
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dispersive transport and symmetry of the dispersion tensor
in porous media

Steven R. Pride, Donald W. Vasco, Eirik G. Flekkoy, and Ran Holtzman
Phys. Rev. E 95, 043103 — Published 10 April 2017

DOI: 10.1103/PhysRevE.95.043103

http://dx.doi.org/10.1103/PhysRevE.95.043103


Dispersive Transport and Symmetry of the Dispersion Tensor in Porous Media

Steven R. Pride∗ and Donald W. Vasco†
Lawrence Berkeley National Laboratory, Energy Geosciences Division,

1 Cyclotron Road, MS 74R316C, Berkeley, CA 94720, USA.

Eirik G. Flekkoy‡
Department of Physics, University of Oslo, P.O. Box 1043 Blindern, 0316 Oslo, Norway.

Ran Holtzman§
The Robert H. Smith Faculty of Agriculture, Food and Environment,

Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.
(Dated: March 12, 2017)

The macroscopic laws controlling the advection and diffusion of solute at the scale of the porous
continuum are derived in a general manner that does not place limitations on the geometry and
time evolution of the porespace. Special focus is given to the definition and symmetry of the
dispersion tensor that is controlling how a solute plume spreads out. We show that the dispersion
tensor is not symmetric and that the asymmetry derives from the advective derivative in the pore-
scale advection-diffusion equation. When flow is spatially variable across a voxel, such as in the
presence of a permeability gradient, the amount of asymmetry can be large. As first shown by
Auriault [J.-L. Auriault et al., Transp. Porous Med., 85, 771 (2010)] in the limit of low Peclet
number, we show that at any Peclet number, the dispersion tensor Dij satisfies the flow-reversal
symmetry Dij(+q) = Dji(−q) where q is the mean flow in the voxel under analysis; however,
Reynold’s number must be sufficiently small that the flow is reversible when the force driving the
flow changes sign. We also demonstrate these symmetries using lattice-Boltzmann simulations and
discuss some subtle aspects of how to measure the dispersion tensor numerically. In particular, the
numerical experiments demonstrate that the off-diagonal components of the dispersion tensor are
anti-symmetric which is consistent with the analytical dependence on the average flow gradients
that we propose for these off-diagonal components.

PACS numbers: 05.60.Cd, 47.56.+r, 66.10.C-

I. INTRODUCTION

In a porous material, if fluid injection at some point
creates a localized change in solute concentration (or in-
deed any fluid property) and if there is flow taking place
either due to the injection process alone or an already
existent background flow (or both), this change in so-
lute concentration will be transported downstream by the
flow, spreading out into a plume in the process. The flux
due to the solute being carried along by the average flow
in each voxel of porous material is called advection while
the flux that results in the spreading out into a plume is
called dispersion.

This article is concerned with establishing the mass
conservation and transport laws that describe such dis-
persive transport at the scale of the porous continuum.
Such laws are important in the modeling of how contam-
inants and tracers spread out in the Earth’s subsurface
[1–4] and in a diverse range of medical and industrial
applications from modeling how drugs and other solutes
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move through biological tissue [5] to modeling filtration
processes across porous membranes [6]. Thousands of
articles over the past 50-plus years have used seemingly
reasonable forms of the porous-continuum solute trans-
port laws; comprehensive overviews have been provided
by Bear [1], de Marsily [2], Dullien [3] and Sahimi [4]
among others. Due to differences in the proposed trans-
port laws when fluid density and porosity are allowed
to vary in time, we provide in this paper a systematic
derivation of the porous-continuum dispersive transport
equations. We place particular emphasis on the definition
and symmetry properties of the dispersion tensor. What
is most novel in this work is the consideration of the na-
ture of the off-diagonal terms of the dispersion tensor
that are generally ignored when one of the coordinate di-
rections aligns with the flow direction and the material is
isotropic. Our analytical considerations are verified using
lattice-Boltzmann simulations of the transport process.

To understand the physical essence of what dispersion
and the dispersion tensor is representing, consider a small
plume of excess solute in a porous material. Steady flow
in the porous material is being driven by a directed force.
Where the concentration gradient of the plume is perpen-
dicular to the mean flow direction, as the local flow bi-
furcates around a grain, fluid with a given concentration
is both advected into a pore up the concentration gra-
dient and into a pore down the concentration gradient.
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The up-gradient pore has its concentration lowered by
this process and the down-gradient pore has its concen-
tration increased which corresponds to solute flux down
the concentration gradient. This is called transverse me-
chanical dispersion. Where the concentration gradient of
the plume is parallel with the mean flow direction, the
local flow in the center of the pores is greater than near
the solid grain boundaries which results in advection en-
hanced solute diffusion that is analogous to Taylor-Aris
dispersion [7] in a tube and is called longitudinal me-
chanical dispersion. Recent numerical simulations [8, 9]
of the pore-scale longitudinal and transverse mechanical
dispersion through numerical reconstructions of actual
sedimentary porous media give greater insight into the
dependence on the pore geometry.

In addition to the above two sources of dispersion,
there is also the usual random-walk diffusion that trans-
ports solute down the concentration gradient. In a porous
continuum, the effects of mechanical dispersion and dif-
fusion are combined into a single dispersion tensor. Com-
paring a characteristic advection with flow speed U to a
characteristic diffusion with diffusivity Dm taking place
over a length scale ` (typical grain size) defines the Peclet
number Pe = U`/Dm. When Pe � 1, mechanical dis-
persion dominates diffusion.

There can also be mechanical dispersion in a direction
perpendicular to the concentration gradient even in an
isotropic material. This effect has generally not received
as much attention in the literature and is responsible for
the presence of off-diagonal terms in the dispersion tensor
even when one of the coordinate directions is parallel with
the macroscopic flow direction. We show that these off-
diagonal terms are not symmetric when present. This
paper will place an emphasis on considering this “non-
standard” type of mechanical dispersion, propose what
it is most commonly due to (gradients in flow across a
voxel) and derive a flow-reversal symmetry that these off-
diagonal terms must obey. Such off-diagonal terms are
a complicated coupling between advection and diffusion
and increase from zero with increasing Peclet number.

The macroscopic (porous continuum) governing equa-
tions for non-reactive solute transport have been ob-
tained and presented in different ways [10–14]; however,
there are some differences between presentations on how
to define the concentration of solute and where factors
of porosity and fluid density arrive in the equations if
porosity and fluid density are allowed to vary in time
and space. Porosity changes in time are caused by de-
formation of the framework of grains associated with the
fluid injection. For two-space homogenization methods
[13, 14], there is required to be an explicit separation
of scales into pore dimensions ` and macroscopic dimen-
sions L so that a small parameter ε = `/L exists that
can be used to truncate an asymptotic development of
the porescale fields. We are interested in an approach
that is valid when there are more than two length scales
present so that two-space homogenization is not formally
applicable. Further, the boundary conditions on the in-

dividual voxels tend to be periodic in homogenization
approaches while Dirichlet conditions on the solute con-
centration are the natural ones to connect to.

II. MACROSCOPIC RESPONSE OF A VOXEL

We begin with some general considerations of the av-
erage (macroscopic) response in porous media.

Figure 1 depicts a voxel of porous material Ω(r) lo-
cated at position r = r1x̂1 + r2x̂2 + r3x̂3 within a
larger porous system. For fields distributed at points
x = x1x̂1 + x2x̂2 + x3x̂3 throughout the interior of the
voxel, the macroscopic description only requires the aver-
age of these fields and the gradient of the average across
the voxel. We can consider an averaging voxel of any
shape but there is no loss in generality in considering a
simple cube of volume L3. The six bounding faces of the
voxel ∂Ω are located at xi = ±L/2 for i = 1, 2, 3. The
pore space within Ω is denoted Ωp and the intersection
of the porespace with the external surface of the voxel is
denoted ∂Ωpe.
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Figure 1: A cubic voxel of porous material Ω(r) centered on
point r = (r1, r2, r3) within the larger porous system and
having local coordinates x = (x1, x2, x3) as shown.

Consider first a scalar field ψ(x) associated with the
pore space (density, pressure, temperature, etc.). The
average of this field throughout the porespace is

ψ(r) =
1

Vp(r)

∫
Ωpe(r)

ψ(x) d3x (1)

where Vp is the pore volume. The porosity is defined

φ(r) =
Vp(r)

L3
(2)

and may possess a macroscopic gradient. We generally
expect that an average field ψ at a point r will change as
the size L of the averaging voxel changes.

In addition to the volume average ψ, there is assumed
to be present a macroscopic gradient ∇ψ across the voxel
where ∇ = ∂/∂r is the gradient operator acting on
volume-averaged quantities. The gradient of a quantity
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averaged throughout a voxel is the difference in the vol-
ume integrals for voxels centered at r and r + dr. In the
limit as dr→ 0, the difference in the two volume integrals
becomes an integral over the bounding surface involving
the outward normal n to the surface. The exact theorem
is (e.g., [12] or [15])

∇
[
φψ
]

=
1

L3

∫
∂Ωpe

nψ(x) d2x. (3)

Upon inserting ψ = 1, we obtain the definition of the
macroscopic porosity gradient

∇φ =
1

L3

∫
∂Ωpe

n d2x. (4)

Equation (3) can then be rewritten to give directly the
gradient of a field averaged over the porespace

∇ψ(r) =
1

φ(r)L3

∫
∂Ωpe

n
[
ψ(x)− ψ(r)

]
d2x. (5)

Simply and intuitively, when the field being averaged is
larger on one side of an averaging region compared to the
opposing side, there is a macroscopic gradient present.

Consider next a vector flux j(x) taking place through
the pore space (fluid flow, solute flux, etc.). The average
flux through the porespace is

j(r) =
1

φ(r)L3

∫
Ωp

j(x) d3x (6)

so that the theorem of Eq. (3) yields the macroscopic
divergence theorem for pore-averaged fields

∇ · [φ j] =
1

L3

∫
∂Ωpe

n · j(x) d2x. (7)

Again using Eq. (4) for the porosity gradient, we rewrite
Eq. (7) as

∇ · j(r) =
1

φ(r)L3

∫
∂Ωpe

n ·
[
j(x)− j(r)

]
d2x. (8)

So either the macroscopic divergence of an average vec-
tor flux or the macroscopic gradient of an average scalar
field are independent of the average value of the field
throughout the porespace.

III. CONSERVATION OF FLUID MASS

We now use the above formalism to derive the macro-
scopic statement of the conservation of fluid mass. The
pertinent local fields throughout the porespace are ρ(x)
the local solution mass density and u(x) the local solu-
tion flow velocity. The conservation of solution mass for
the voxel can be written

− ∂

∂t

[∫
Ωp

ρ d3x

]
=

∫
∂Ωpe

n · u ρ d2x. (9)

After dividing both sides by L3, the left-hand side is iden-
tified as

∂

∂t

[
Vp
L3

1

Vp

∫
Ωp

ρ d3x

]
=

∂

∂t
[φρ] . (10)

When treating the integral of the right-hand side, we
use the divergence theorem of Eq. (7) along with the
decompositions throughout Ωp

u =u + δu(x) (11)
ρ =ρ+ δρ(x) (12)

to obtain

− ∂

∂t
[φρ] = ∇ ·

[
1

L3

∫
Ωp

(ρ+ δρ)(u + δu) d3x

]
(13)

= ∇ · [φρu] +∇ ·

[
1

L3

∫
Ωp

δρ δu d3x

]
. (14)

We have used that
∫

Ωp
δu d3x = 0 and

∫
Ωp
δρ d3x = 0.

The second term on the right-hand side of Eq. (14)
is non-standard; i.e., it is usually not a part of the
macroscopic statement of fluid-mass conservation at the
porous-continuum level. It represents a dispersive flux
of fluid mass that is distinct from the average mass flux
φρu that is allowed for in the first term on the right-
hand side. The way that deviations in solution density δρ
develop is if there are deviations in fluid pressure and so-
lute concentration. There is a state function ρ = ρ(p, ϕ)
for every (isothermal) solution, where p is the local fluid
pressure and ϕ the local solute concentration (as defined
in the next section).

When there is a strong macroscopic pressure gradi-
ent ∇p and/or concentration gradient ∇c present (the
macroscopic concentration measure c is defined in the
next section), one can imagine that there is a strong
enough macroscopic gradient in solution density ∇ρ to
warrant allowing for the deviations δρ(x) at the local
level and the macroscopic dispersive total-mass-flux vec-
tor Jρ defined by

Jρ =
1

L3

∫
Ωp

δρ δu d3x (15)

= −Dρ · ∇ρ (16)

= −Dρ ·
(
∂ρ

∂p
∇p+

∂ρ

∂c
∇c
)
. (17)

The solution-mass dispersion tensor Dρ (units of diffu-
sivity) is defined through the above equations. Its com-
ponents will be non-zero to the extent that flow-velocity
gradients are present across a voxel (that generate δu)
and to the extent that solution density gradients are
present across a voxel (that generate δρ) so that the prod-
uct δρ δu does not simply average to zero throughout the
porespace.
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For an average flow in the x direction created by a
macroscopic pressure gradient in the x direction that in
turn has a gradient in the y direction, we can make the
order-of-magnitude estimate that

|Jρ| =
k

η

∣∣∣∣ ∂2p

∂x∂y

∣∣∣∣L(∂ρ∂p |∆p|+ ∂ρ

∂c
|∆c|

)
(18)

where L is the size of a voxel of porous material, k is the
Darcy permeability and η is the solution viscosity. We
can further estimate the advective flux as

|Ja| =
k

η

∣∣∣∣∂p∂x
∣∣∣∣ ρ. (19)

With the estimate |∂(∂p/∂x)∂y| ≈ |∂p/∂x| /L, the im-
portance of dispersive solution-mass flux compared to the
advective flux is given by the order-of-magnitude dimen-
sionless ratio

|Jρ|
|Ja|

=
|∆p|
ρ c2p

+
(∂ρ/∂c)|∆c|

ρ
(20)

where we used that the speed of sound cp in the solution
is c2p = ρ ∂p/∂ρ. Because ρ c2p ≈ 109 Pa for liquids, so
long as the pressure deviations across a voxel are much
smaller than 109 Pa, which they will be in all applications
of flow in porous media, we can ignore the solution-mass
dispersion due to pressure gradients. The relation be-
tween the solute-mass to solution-mass ratio c and the
molarity M (mol/l) of the solution is M = ρc/µ where µ
is the molecular weight of the solute as read from the pe-
riodic table in grams per mole. We thus have to leading
order-of-magnitude that ∆c ≈ 10−2 (l/mol) ∆M . For
saline solutions at ambient pressure and temperature, the
appendix of Pride et al. [16] shows that ∂ρ/∂c ≈ 103

kg/m3 ≈ ρ. Further, a very large molarity change across
a porous voxel would be on the order of ∆M ≈ 10−1

mol/l, so that perhaps the largest value we can expect
for the ratio |Jρ|/|Ja| is on the order 10−3 which we will
assume is negligible.

We thus feel justified in writing the conservation of
mass in a porous continuum in the standard form

− ∂

∂t
[φρ] = ∇ · [φρu]− ρsQsδ(r− rs) (21)

where a source term has been included to represent solu-
tion of density ρs being injected into the porous material
at the voxel positioned at rs and at a volumetric rate Qs
(m3/s). If solution is being withdrawn (Qs < 0), then
the density to use at the withdrawal voxel is simply the
ρ locally present.

Instead of the average fluid velocity u, we are usually
modeling both the Darcy velocity q (flux through the
porous material of fluid relative to the solid) and the av-
erage solid velocity vs at the macroscopic scale of the
porous continuum (if poroelastic deformation is being al-
lowed for). We have the definitions that

q = φ(u− vs) (22)

and

vs =
1

Vs

∫
Ωs

vs(x) d3x. (23)

In terms of q and vs, we can then distribute derivatives
in Eq. (21) to obtain

∂φ

∂t
+vs · ∇φ+

φ

ρ

[
∂ρ

∂t
+

(
q

φ
+ vs

)
· ∇ρ

]
= −∇ · q− φ∇ · vs −

ρs
ρ
Qsδ(r− rs) (24)

which may also be thought of as the differential equation
that determines how porosity changes,

As such, we can also derive Eq. (24) in an alternative
manner dropping the injection point source for conve-
nience. Writing the porosity as φ = Vp/V (ratio of pore
volume to total volume associated with a given mass el-
ement of porous material), we take a total derivative to
obtain

dφ

dt
=

1

V

dVp
dt
− Vp
V 2

dV

dt
=

1

V

dVp
dt
− φ

V

dV

dt
. (25)

The change in the pore volume is exactly the difference
between how much fluid enters or leaves an element and
how much the fluid within the pores compresses or di-
lates. As was initially assumed by Biot and Willis [17]
and later proven by Pride and Berryman [15], the rate
that fluid volume is accumulating in a porous element
divided by the volume of the element is given by −∇ · q.
The rate that the fluid volume is compressing (causing an
increase in fluid density) divided by the sample volume
is (φ/ρ)dρ/dt. Pride and Berryman [15] further demon-
strate that ∇ · vs = (dV/dt)/V . We thus obtain

dφ

dt
+
φ

ρ

dρ

dt
= −∇ · q− φ∇ · vs. (26)

Comparing this expression to the earlier statement of Eq.
(24), we can identify with confidence the nature of the
total derivatives

dφ

dt
=
∂φ

∂t
+ vs · ∇φ (27)

dρ

dt
=
∂ρ

∂t
+

(
q

φ
+ vs

)
· ∇ρ. (28)

In particular, these expressions unambiguously identify
the velocity vectors to be used in the advective deriva-
tives when both fluid and solid are allowed to move and
deform. Quantities that are associated with the porous
frame, like porosity and permeability, use the average
solid velocity in the advective derivative and those that
are associated with the fluid, like the average fluid den-
sity, use the average fluid velocity (u = q/φ+ vs).

IV. CONSERVATION OF SOLUTE MASS

We next derive the conservation of solute mass in
a porous material. Keeping track of the solute enter-
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ing/leaving the cubic voxel we have

− ∂

∂t

[∫
Ωp

ρϕ d3x

]
=

∫
∂Ωp

n · [−ρDm∇ϕ+ ρϕu] d2x

(29)
where ϕ is the concentration of solute expressed as a mass
ratio (mass of solute divided by mass of solution) andDm

is the molecular diffusivity. The first flux term in brack-
ets is diffusion and the second is advection. In assuming
the diffusion to be described by Fick’s law, we are implic-
itly assuming the mean-free-path length λ of the random
movement of solute particles is much smaller than the
pore sizes. Because λ is on the order of molecular di-
mensions for liquid solvents, Fick’s law always provides
an accurate description of the solute diffusion within the
pores.

As the macroscopic measure of concentration, we in-
troduce

c =

∫
Ωp
ρϕ d3x∫

Ωp
ρ d3x

=
ρϕ

ρ
. (30)

We further write the local concentration ϕ(x) throughout
the porespace as

ϕ(x) = c+ δϕ(x) (31)

and continue to use u(x) = u + δu(x) for the flow field.
Upon substituting Eq. (31) into the definition of c, we
obtain that the deviations δϕ(x) satisfy∫

Ωp

ρ(x)δϕ(x) d3x = 0. (32)

or δϕ = 0 under conditions where ρ(x) = ρ is a uniform
spatial constant within Ωp.

The porescale boundary-value problem for ϕ(x) is [18]

∂ϕ

∂t
+ u · ∇ϕ =

1

ρ
∇ · (ρDm∇ϕ) in Ωp (33)

subject to the boundary conditions on the six bounding
cube faces that

ϕ(x) = co ±∆ci on xi = ±L
2

(34)

and n · ∇ϕ = 0 on the grain surfaces ∂G. The ∆ci are
defined from the macroscopic concentration gradient as

∇c = x̂1
∆c1
L

+ x̂2
∆c2
L

+ x̂3
∆c3
L

. (35)

When all the ∆ci = 0, we have that ϕ(x) = co is the
solution of Eqs. (33) and (34) in which case c = co. When
any of the ∆ci 6= 0 in the presence of advective flow, we
can have c 6= co.

Upon dividing both sides of the solute mass balance of
Eq. (29) by L3 and introducing the above definitions, we
have

− ∂

∂t
[φρc] =

1

L3

∫
∂Ωp

n · [−ρDm∇δϕ+ ρ (c+ δϕ)u] d2x.

(36)

The term on the right-hand side that involves n · ρcu
becomes ∇·(φρcu) according to the mass balance of Eqs.
(9) and (21). The macroscopic divergence theorem of Eq.
(7) then results in

− ∂

∂t
[φρc] = ∇ · (φρcu)

+∇ ·

[
1

L3

∫
Ωp

ρ [−Dm∇δϕ+ δϕ(u + δu)] d3x

]
.

(37)

Because u is a uniform constant throughout the pores-
pace, the integral of ρδϕ throughout the porespace is
zero according to Eq. (32). A final application of the to-
tal mass balance of Eq. (21) then yields the macroscopic
statement of conservation of solute

∂c

∂t
+ u · ∇c = − 1

φρ
∇ · J (38)

where the dispersive solute-mass flux vector J is defined

J =
1

L3

∫
Ωp

ρ [−Dm∇δϕ+ δϕδu] d3x. (39)

The concentration deviations δϕ(x) only exist in the pres-
ence of a macroscopic concentration gradient and are lin-
ear in the macroscopic concentration gradient. As such,
we can write

J = −ρD · ∇c (40)

where the dispersion tensor D (units of diffusivity) is
defined from

D · ∇c =
−1

L3

∫
Ωp

ρ

ρ
[−Dm∇δϕ+ δϕδu] d3x. (41)

This relation is one of the principal results of the paper
and will be the starting point for the next section where
the individual componentsDij are defined in terms of the
local fields. The first term in the integral is local diffusion
and the second term is what creates mechanical disper-
sion. To the extent that the local fluid density through-
out the porespace is well approximated by the average
density ρ(x) = ρ, which is the same condition required
for neglecting the dispersive flux of solution mass in the
total mass balance, the solution density is not involved
in the definition of Dij .

If we introduce u = q/φ + vs and allow for a point
source of solution injection where cs is the concentration
of solute being injected into a voxel located at rs at a
volumetric rate Qs, we then obtain a final macroscopic
statement of solute mass balance

∂c

∂t
+

(
q

φ
+ vs

)
· ∇c =

1

φρ
∇ · (ρD · ∇c)

+
(cs − c)Qs

φ
δ(r− rs). (42)
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V. DEFINITION OF THE DISPERSION
TENSOR

The dispersion tensor associated with a given voxel
Ω(r) will be defined here in terms of local fields that
have achieved a steady state with respect to the im-
posed boundary values. If such steady-state has not been
achieved, then the operator D in Eq. (40) would have
to be considered a time-convolution operator (or a com-
plex frequency-dependent multiplicative operator in the
temporal-frequency domain). As such, we only need to
determine the local fields ϕ and u when the time deriva-
tives in the local governing equations are zero.

The flow velocity u(x) satisfies the Navier-Stokes equa-
tions throughout the pore space and can be taken, at this
local scale, as being incompressible so that

∇ · u = 0. (43)

We further assume that the solution viscosity is inde-
pendent of ϕ to leading order so that the flow problem is
completely decoupled from the solute concentration prob-
lem.

Under the local incompressibility condition, along with
the idea that ϕ does not influence the solution density
appreciably, the local fluid density ρ(x) can be modeled
as the constant ρ so that Eq. (41) becomes

D · ∇c =
−1

L3

∫
Ωp

[−Dm∇δϕ+ δϕ δu] d3x. (44)

where, again, δϕ = ϕ− c.
We now divide the porescale concentration field into

four contributions

ϕ(x) = co +

3∑
i=1

δϕi(x) (45)

where the δϕi are solutions of the three Dirichlet sub-
problems (i = 1, 2, 3)

∇ · (−Dm∇δϕi + δϕiu) = 0 in Ωp (46)

δϕi =

{
∆ci/2 on xi = ±L/2
0 on xk = ±L/2 for k 6= i

(47)

and n · ∇δϕi = 0 and u = 0 on ∂G (the grain surfaces).
It is easy to verify by direct addition that the sum over
the subproblems satisfies Eqs. (33) and (34) in the steady
state and when ∇ · u = 0.

For the purpose of analyzing the nature of Dij , we can
set co = 0 with no loss in generality. In this case, we
have that c = ϕ =

∑3
i=1 δϕi. Note that in the presence

of advection, satisfaction of the Dirichlet boundary con-
ditions on the cube faces can result in δϕi 6= 0. However,
when flow is not taking place, we have that δϕi = 0.

To obtain the individual components Dij , we dot mul-
tiply Eq. (44) from the left with x̂i and use ∇c =
∆cjx̂j/L for some particular j. Taking ∆cj 6= 0 and

the concentration drops in the other two directions to
be zero defines the δϕj subproblem above. As such, we
obtain

Dij =
−1

∆cjL2

∫
Ωp

x̂i · [−Dm∇δϕj + δϕjδu] d3x. (48)

The volume integral in Eq. (48) can be written as the
average flux across a suite of parallel slices through the
material that are perpendicular to the x̂i direction. In
the steady state, the flux across each such slice is neces-
sarily the same. For convenience in defining the symme-
try properties of Dij in the next section, we rewrite Eq.
(48) as the average flux on the two terminal faces of the
cube

Dij =
−1

2∆cjL

{∫
xi=+L/2

x̂i · [−Dm∇δϕj + δϕjδu] d2x

+

∫
xi=−L/2

x̂i · [−Dm∇δϕj + δϕjδu] d2x

}
. (49)

This is our final definition of the individual components
of the dispersion tensor. In words, component Dij repre-
sents the average dispersive flux into and out of the voxel
across the terminal faces in the i direction when there is
a macroscopic concentration drop in the j direction and
no such drops in the other two directions.

From the boundary conditions on the cube faces, the
δϕi are non-zero only on the two faces xi = ±L/2. As
such, when i 6= j, we have that the advection contri-
butions in Eq. (49) are zero so that Dij is only due to
diffusion across the cube faces when i 6= j. For i = j,
both diffusion and advection across the cube faces are
contributing to the main diagonal components of the dis-
persion tensor. In this case (i = j), because the advec-
tive flux will be positive on one face (say xi = +L/2)
and negative on the other (say xi = −L/2), the diffu-
sive contribution on opposing faces xi = ±L/2 must be
different even in the steady state; i.e., x̂i · ∇δϕj will be
much bigger on one face compared to the opposing face
when j = i.

VI. SYMMETRY OF THE DISPERSION
TENSOR

To explore the symmetry of the Dij , we focus, say,
on the 1, 2 pair of subproblems and form the following
products

δϕ2 [0 = ∇ · (−Dm∇δϕ1 + δϕ1u)] (50)
δϕ1 [0 = ∇ · (−Dm∇δϕ2 + δϕ2u)] . (51)

Upon using the identity that ∇ · (αb) = ∇α ·b+α∇ ·b,
one can show through direct substitution that the fol-
lowing two equations are equivalent to the previous two
equations

0 = ∇ · [δϕ2 (−Dm∇δϕ1 + δϕ1u)]

+Dm∇δϕ2 · ∇δϕ1 − δϕ1u · ∇δϕ2 (52)



7

0 = ∇ · [δϕ1 (−Dm∇δϕ2 + δϕ2u)]

+Dm∇δϕ1 · ∇δϕ2 − δϕ2u · ∇δϕ1. (53)

Integrating the first term on the right-hand side of these
two equations over the cube and applying the divergence
theorem, the boundary conditions and Eq. (49), one ob-
tains∫

Ωp

∇ · [δϕ2 (−Dm∇δϕ1 + δϕ1u)] d3x = ∆c1∆c2LD21

(54)
and∫

Ωp

∇ · [δϕ1 (−Dm∇δϕ2 + δϕ2u)] d3x = ∆c2∆c1LD12.

(55)
After volume integrating the remaining terms of Eqs. (52)
and (53), subtracting and using Eqs. (54) and (55), one
has

∆c1∆c2L (D21 −D12) =∫
Ωp

u · (δϕ1∇δϕ2 − δϕ2∇δϕ1) d3x. (56)

The integral on the right-hand side will not be zero, in
general, unless u = 0, which is enough to show that D21

is generally different from D12 at finite Peclet number.
Identical manipulations on the other pairs of subprob-
lems leads to

∆ci∆cjL (Dji −Dij) =∫
Ωp

u · (δϕi∇δϕj − δϕj∇δϕi) d3x (57)

for i 6= j so that Dij 6= Dji potentially whenever u 6= 0.
The terms that are entirely responsible for breaking the

symmetry of Dij are the advective solute fluxes. Advec-
tion breaks the symmetry of the differential operator in
the local convection-diffusion equation in the sense above
of rendering the operator not to be self-adjoint. The
asymmetry of the porescale differential operator directly
translates into asymmetry of the macroscopic dispersion
tensor. When u = 0, only diffusion is at work, the local
problem is self-adjoint and Dij = Dji exactly for the off-
diagonal terms. There may be off-diagonal components
in the purely diffusional case (vanishing Peclet number)
if the pore space is anisotropic; e.g., a set of connected
fractures having similar orientations that is not aligned
with one of the coordinate directions.

The structure of the integrand in Eq. (57) indicates
that if there is a systematic variation in the amplitude
of u from one side of the averaging region to the other,
or even just a concentration of the flow in one or more
places, asymmetry in the Dij can be significantly present
at finite Peclet number. As will be performed in a later
section, numerical solution of the advection and diffusion
at the pore scale is one way to investigate the symmetry
of Dij and its relation to the spatial distribution of the
flow field u.

Finally, as first suggested by Auriault et al. [14], there
is a symmetry that exists in the dispersion tensor. Specif-
ically, if the Reynold’s number is sufficiently small that
the advective derivative in the Navier-Stokes equation is
negligible, then the resulting linear Stokes flow has the
property that

u(−f) = −u(f) (58)

where f is the macroscopic force (typically a pressure
drop across the voxel) that is driving the porescale flow u.
In words, if the sign of the force driving flow is changed,
linearity requires the resulting flow velocity to change
sign as well. If we go back and change the sign of the
flow in the subproblem that defines D12 we have

δϕ2 [0 = ∇ · (−Dm∇δϕ1 + δϕ1u)] (59)
δϕ1 [0 = ∇ · (−Dm∇δϕ2 − δϕ2u)] . (60)

Going through the same steps as earlier, one then obtains
that

∆c1∆c2L [D21(f)−D12(−f)] =∫
Ωp

u · (δϕ1∇δϕ2 + δϕ2∇δϕ1) d3x (61)

=

∫
Ωp

∇ · (u δϕ1δϕ2) d3x (62)

=

∫
∂Ωp

n · (u δϕ1δϕ2) d2x (63)

= 0. (64)

To get from Eq. (61) to Eq. (62), we require the flow to
be incompressible (∇·u = 0). To go from Eq. (63) to Eq.
(64) we use the boundary condition on the concentration
deviations that either δϕ1 or δϕ2 is zero on each of the
cube faces.

We have thus demonstrated the flow-reversal symme-
try

Dij(q) = Dji(−q) (65)

where the Darcy flux q is proportional to f whenever a
linear Navier-Stokes equation holds (low Reynolds num-
ber). Auriault et al. [14] obtain this symmetry to lead-
ing order in the Peclet number using an asymptotic two-
space homogenization technique. The result of Eq. (65)
is independent of Peclet number and applies even when
there are multiple length-scales of heterogeneity present
(where two-space homogenization breaks down). Flekkøy
et al. [19] also obtain this symmetry using general statisti-
cal mechanics arguments attributable to Onsager. Equa-
tion (65) places an important constraint on any func-
tional relation for how Dij depends on q.

VII. FUNCTIONAL NATURE OF THE
DISPERSION TENSOR

The dispersion tensor is allowing for both the diffusion
and advection of solute concentration deviations. To par-
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tially separate these two contributions, we write the key
δϕi concentration deviations as

δϕi =
∆ci
L

(
Γi + Γ

(u)
i

)
(66)

where Γi is independent of the flow and satisfies the
boundary-value problem

∇2Γi = 0 in Ωp (67)

Γi =

{
±L/2 on xi = ±L/2
0 on xk = ±L/2 for k 6= j,

(68)

while Γ
(u)
i is the portion influenced by the flow and sat-

isfies

∇ ·
(
−Dm∇Γ

(u)
i + Γ

(u)
i u

)
= −∇Γi · u in Ωp (69)

Γ
(u)
i =

{
0 on xi = ±L/2
0 on xk = ±L/2 for k 6= j.

(70)

The sum of Eqs. (67) to (70) when combined with Eq.
(66) exactly reproduces Eqs. (46) and (47). The pore-
geometry potentials Γi are independent of any solute or
solution properties in addition to not depending on the
flow. The same cannot be said for Γ

(u)
i that depends on

the solute diffusivity Dm in addition to the pore topology
and flow field (and, therefore, solution viscosity).

We can now decompose Eq. (49) as Dij = D
(0)
ij +D

(u)
ij

where

D
(0)
ij = DmGij (71)

with

Gij =
1

2L2

[∫
xi=+L/2

x̂i · ∇Γj d
2x

+

∫
xi=−L/2

x̂i · ∇Γj d
2x

]
(72)

and where

D
(u)
ij =

−1

2L2

{∫
xi=+L/2

x̂i ·
[
−Dm∇Γ

(u)
j +

L

2
δu

]
d2x

+

∫
xi=−L/2

x̂i ·
[
−Dm∇Γ

(u)
j −

L

2
δu

]
d2x

}
. (73)

We may call Gij the “geometric conductivity tensor". It
is the inverse of the “formation factor tensor” Fij and is
purely a function of the pore topology. It may be written
more compactly as

Gij = F−1
ij =

1

L3

∫
Ωp

∇Γi · ∇Γj d
3x. (74)

To get from Eq. (74) to Eq. (72), we write ∇Γi · ∇Γj =
∇ · [Γi∇Γj ] − Γi∇2Γj , note that ∇2Γj = 0, use the di-
vergence theorem and apply the boundary conditions for
Γi. Without even using the symmetry argument from the
previous section (that nonetheless applies), we obtain the
symmetry Gij = Gji due to the fact that a · b = b · a.

For an isotropic material, we have

G =
1

F
=

1

L3

∫
Ωp

∇Γi · ∇Γi d
3x (75)

for any of i = 1, 2 or 3 and where F is the formation fac-
tor. The formation factor is often modeled using Archie’s
Law [20] as F = φ−m where 3/2 ≤ m ≤ 2 for most gran-
ular media. The formation factor is sometimes expressed
F = τ/φ where τ is called the tortuosity.

Although D(0)
ij factors into a solute property Dm and

a pore-geometry term Gij , the same does not hold true
for D(u)

ij . For a flow field where∫
xi=+L/2

x̂i · δu d2x =

∫
xi=−L/2

x̂i · δu d2x, (76)

we can rewrite Eq. (73) as

D
(u)
ij = DmG

(u)
ij (77)

where

G
(u)
ij =

1

2L2

[∫
xi=+L/2

x̂i · ∇Γ
(u)
j d2x

+

∫
xi=−L/2

x̂i · ∇Γ
(u)
j d2x

]
. (78)

Because the potential field Γ
(u)
j has all of Dm, flow and

pore-topolgy dependence entangled within it as Eq. (69)
makes clear, so does G(u)

ij . Further, we cannot rewrite
G

(u)
ij in the compact form of Eq. (74) because ∇2Γ

(u)
j =

−(Γj + Γ
(u)
j ) · u/Dm 6= 0.

In an isotropic porous material, the dispersion tensor
is usually assumed to take (but not proven to have) the
symmetric “standard form” [1, 10, 11]

D ≈ Dst ≡ Dm

F
I + γl

|q|
φ
x̂qx̂q + γt

|q|
φ

(I− x̂qx̂q) (79)

where

x̂q =
q

|q|
(80)

is a unit vector in the direction of the Darcy flow, I is
the identity tensor, and γl and γt are the so-called longi-
tudinal and transverse “dispersivities” that have units of
length. The first term involving F is without reproach
but the second and third terms involving the dispersiv-
ities are conjectural. Delgado [21] has compiled labora-
tory dispersion data from the literature for sands and
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bead packs and finds that

γl ≈ 2` (81)

γt ≈
`

40
(82)

fits the data fairly well over the range of roughly 50 <
Pe < 105 when ` is taken as a characteristic grain di-
ameter. At such large Pe, the advection is dominating
the diffusion and is why the dispersivities are indepen-
dent of Dm (or Pe). At intermediate values of Pe, where
advection and diffusion are more comparable, the simple
model of Eqs. (81) and (82) breaks down and the disper-
sivities have a more complicated Pe dependence that has
not been theoretically determined for arbitrary porous
materials. Further, as the scale of a plume increases, the
length parameter ` in the dispersivities is experimentally
observed to increase in size [22].

The above standard form for the dispersion tensor sat-
isfies both Dst

ij (q) = Dst
ji(q) and Dst

ij (q) = Dst
ji(−q). If

one of the coordinate directions is made to align with the
flow direction x̂q, Eq. (79) produces a purely diagonal
dispersion tensor that is anisotropic (the various com-
ponents Dst

11, Dst
22 and Dst

33 may all be different). The
symmetries are trivially satisfied because there are no off-
diagonal components in this case. Implicitly, the form of
Eq. (79) is only allowing for the dispersive flux that is in
the same direction as the concentration gradient present
and is ignoring any possible cross flux across the faces
that are perpendicular to the concentration gradient.

However, if flow in a given direction is stronger on one
side of a voxel than it is on the other side, then even if
one of the coordinates is in the x̂q direction, there will
be off diagonal components of the dispersion tensor (flux
in a direction different than the concentration gradient)
and Eqs. (57) and (65) inform us to expect these off-
diagonal components to satisfy the symmetry constraints
that Dij(q) 6= Dji(q) and Dij(q) = Dji(−q).

We thus expect that in addition to the dependence
on the mean flow q as expressed in the standard form
Dst, there is also a dependence on the macroscopic flow
gradient that leads to off diagonal terms of D even in
isotropic media and that we conjecture has the form

D ≈ Dst − α
[
∇q− (∇q)T

]
(83)

where α is a positive parameter that has the units of
length squared. Equation (83) is suggesting that when
one of the spatial coordinates is aligned with the average
flow direction so that Eq. (79) has no off-diagonal terms
in an isotropic material, the off-diagonal terms are due
entirely to the presence of a flow gradient across the sys-
tem and that Dij is anti-symmetric (equal in amplitude
and opposite in sign) to Dji. We will test this hypothesis
numerically in the examples that follow.

We will also test to see whether the length
√
α itself

depends on the flow gradient. We expect that as the flow
gradient increases, high (or low) solute concentration be-
comes increasingly pushed up against the δϕ = 0 Dirich-
let conditions on the lateral sides of the cube. As the

flow-induced concentration gradients at the lateral walls
become larger with increasing flow gradient, we expect
the off diagonal components of the dispersion tensor to
increase. Whether such increases are linear in the applied
flow gradient will be numerically investigated.

VIII. LATTICE-BOLTZMANN NUMERICAL
EXAMPLES

We now numerically solve the suite of three indepen-
dent subproblems given by Eqs. (46) - (47). The flow
velocity is driven by an applied force f . We use lattice-
Boltzmann simulations to solve for the local concentra-
tion deviations, fluid flow throughout the pore space and
the components Dij of the dispersion tensor using Eq.
(49) or Eq. (48). For the purpose of analyzing the sym-
metry of Dij , two-dimensional simulations are sufficient.

A. Lattice-Boltzmann flux calculations

The lattice-Boltzmann model for miscible binary flu-
ids is well known and described in many places [23–25].
Here we mainly focus on how the boundary conditions
are implemented.

x

1x

xb

2

outside boundary

1

inside boundary

2

5

4

3

6

Figure 2: The D2Q6 triangular lattice focusing on a particular
node xb sitting on the boundary surrounded by the six links
i = 1, 6 that have total mass populations Ni and solute mass
concentrations ∆i. The constant velocities ci are shown as
arrows and are given by c1 = x̂1, c2 = x̂1/2 +

√
3x̂2/2, c3 =

−x̂1/2 +
√

3x̂2/2, c4 = −x̂1, c5 = −x̂1/2 −
√

3x̂2/2, c6 =
x̂1/2−

√
3x̂2/2.

Employing a triangular D2Q6 lattice with unit vectors
ci, i = 1, ...6 connecting the nodes of the lattice (c.f.,
Figure 2), two populations are defined, Ni and ∆i with
i = 1, ...6. The first of these govern the mass and mo-
mentum densities according to the following definitions

ρ(x, t) =

6∑
i=1

Ni(x, t) (84)
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and

ρ(x, t)u(x, t) =

6∑
i=1

Ni(x, t)ci. (85)

The second population gives rise to a concentration

ϕ(x, t) =

6∑
i=1

∆i(x, t) (86)

defined here as the ratio of solute mass to total mass
present at each site. We will not pause here to give the
lattice-Boltzmann update equations for the Ni and ∆i

populations.
The solute flux through a given site is the average of

the in- and out-going solute populations defined in the
following way

j(x, t) ≡ −Dm∇ϕ(x, t) + ϕ(x, t)u(x, t) (87)

=
1

2

6∑
i=1

ci [∆i(x, t) + ∆′i(x, t)] . (88)

Here ∆i(x, t) is the pre-collision population and ∆′i(x, t)
the post-collision population defined as

∆′i(x, t) = ∆i(x, t) + λD [∆i(x, t)−∆eq
i (ϕ,u)] (89)

where ∆eq
i (ϕ,u) is the equilibrium population which in

the Flekkoy (1993) scheme is given by

∆eq
i = wi ϕ(x, t)

(
1 +

u(x, t) · ci
c2s

)
. (90)

Here, wi are the lattice weights given by wi = 1/6 for the
triangular lattice and cs = ∆x/(∆t

√
2) is the speed of

sound on the triangular lattice with ∆x = 1 and ∆t = 1
the lattice spacing and time step in lattice units. The
relaxation parameter λD controls the particle collisions
and determines the molecular diffusivity in the scheme.
Inserting Eq. (89) into Eq. (88) gives

j =
(2 + λD)

2

6∑
i=1

ci (∆i −∆eq
i ) +

6∑
i=1

ci∆
eq
i (91)

=
(2 + λD)

2

6∑
i=1

ci∆
neq
i + ϕu. (92)

The second summation in Eq. (91) was performed ex-
actly using Eq. (90) and thus corresponds to solute ad-
vection. The first summation that depends only on the
non-equilibrium portion of the populations corresponds
to solute diffusion. A Chapman-Enskog expansion of the
lattice-Boltzmann update equations for the ∆i gives the
conservation law

∂tϕ+∇ · j = 0, (93)

along with an expression for the molecular diffusivity

Dm = − (2 + λD)

2λD
c2s∆t. (94)

On anM1×M2 lattice, the dispersion tensor components
are calculated using

Dij =
Lj

∆cj

1

2Mj

2Mj∑
b=1

x̂i · j(xb, t) (95)

where xb are the site positions on the two bounding faces
located at xi = ±Li/2. For the triangular lattice, the side
lengths are L1 = M1 and L2 = (

√
3/2)M2 (c.f., Figure

2). The concentration drops ∆cj are as given in Eq. (34).
On the system boundaries, ϕ satisfies Dirichlet con-

ditions of the form ϕ(xb) = Cb with Cb some desired
boundary value. To satisfy such a condition one should
not just set the boundary populations as ∆i(xb) = wiCb
because although this will indeed satisfy the boundary
condition for ϕ, it does not allow for diffusion across the
boundary.

To calculate the normal component of flux n · j at
boundary points where ϕ(xb) = Cb, we first note that
at any boundary point, the lattice-Boltzmann equation
produces updates for the ∆i populations on half of the
links, say i = 1, 2, 3, using population data from sites
interior to the system domain. To properly handle diffu-
sion across such boundaries, we then prescribe values for
the other three links from the requirement that

n ·
3∑
i=1

ci∆
neq
i (xb) = n ·

3∑
i=1

ci+3∆neq
i+3(xb). (96)

In words, the diffusive contribution from populations on
links that are being updated is identical to the contri-
bution from the populations that are not being updated.
This is equivalent to saying that the flux is locally uni-
form across the boundary. Because ci+3 = −ci, we then
obtain that

∆i+3(xb) = ∆eq
i+3(xb) + ∆eq

i (xb)−∆i(xb) (97)

where

∆eq
i+3(xb) = wiCb

(
1− u(xb) · ci

c2s

)
(98)

∆eq
i (xb) = wiCb

(
1 +

u(xb) · ci
c2s

)
(99)

so that the proper boundary condition that allows for
diffusive flux across the Dirichlet boundary is

∆i+3 = 2wiCb −∆i. (100)

Equation (92) can then be written

j(xb) = (2 + λD)

3∑
i=1

ci∆
neq
i (xb) + Cbu(xb) (101)
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Table I: Boundary populations for the D2Q6 lattice that sat-
isfy the Dirichlet condition ϕ(xb) = Cb.

Face LBE determined BC determined
populations populations

x2 = +L2/2 ∆2, ∆3, ∆1 ∆5 = Cb/3−∆2

∆6 = Cb/3−∆3

∆4 = Cb/3−∆1

x2 = −L2/2 ∆5, ∆6, ∆4 ∆2 = Cb/3−∆5

∆3 = Cb/3−∆6

∆1 = Cb/3−∆4

x1 = +L1/2 ∆1, ∆2, ∆6 ∆4 = Cb/3−∆1

∆5 = Cb/3−∆2

∆3 = Cb/3−∆6

x1 = −L1/2 ∆4, ∆5, ∆3 ∆1 = Cb/3−∆4

∆2 = Cb/3−∆5

∆6 = Cb/3−∆3

and this expression for j is then used to calculate the
dispersion-tensor components of Eq. (95). For each face
of the L1×L2 box, the boundary conditions are given in
Table I.

A final problem remains that limits the accuracy of the
Dij calculations at large Pe. At large Pe, a given solute
concentration is pushed up against the ϕ = 0 or ± ∆ci
boundaries which results in large concentration gradi-
ents near some of the boundaries. At large enough
Pe, the distance over which ϕ changes becomes com-
parable to (or smaller than) the lattice spacing. In
the lattice-Boltzmann model being employed [23], this
causes unwanted higher-order derivatives to enter into
the advection-diffusion equation as made evident through
the Chapman-Enskog expansion of the algorithm. The
only cure for this is to increase the resolution of the lat-
tice by increasing the number of nodes contained within
the L1 × L2 box. This remains the main source of error
in the flux calculations that follow and gets worse with
increasing Pe.

In the simulations, we work with

ν =
η

ρ
= 0.1 ∆x2/∆t (102)

Dm = 0.02∆x2/∆t (103)

where ν is the kinematic viscosity (or viscous diffusivity),
∆x = 1 is the lattice constant and ∆t = 1 the time
step. The key dimensionless numbers that control the
nature of the dispersive flux are the Peclet number and
the Reynolds number given by

Pe ≡ |ϕu|
|Dm∇ϕ|

≈ UmaxL

Dm
(104)

Re ≡ |ρu · ∇u|
|η∇2u|

≈ UmaxL

ν
=
Dm

ν
Pe =

Pe

5
(105)

where Umax is the maximum flow speed in the simula-
tion domain and L is a typical grain size except in those

(a)

(b)

(c)

Figure 3: Sinusoidal forcing f = x̂2 sin(2πx1/L) with Pe=3.0.
Upper panel (a) is the flow field. The middle panel (b) is the
concentration distribution near steady state when the applied
concentration gradient is in the vertical direction. The lower
panel (c) is when the concentration gradient is in the hor-
izontal direction. Yellow denotes zero concentration, white
positive and blue negative concentration.

simulations where there are no solid grains in which case
we take it to be the system size. When there are solid
obstacles present, we want Re to be less than one so
that we are in the laminar flow regime where flow re-
versal occurs when the force driving the flow is reversed.
This then limits the maximum Pe we can consider to say
Pe = 3 according to Eq. (105). When there are no solid
obstacles present, the flow considered in the simulations
is independent of Re (the rate of momentum advection
ρu · ∇u is identically zero) and we can increase Pe to
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much larger values by increasing the flow velocity (force
driving the flow). However, as discussed above, at larger
Pe, the concentration gradient near the boundaries be-
comes large and its numerical simulation is limited by
the lattice spacing. In the numerical simulations given
below, this effect limits us to the regime of say Pe < 40.

B. Simulations of the off-diagonal components Dij

Larger flow velocity gradients within the system pro-
duce larger values of the off-diagonal components Dij . In
Figure 3, we employ a sinusoidal forcing field to produce
such flow gradients in a non-trivial pore-space geome-
try. The flow field and the concentration distribution
in steady state are shown with concentration drops in
both the vertical and horizontal directions. In Figure 4,
the flow-reversal symmetry Dij(f) = Dji(−f) is demon-
strated with discrepancy increasing with increasing Pe as
the concentration gradients get larger near the edges of
the system. Going to smaller lattice spacing at higher
values of Pe is observed to reduce the discrepancy.

0 0.5 1 1.5 2

t / t
Diff

1

2

3

D
ij
 /

 D
m

D
12

(f)

D
21

(-f)

Pe =	  0.75

Pe =	  1.5

Pe =	  3.0

Figure 4: The dispersion components corresponding to the
geometry and forcing in figure 3 but with Pe = qmaxL1/Dm =
0.75, 1.5 and 3.0 from bottom to top. The diffusion time
constant is defined tDiff = L2

1/Dm. The lower curve near the
origin is D21(−f) for each Pe.

To explore the conjecture of Eq. (83), that the non-
diagonal part of the dispersion tensor has the form
α
(
∇q− (∇q)T

)
, we introduce a linear gradient in the

flow velocity and remove all solid obstacles since satis-
fying the boundary conditions on the grain surfaces is
another source of numerical error. In this scenario, be-
cause there are no solid grains present, we use the system
size as the length in the definition of Pe. If we equate q
and u under these conditions, we assume a flow field of
the form

q2(x1) = qo +
∆q2

L1
x1. (106)

(a)

(b)

(c)

Figure 5: The top panel (a) shows the flow field corresponding
to Eq. (106) when no solid obstacles are present. The mid-
dle panel (b) shows the concentration field near steady state
when there is an imposed concentration gradient in the ver-
tical direction (in the same direction as the flow field). The
lower panel (c) is when the concentration gradient is in the
horizontal direction.

The flow field and concentration distribution in this sce-
nario for concentration gradients in the vertical and hori-
zontal directions are shown in Figure 5. The off-diagonal
dispersion-tensor components are then plotted in Figure
6 both for normal forcing +f and reversed forcing −f .
Figure 6 demonstrates that the off-diagonal components
are indeed anti-symmetric and satisfy the flow-reversal
symmetry as Eq. (83) predicts. The results when the
force driving the flow is reversed have an error associated
with them (the observed wiggles) that increases with in-
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creasing Pe. This error is a lattice-Boltzmann artifact.
We have verified numerically that if there is no flow

gradient (∆q2 = 0) and only a uniform flow qo present,
the off-diagonal components are zero as is also expected
analytically. We have also verified that in the presence of
a flow gradient (∆q2 6= 0), the off-diagonal components
are independent of qo and are monotonic in ∆q2. Indeed,
when we plot the steady-state off-diagonal terms D12 and
D21 in Figure 7 as a function of Pe = |∇q|L2

1/Dm =
|∆q2|L1/Dm, we observe that D21 exhibits the functional
dependence on Pe given by

D21(Pe)

Dm
= Pe (0.15− 0.034 ln Pe) (107)

with a similar fit toD12 other than for the anti-symmetric
behavior that D12 ≈ −D21.

0 0.2 0.4 0.6 0.8 1
t / tDiff
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0.2
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D
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D
m

D12(f)
D21(f)
D12(-f)
D21(-f)

Pe =	  5

Pe =	  1

Pe =	  1

Pe =	  5

Figure 6: The dispersion coefficients corresponding to the ge-
ometry and forcing in Figure 5 with Pe= ∆q2L1/Dm ranging
from 1 to 5. The wiggles in the reversed-flow (−f) results is
a numerical artifact.

For the above modeling scenario, the conjecture of Eq.
(83) takes the form

D12 = −α∆q2

L1
(108)

D21 = α
∆q2

L1
(109)

where the sign of the force driving flow is the same for
both D12 and D21. We then have

D21 −D12

Dm
= 2α

∆q2

DmL1
(110)

so that upon using the definition that Pe= ∆q2L1/Dm

we have

α(Pe) =
L2

1

2Pe

(D21 −D12)

Dm
. (111)

The result is shown in Figure 8. The function α(Pe) is
monotonically decreasing in Pe and this is due to the Pe
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12
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D
m
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-0.5

0

0.5

1

D
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D
m

D12
D21

Figure 7: Upper panel: The off-diagonal components D12(f)
and D21(f) as a function of Pe. The data fits are made us-
ing D21 = Pe (a+ b ln Pe) with a and b given by Eq. (107).
The numerical results demonstrate the anti-symmetric be-
havior D12(f) ≈ −D21(f). Lower panel: The difference
(D21(f)−D12(f))/Dm (which is ≈ 2D21(f)/Dm). Both pan-
els correspond to the steady-state behavior observed in Figure
6.
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Figure 8: The α(Pe) coefficient corresponding to Figure 6 and
obtained from Eq. (111) .

dependence of D21 −D12 not being purely linear in the
flow gradient but also having a logarithmic dependence.
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The numerical data is well fit by the function

α(Pe) = ∆x2 (330− 74 ln Pe) (112)

where ∆x = 1 in lattice units. The range of 2 < Pe <
35 explored in Figure 8 represents the maximum Pe we
can treat at a given resolution of the lattice-Boltzmann
simulations due to the diffusion lengths near the ϕ = 0
lateral boundaries (i.e., the distance over which the con-
centration gradients have significant support) becoming
smaller than the lattice spacing at higher ranges of Pe.
How the diffusive flux across lateral boundaries increases
as the lateral-boundary concentration gradients increase
with increasing Pe is not explicitly allowed for in the
model of Eq. (83) and as such more work is required to
understand the observed logarithmic α(Pe) dependence.

IX. CONCLUSIONS

The numerical simulations show that when one of the
coordinate axes aligns with the mean direction of flow,
to obtain non-zero off-diagonal components of the dis-
persion tensor in an isotropic system requires a gradi-
ent in flow to be present across the system. We showed
analytically that the off-diagonal components satisfy the
flow-reversal symmetry Dij(+q) = Dji(−q) at any Peclet
number. We then conjectured that the off-diagonal com-
ponents have the analytical form α

[
∇q− (∇q)T

]
which

is both antisymmetric and satisfies the flow-reversal sym-
metry. The numerical results confirmed this conjecture
but showed α to be not just a constant but to have an
additional logarithmic dependence on the flow-gradient

amplitude over the range 2 < Pe <35 that was treated nu-
merically. Analytical predictions of such logarithmic non-
linearity in the flow-gradient dependence of the disper-
sion tensor components were not provided in this study.
In ongoing work, we will further pursue how the disper-
sion tensor depends on the nature of the flow field in
higher-accuracy finite-volume numerical simulations of
the pore-scale transport.

In addition to these novel discoveries about the disper-
sion tensor, we also obtain the solute mass conservation
laws at the macroscopic scale under conditions when the
porespace geometry and fluid density are possibly chang-
ing. However, to address the symmetry properties of the
dispersion tensor, we assume any sources of non-linearity
in the system, such as evolving pore topology or changing
fluid density, are absent because nonlinear response ren-
ders the transport tensor asymmetric. Although the fluid
flow is assumed to be decoupled from the evolving solute
concentrations in the analysis of the dispersion tensor
symmetry, the presence of advection by itself is enough
to cause the dispersion tensor to be asymmetric. This
is because the advection makes the pore-scale differential
operator controlling the changes in solute concentration
to be asymmetric.
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