNj

〈n̂i(k)n̂j(−k)〉, (A10)

we obtain the expression for the total internal energy

〈H 〉 = NionUint (A11)

= NionUfeg(ne, Te) (A12)

+Nion
Z2

2

∫
dk

(2π)3
vee(k) [Sii(k)− 1] (A13)

+Nion
Z2

2

∫
dk

(2π)3
v2
ee(k)χ(k)Sii(k) (A14)

+
3

2
NionkBTi, (A15)

where lines (A12-A15) correspond to lines (A1-A4) respectively. By next introducing the

dielectric function ε−1(k) = 1 + vee(k)χ(k), we can write the internal energy per ion as

Uint = Ufeg +
3

2
kBTi

+
Z2

2

∫
dk

(2π)3
vee(k)

[
Sii(k)

ε(k)
− 1

]
. (A16)

As a simple model, we take the response function associated with the linearized Thomas-

Fermi (TF) functional. Within this approximation, the dielectric function takes the form

41



ε(k) ≈ 1 + (λTFk)−2, where the TF screening length is λ−2
TF = 4πe2(∂ne/∂µ) with

ne = 2

∫
dp

(2π)3

(
1 + e(p2/2m−µ)/Te

)−1

. (A17)

More complicated energy functionals have been explored with gradient corrections to the

density and exchange-correlation effects, but these higher-order contributions were found to

be negligible for the system of interest [70]. The resulting internal energy then simplifies to

Uint = Ufeg(ne, Te) +
3

2
kBTi −

Z2

2λTF

+ 2πZ2nion

∫ ∞
0

dr e−r/λTFr [gii(r)− 1] , (A18)

where gii(r) is the ion-ion radial distribution function. Finally, the internal energy of the

electron gas can be estimated using fits from Reference [51], while the final potential energy

term in (A18) can calculated using HNC with the appropriate screened Coulomb (Yukawa)

interaction.

Appendix B: Equilibration rates for non-Maxwellian distributions

We compute energy-equilibration for a plasma with electrons and one ion species, for the

case of general particle distributions which include small non-Maxwellian components, using

the quantum Lenard-Balescu equation. Though our primary aim in the bulk of the main

text is the analysis of classical plasmas, we use quantum-LB here because the quantum-

LB collision operator is mathematically more straightforward to handle in this context.

However, we expect the effects of non-Maxwellian distributions on equilibration rates to be

largely insensitive to this distinction. Considering two species, electrons and protons, their

distributions are written as:

fe(v) = f (0)
e (v)

∞∑
n=0

AenL
(1/2)
n

(
meβev

2

2

)
, (B1)

fi(v) = f
(0)
i (v)

∞∑
n=0

Ai
nL

(1/2)
n

(
miβiv

2

2

)
, (B2)

where f
(0)
e and f

(0)
i are Maxwellians, and L

(1/2)
n are Laguerre polynomials, which allow for

complete flexibility in the shapes of the distributions. Conservation of the number of particles

for each species requires [72],

Ae
0 = Ai

0 = 1 . (B3)
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The condition for kinetic energy conservation (this is all we can assume here, given our use

of LB [16]) can be derived from

KEe =
3

2

ne

βe

, KEi =
3

2

ni

βi

, (B4)

which gives

Ae
1 = Ai

1 = 0. (B5)

Since, for hydrogen, we have ne = ni,

βiA
e
1 = −βeA

i
1. (B6)

The 2-species LB kinetic equation is of the form,

∂fe

∂t
= Cee(fe) + Cei(fe, fi), (B7)

∂fi

∂t
= Cii(fi) + Cie(fe, fi). (B8)

The intra-species collision operators, Cee and Cii, are irrelevant for energy equilibration. We

compute the time rate of change of the ion energy,

d(KE)i

dt
=

1

2
mi

∫
v2Cie(fe, fi)d

3v . (B9)

The collision operator is given by [73]

Cie(fe, fi) = − 1

4π2~2

∫
d3v′

∫
d3k

|φei(k)|2∣∣∣ε(k,k · v + ~k2
2mi

)∣∣∣2
×δ[k · (v − v′) + ~k2/2µ]

×[fi(v)fe(v
′)− fi(v + ~k/mi)fe(v

′ − ~k/me)] , (B10)

where

µ ≡ memi

me +mi

(B11)

is the reduced mass. Next we plug the distributions of (B1) and (B2) into (B9) and use

various identities to perform the integrals. The v′ integrals can be handled immediately,

I1(k, ω) ≡
∫
d3v′δ(ω+ − k · v′)fe(v

′) =
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ne

(
βeme

2π

)1/2
1

k

∑
n

Ae
nL

(− 1
2)

n (Y 2
+)e−Y

2
+ (B12)

I2(k, ω) ≡
∫
d3v′δ(ω+ − k · v′)fe(v

′ − ~k/me) =

ne

(
βeme

2π

)1/2
1

k

∑
n

Ae
nL

(− 1
2)

n (Y 2
−)e−Y

2
− , (B13)

where

ω ≡ k · v +
~k2

2mi

, (B14)

ω± ≡ ω ± ~k2

2me

, (B15)

and

Y 2
± ≡

meβeω
2
±

2k2
. (B16)

We then have
d(KE)i

dt
= − 1

4π2~2

1

2
mi

∫
d3v

∫
d3k
|φei(k)|2

|ε(k, ω)|2
v2

×[fi(v)I1(k, ω)− fi(v + ~k/mi)I2(k, ω)]. (B17)

Turning to the v integrals,

J1(k) ≡
∫
d3v

|φ(k)2

|ε(k, ω)|2
v2fi(v)I1(k, ω), (B18)

J2(k) ≡
∫
d3v

|φ(k)|2

|ε(k, ω)|2
v2fi(v + ~k/mp)

×I2(k, ω). (B19)

For these, we assume the k vector points in the z-direction so that

vz =
ω−
k
, (B20)

dvz =
1

k
dω (B21)

and

v2 = v2
⊥ +

(
ω−
k

)2

, (B22)
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where

ω± ≡ ω ± ~k2

2mi

. (B23)

To evaluate J1(k) and J2(k), we need the identities∫ ∞
0

e−βimiv
2
⊥/2L(1/2)

m

(
βimiv

2
⊥

2
+
βimiv

2
z

2

)
v⊥dv⊥ =

1

βimi

L
(− 1

2)
m

(
βimiv

2
z

2

)
, (B24)

and ∫ ∞
0

e−βimiv
2
⊥/2L(1/2)

m

(
βimiv

2
⊥

2
+
βimv

2
z

2

)
v3
⊥dv⊥ =

4

(βimi)2
L

(− 3
2)

m

(
βimiv

2
z

2

)
. (B25)

Note that
βimiv

2
z

2
= Y

2

−, (B26)

where

Y
2

− ≡
βimiω

2
±

2k2
. (B27)

Using these relations, we obtain

J1(k) =

√
2

π

ni√
miβi

∑
m

Ai
m

∫ ∞
−∞

|φ(k)

|ε(k, ω)|2
e−Y

2
−

×
[
2L

(− 3
2)

m

(
Y

2

−

)
+ Y

2

−L
(− 1

2)
m

(
Y

2

−

)] I1(k, ω)

k
dω. (B28)

To compute J2(k), we make the substitution u = v+ ~k/mp. Because we choose k to point

in the z-direction, we have

v2 = u2
⊥ +

(
ω−
k

)2

(B29)

and we can immediately write

J2(k) =

√
2

π

ni√
miβi

∑
m

Ai
m

∫ ∞
−∞

|φ(k)|2

|ε(k, ω)|2
e−Y

2
+

×
[
2L

(− 3
2)

m

(
Y

2

+

)
+ Y

2

−L
(− 1

2)
m

(
Y

2

+

)] I2(k, ω)

k
dω. (B30)
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The equilibration rate is given by

d(KE)i

dt
= − mi

2π~2

∫ ∞
0

[J1(k)− J2(k)]k2dk . (B31)

Noting that I1(k, ω) = I2(k,−ω), we can show by the substitution ω → −ω that

J2(k) =

√
2

π

ni√
miβi

∑
m

Ai
m

∫ ∞
−∞

|φ(k)|2

|ε(k, ω)|2
e−Y

2
−

×
[
2L

(− 3
2)

m

(
Y

2

−

)
+ Y

2

+L
(− 1

2)
m

(
Y

2

−

)] I1(k, ω)

k
dω, (B32)

and

J1(k)− J2(k) =

√
2

π

ni√
miβi

∑
m

Ai
m ×

∫ ∞
−∞

|φ(k)|2

|ε(k, ω)|2
e−Y

2
−

×
[(
Y

2

− − Y
2

+

)
L

(− 1
2)

m

(
Y

2

−

)] I1(k, ω)

k
dω. (B33)

We now need to plug I1(k, ω) into this formula, which we do by making use of the identities

Y
2

− − Y
2

+ = −βi~ω, (B34)

and

Y
2

− + Y 2
+ =

miβi

2k2
(1 + α)ω2 +

~ω
2

(βe − βi)

+
~2k2

8

(
βi

mi

+
βe

me

)
, (B35)

where

α ≡ meβe

miβi

. (B36)

Putting these pieces together, we find

d(KE)i

dt
= 8neni

√
βe

2mi

e4

∞∑
m=0

∞∑
n=0

Ae
nA

i
m

×
∫ ∞

0

∫ ∞
−∞

e−(1+α)x2

|ε(x, y)|2
e
−
√
me
mi

2xy(γ−1)

y2
e−(γ+me/mi)y

2

×L(− 1
2)

m

(
Y

2

−

)
L

(− 1
2)

n

(
Y 2

+

)
xdxdy, (B37)
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where we have used the dimensionless variables

x2 =
miβiω

2

2k2
, y2 ≡ ~2βik

2

8me

, γ ≡ βe

βi

=
Ti

Te

, (B38)

which lead to

Y± =
√
αx±√γy, (B39)

Y ± = x±
√
me

mi

y . (B40)

Now we need the two-component RPA dielectric function for which the distributions of

(B1) and (B2) are used. This is derived in Appendix A of Ref.[72, 74]:

ε(x, y) = 1 +
η2

y2

[
wi(x) +

ξγ

Z2
we(x)

]
, (B41)

where

wi
r(x) =

∑
k

Ai
kM

(
k + 1,

1

2
;−x2

)
, (B42)

wi
i(x) =

√
πxe−x

2
∑
k

Ai
kL

(− 1
2)

k (x2), (B43)

and

we
r(x) =

∑
k

Ae
kM

(
k + 1,

1

2
;−αx2

)
, (B44)

we
i (x) =

√
π
√
αxe−αx

2
∑
k

Ae
kL

(− 1
2)

k (αx2) . (B45)

Here, M(a, b; z) is the confluent hypergeometric function. This result, together with (B37)

and the method of Appendix C of Ref.[72], provides us with the means to compute (kinetic)

energy equilibration rates for non-Maxwellian particle distributions within LB.
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