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We numerically examine the dynamic phases and pattern formation of two-dimensional monodis-
perse repulsive disks driven over random quenched disorder. We show that there is a series of distinct
dynamic regimes as a function of increasing drive, including a clogged or pile-up phase near depin-
ning, a homogeneous disordered flow state, and a dynamically phase separated regime consisting of
high density crystalline regions surrounded by a low density of disordered disks. At the highest drives
the disks arrange into one-dimensional moving chains. The phase separated regime has parallels
with the phase separation observed in active matter systems, but arises from a distinct mechanism
consisting of the combination of nonequilibrium fluctuations with density-dependent mobility. We
discuss the pronounced differences between this system and previous studies of driven particles with
longer range repulsive interactions moving over random substrates, such as superconducting vortices
or electron crystals, where dynamical phase separation and distinct one-dimensional moving chains
are not observed. Our results should be generic to a broad class of systems in which the particle-
particle interactions are short ranged, such as sterically interacting colloids or Yukawa particles with
strong screening driven over random pinning arrays, superconducting vortices in the limit of small
penetration depths, or quasi-two-dimensional granular matter flowing over rough landscapes.

I. INTRODUCTION

A wide range of systems can be effectively modeled as a
collection of repulsively interacting particles that are cou-
pled to a substrate that serves as quenched disorder, and
these systems typically exhibit a transition from a pinned
to a sliding state under an applied external driving force
[1]. Examples of such systems include vortices in type-II
superconductors [2–6], driven electron or Wigner crystals
[7–9], skyrmions in chiral magnets [10, 11], charge stabi-
lized colloids [12–14], and magnetically interacting col-
loidal systems [15, 16]. The depinning transition can ei-
ther be elastic, where the particles keep their same neigh-
bors, or plastic, where the particles exchange neighbors
and break apart [1, 3]. In systems with intermediate
or long range repulsive particle-particle interactions, the
ground state is usually a defect-free triangular lattice.
When plastic depinning occurs, pinned and mobile par-
ticles coexist, leading to a proliferation of topological de-
fects in the lattice and producing highly disordered par-
ticle configurations during plastic flow [1–3]. At higher
drives there can be a transition from the plastic flow
state to a moving anisotropic crystal [3, 17, 18] or moving
smectic state [19–22]. This transition is associated with
an increase in the ordering of the system and produces
a distinct change in the structure factor [20–22] and the
density of topological defects [20, 22] as well as cusps or
dips in the transport curves and changes in the fluctu-
ation spectra [22–24]. Depending on the dimensionality
and anisotropy of the system, these dynamical transi-
tions can have continuous or first order characteristics
[1, 3, 25].

In most of the systems where depinning and sliding dy-
namics have been studied, the repulsive particle-particle
interactions are modeled as a smooth potential that is

either long range, as in the case of Coulomb or logarith-
mic interactions, or screened long range, such as a Bessel
function interaction for superconducting vortices or a
Yukawa interaction for colloidal systems. There are many
systems where the repulsive particle-particle interactions
are short range with sharp cutoffs, such as sterically in-
teracting colloids [26, 27], emulsions [28], micelles [29],
binary fluids [30], bubble rafts [31–33], granular matter
[34, 35], charged colloids under strong screening [36, 37],
and solid state systems under certain conditions. For
most of these systems it should be possible to flow the
particles over some type of rough surface or landscape.

Systems with sharp repulsive interaction cutoffs, such
as hard disks, can exhibit very different behavior from
systems with long range repulsion, such as a strong den-
sity dependence of the response near a crystallization or
jamming transition [35, 38]. Two-dimensional (2D) sys-
tems with long range repulsive interactions form an or-
dered solid down to very low densities since the parti-
cles are always within interaction range of each other,
whereas hard disk systems form a crystalline solid only
for the density at which the particles can just touch each
other, which corresponds to a packing density or area
coverage of φ = 0.9 for 2D monodisperse nonfrictional
disk packings [35]. For densities below the crystalliza-
tion density, the hard disk system forms a disordered or
liquidlike state. It is not clear whether a hard disk assem-
bly driven over random disorder would exhibit the same
types of dynamical transitions observed in systems with
longer range interactions such as superconducting vor-
tices, Wigner crystals, skyrmions, and charged colloids,
or whether it would simply form a moving disordered
state at high drives. Previous studies addressed how pin-
ning and obstacles affect the onset of the jamming transi-
tion in bidisperse disk packs [39, 40]; however, the driven
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dynamics for nonzero loading above the jammed state
have not been studied. Although it may seem that hard
disks driven over quenched disorder would simply exhibit
the same general dynamics, such as dynamical reordering
at high drives, as repulsive particle systems with longer
range interactions, the question has surprisingly not pre-
viously been addressed.

Here we examine an assembly of monodisperse har-
monically interacting repulsive disks driven over a ran-
dom array of pinning sites. We focus on disk densities
φ < 0.9, below jamming or crystallization. Despite the
apparent simplicity of the model, we find that this system
exhibits dynamical phases distinct from those observed
in studies of longer range repulsive particles driven over
random disorder. When the number of pinning sites is
smaller than the number of disks, the pinned phase is as-
sociated with a pile up or clogging phenomenon in which
the system breaks up into clumps or clusters, with un-
pinned disks prevented from moving by interactions with
disks trapped at pinning sites. As the drive is increased
beyond depinning, the system enters either a fluctuat-
ing uniform disordered state or a phase separated cluster
state consisting of a low density gas of disks coexisting
with high density clusters. Within the clusters, the disks
form a predominantly triangular lattice. The phase sep-
arated states generally appear when the driving force is
close to the value of the maximum pinning force. For
even higher drives, the system can transition into a col-
lection of one-dimensional (1D) moving chains, and the
structure factor exhibits a strong smectic ordering sig-
nature. We characterize the different phases and the
transitions between them using velocity-force curves, the
transverse root mean square displacements, the structure
factor, and the density of non-sixfold coordinated parti-
cles.

Dynamical phase separation does not normally occur
in systems with longer range interactions since the coex-
istence of a high density and a low density phase would
have a prohibitively large energy cost due to the close
spacing of the particles in the dense phase. For the disk
system, the energy cost of the particle-particle interac-
tions is zero until the disks come into contact, which
occurs only at the highest densities. Similarly, strong
1D chain formation occurs when the disks can approach
each other very closely in the direction of the applied
drive without overlapping. It is known that 2D granu-
lar systems that undergo inelastic collisions can exhibit
cluster instabilities [41, 42]; however, in our system there
are no frictional contacts between the disks. The density
phase separated regime has parallels with an active mat-
ter clustering effect, and arises when the combination of
disk-disk collisions and pinning produce nonequilibrium
transverse fluctuations of the disks as well as a density-
dependent mobility. Studies of active matter systems
with short range particle-particle repulsion and density-
dependent mobility show similar clustering behavior [43–
46]. At higher drives for the disk system, we find that
a uniform moving state forms when the transverse diffu-

sion is lost. We also find that at the higher drives, the
disks align in nearly 1D chains in which the disk spacing
is nearly zero in the longitudinal direction but is larger in
the transverse direction. Such strong chaining does not
occur in systems with longer range repulsive interactions
since the high particle density along the 1D chains would
impose a prohibitively high energy cost. Due to the short
range interactions in the disk system, the disks incur no
energy penalty when they form 1D chains.

Our work suggests that dynamical phase separation
and chain formation are general features of driven sys-
tems with short range or hard disk particle-particle inter-
actions moving over random disorder. A specific system
of this type that could be realized experimentally is steri-
cally interacting colloidal assemblies moving over random
disorder. There are already several experiments examin-
ing colloidal particles interacting with random pinning
[13, 14] and periodic pinning [36, 37, 47, 48], and simi-
lar studies could be performed for sterically interacting
colloids. Other realizations could be achieved using flow-
ing bubble rafts [31–33] where steric interactions come
into play or flowing microemulsions [28, 29] where again
only short range interactions arise. Further examples in-
clude magnetic bubble systems with weak dipolar inter-
actions or skyrmion systems [11], where at high densities
the short range repulsive core interactions could domi-
nate over the longer range repulsive interactions. In bulk
superconducting vortex systems, the vortex-vortex inter-
actions have a Bessel function form [1, 4, 6] which decays
exponentially for length scales longer than the London
penetration depth, so that in certain limits such as at
low magnetic fields in samples with very small penetra-
tion depths, the vortices could exhibit dynamics similar
to those we observe, including the phase separated states.
Additionally, there are numerous multiband supercon-
ductors in which the vortex interactions are modified and
the vortex dynamics is dominated by only short range re-
pulsive forces [49–51]. There are a wealth of studies of
particle-like soft matter systems such as micelles, binary
fluids, soft solids, and active matter systems which can
be described as having short range steric interactions.
Another class of such systems is assemblies of quasi-2D
granular matter flowing over random disorder; however,
in these systems additional effects such as friction or in-
ertia can also play a role.

The paper is organized as follows. We provide a de-
scription of the model and the numerical simulations in
Section II. In Section III, we describe the different dy-
namic phases that arise for a fixed amount of quenched
disorder when the disk density is varied. At interme-
diate disk densities, subsection III A shows that there
are three dynamic phases with distinct structure factor
signatures that appear as the applied driving force in-
creases: pinned disordered flow, phase separated flow,
and a moving chain state. In subsection III B we dis-
cuss the low disk density limit where quasi-1D chaining
effects are particularly pronounced. We show in subsec-
tion III C how to categorize the dynamic phases based on
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the amount of transverse diffusion and topological order.
A dynamic phase diagram as a function of driving force
and disk density appears in subsection III D, and we ex-
plain how the basic features of the phase diagram can be
understood in terms of a drive-dependent dynamic shak-
ing temperature that induces clustering reminiscent of
that observed in active matter systems. In Section IV we
show the evolution of the dynamic phases as a function
of increasing disorder strength by first fixing the number
of pinning sites while increasing the pinning force, and
then fixing the pinning force while increasing the num-
ber of pinning sites. In Section V we discuss our results
in the context of other systems that exhibit depinning
phenomena, and in Section VI we summarize our work.

II. SIMULATION

We consider a 2D system with an area of L2 with peri-
odic boundary conditions in the x and y directions. The
sample containsNd harmonically repulsive disks of radius
Rd as well as Np pinning sites that are modeled as non-
overlapping parabolic potential traps which can exert a
maximum pinning force of Fp on a disk. The disk dynam-
ics are governed by the following overdamped equation of
motion:

η
dRi

dt
= Fdd + Fp + FD. (1)

Here η is the damping constant and Ri is the loca-
tion of disk i. The disk-disk interaction force is Fdd =∑
i 6=j k(2Rd−|rij |)Θ(2Rd−|rij |)r̂ij , where rij = Ri−Rj ,

r̂ij = rij/|rij |, the disk radius Rd = 0.5, and the spring
constant k = 50. Distances are measured in simulation
units l0 and forces are measured in simulation units f0
so that k is in units of f0/l0 and the unit of simulation
time is τ = ηl0/f0. The pinning force Fp is modeled as
arising from randomly placed parabolic attractive wells
with a pinning radius of rp = 0.5, such that only a single
disk can be trapped in a given pinning site at a time.
Fp is the maximum force exerted by the pinning site at
the edge of the well. The driving force FD = FDx̂ is
applied along the x direction, and for each driving force
we allow at least 1× 106 simulation time steps to elapse
before taking measurements to ensure that the flow has
reached a steady state. At each value of FD we measure

the average disk velocity 〈Vx〉 = N−1d
∑Nd

i=1 vi · x̂, where
vi is the instantaneous velocity of disk i. The density φ of
the system is characterized by the packing fraction or the
area covered by the disks, φ = NdπR

2
d/L

2, where L = 60
in dimensionless simulation length units. In the absence
of disorder, the disks form a polycrystalline state near
φ ≈ 0.85 and a triangular solid at φ ≈ 0.9. A variation
of this model was previously used to study the depinning
and jamming of bidisperse disks driven over random pin-
ning; in that work, with a disk radii ratio of 1:1.4, the
jamming density in a pin free sample was φj ≈ 0.845 [39].

The main scale determining our choice of parameters
is the ratio FD/Fp of the driving force to the pinning
force. When FD/Fp ≥ 1.0, all the disks are moving.
All of the general features of the dynamic phases we ob-
serve are robust for varied parameters, and changing Fp
simply introduces a linear shift of the phase boundaries.
The disk-disk repulsion in our model is harmonic in form,
and we choose a large spring constant k = 50. For larger
values of k, the results are unchanged; however, we must
use smaller simulation time steps in order to maintain the
numerical stability of our algorithm. The harmonic disk
interaction we consider has been used in numerous previ-
ous studies to mimic hard disks, particularly for jamming
systems [35, 38–40]. We note that the model we use is for
strictly overdamped systems, whereas in granular matter
the role of inertial effects and frictional contacts between
grains can be important. We have tested various system
sizes and find that our general results are robust.

One example of a soft matter system with a control-
lable substrate is colloids interacting with optical traps,
so a possible experimental realization of our system con-
sists of sterically interacting colloids in the presence of an
optical trap array subjected to an external drive. Ster-
ically stabilized colloids with a hard disk radius in the
range of 2 to 5 µm can be captured by optical traps of
radius 2 to 5 µm with an optical trapping force of 2.5
to 5.0 pN per trap, and experimentally arrays of up to
700 such traps can be produced with an intertrap spac-
ing of 5 to 10 µm. Such a system can be mapped to our
simulation by taking l0 = 10 µm and f0 = 5 pN. This
gives k = 0.5 µN, a value consistent with what has been
measured experimentally [52]. The driving force can be
produced by a fluid flow, but this could induce additional
hydrodynamic effects that are not included in our model.
The sample can be tilted in order to produce a gravita-
tional driving force; alternatively, in many optical trap
systems the traps themselves can be moved, so an effec-
tive driving can be produced by translating the traps in
order to induce different dynamical phases. Charged col-
loids with strong screening can be driven by an electric
field.

III. VARIED DISK DENSITY

We first consider a fixed number of pinning sites Np =
1440 with Fp = 1.0 as we vary the disk density from
φ = 0.05 to φ = 0.85, giving a ratio of pinning sites to
disks ranging from Np/Nd = 6.159 to Np/Nd = 0.37.
With these parameters, a disk density of φ = 0.31 cor-
responds to a ratio of Np/Nd = 1.0. Figure 1(a) shows
〈Vx〉 versus FD/Fp for different values of φ and Fig. 1(b)
shows the corresponding d〈Vx〉/dFD curves. In the inset
of Fig. 1(b) we plot the depinning force Fc vs φ indicating
that Fc has a constant value of Fc ≈ Fp at low disk den-
sities Np/Nd > 5.0. Here Fc is the value of FD at which
disk motion first begins to occur. In this density range,
almost every disk can be pinned directly by a pinning
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FIG. 1: (a) The average disk velocity 〈Vx〉 vs driving force
FD/Fp for a system of harmonically interacting repulsive disks
in a sample with Fp = 1.0 and Np = 1440 at disk densities
of φ = 0.85 (red circles), 0.71 (orange squares), 0.61 (yel-
low diamonds), 0.55 (light green up triangles), 0.43 (medium
green left triangles), 0.3 (dark green down triangles), 0.25
(blue right triangles), and 0.15 (purple stars). (b) The cor-
responding d〈Vx〉/dFD vs FD/Fp curves showing a peak near
FD/Fp = 1.0. Inset: The depinning threshold Fc vs φ, where
φ ≈ 0.3 corresponds to a 1:1 ratio of disks to pinning sites.
(c) The corresponding cluster size CL vs FD/Fp.

site, so collective interactions between the disks do not
play an important role in the depinning process; instead,
depinning occurs in the single particle limit and the de-
pinning threshold is determined only by the value of Fp.
For Np/Nd < 1.0, some of the disks are not trapped by
pinning sites, and these untrapped disks exert a force on
the pinned disks which lowers the depinning threshold,
as shown in the inset of Fig. 1(a).

In Fig. 1(b), for φ ≤ 0.55 there is a pronounced peak in
d〈Vx〉/dFD near FD/Fp = 1.0. This corresponds to the
maximum pinning force from the substrate, so that for
FD/Fp > 1.0 all the disks are moving. For Np/Nd > 0.8
or φ < 0.4, a large fraction of the disks are located at
pinning sites and the collision rate is low, so that most
of the disks do not become mobile until FD/Fp > 1.0,
producing the jump in 〈Vx〉 at depinning at the lower fill-
ings. For Np/Nd < 1.0, there are excess disks that cannot
be trapped directly by the pinning sites, and in princi-
ple these disks would be mobile for arbitrarily low FD;
however, they can still be indirectly pinned or blocked by
disks that are located at the pinning sites, creating a local
pile up or clogging configuration [39]. Since these inter-
stitial disks exert forces on the disks located at the pin-
ning sites, their presence reduces the depinning thresh-

FIG. 2: (a) The disk positions (circles) for the system in
Fig. 1 at φ = 0.61 for FD/Fp = 0.3, showing a clustering or
pile up effect. (b) The corresponding structure factor S(k)
has a ringlike signature. (c) The driven homogeneous phase
in the same system at FD/Fp = 0.7. (d) The corresponding
S(k) plot from (c).

old by more than a factor of 2. For fillings Np/Nd = 1.0
to 0.571, corresponding to 0.3 ≤ φ ≤ 0.55, some disks
remain pinned until FD ≥ Fp, producing a weak peak
in the d〈Vx〉/dFD curves at FD/Fp = 1.0. When φ is
large enough, most of the disks are already moving for
FD/Fp < 1.0, and the peak feature is lost.

In Fig. 1(c) we plot the average value Cl of the size
of the largest cluster normalized by the number of disks
in the system as a function of FD/Fp. To determine
Cl, we use the cluster counting algorithm of Luding and
Herrmann [57]. For φ < 0.43, Cl is low and the largest
clusters contain 10 or fewer disks. For φ ≥ 0.43, there
is an increase in the cluster size at low drives due to a
pile up effect in which unpinned disks accumulate behind
pinned disks. For φ = 0.85, the system forms a large
cluster and Cl = 1.0 for all FD. At φ = 0.55, 0.61, and
0.71, there is a drop off in Cl for FD/Fp > 1.05, 1.33, and
1.4, respectively, indicating a decrease in the cluster size.
There is also a local maximum in Cl near FD/Fp = 1.0
at φ = 0.61.

A. Intermediate Disk Densities

In Fig. 1(c), for φ = 0.61 there is an initial increase
in Cl up to Cl = 0.95 at small but finite FD/Fp due
to the pile up effect. This is followed by a decrease in
Cl to a local minimum near FD/Fp = 0.85, and then
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FIG. 3: The disk positions (circles) for the system in Fig. 1
at φ = 0.61 for FD/Fp = 1.05, corresponding to the local
maximum in Cl in Fig. 1(c). Here the system forms a den-
sity phase separated state. (b) The corresponding S(k) plot
contains sixfold peaks due to the triangular ordering in the
dense phase. (c) The same system at FD/Fp = 2.0 where
a moving chainlike state forms. (d) The corresponding S(k)
shows smectic ordering.

by another increase to a local maximum in the range
0.85 < FD/Fp < 1.4, indicating a growth in the size of
the largest cluster near FD/Fp = 1.0. In Fig. 2(a) we
plot the disk configurations for the φ = 0.61 system at
FD/Fp = 0.3 where Cl = 0.95 showing large scale cluster-
ing. An illustration of disk motion in the cluster state ap-
pears in [58]. Similar configurations appear at FD/Fp =
0.3 for 0.43 < φ < 0.85. In Fig. 2(b), the correspond-

ing structure factor S(k) = N−1d |
∑Nd

i exp(−ik · ri)|2 of
the disk configuration has a ringlike feature indicative
of a disordered system. As the drive is increased beyond
the depinning transition, the clusters break apart and the
disk density becomes homogeneous, as shown in Fig. 2(c)
for FD/Fp = 0.7, where a reduction in Cl has occurred.
The corresponding structure factor in Fig. 2(d) still con-
tains a ringlike feature but has excess weight in two peaks
along kx = 0, indicating the formation of some chainlike
structures due to the x-direction driving.

For 0.7 < FD/Fp < 1.4, the system forms a den-
sity phase separated state, as illustrated in Fig. 3(a) for
FD/Fp = 1.05. The motion of the disks in this state ap-
pears in [59]. Here there is a high density region with
φ ≈ 0.85 in which the disks have triangular ordering co-
existing with a low density region where the disks are dis-
ordered. The corresponding structure factor in Fig. 3(b)
shows six peaks due to the triangular ordering within

FIG. 4: (a) The disk positions (circles) for the system in Fig. 1
at φ = 0.3 for FD/Fp = 0.15, showing the formation of small
clusters. (b) The corresponding S(k) plot. (c) The same
system at FD/Fp = 0.6 in the moving phase where the disk
density becomes homogeneous. (d) The corresponding S(k)
shows a diffuse or liquidlike pattern.

the dense phase. There is some smearing of the peaks
along ky due to the tendency of the crystallites in the
dense phase to align with the driving direction. For
FD/Fp > 1.4, where Cl drops, the disks become more
spread out and form 1D moving chains of the type shown
in Fig. 3(c) at FD/Fp = 2.0 and illustrated in a movie
in [60]. The corresponding S(k) in Fig. 3(d) has strong
smectic ordering. In general, for φ ≥ 0.43 we find a phase
separation in the vicinity of FD/Fp ≈ 1 similar to that
shown in Fig. 3(a), where the extent of the dense region
grows with increasing φ while the low density regions be-
come smaller.

B. Low Disk Density

For φ < 0.43, the clumps that form near depinning
are small, as illustrated in Fig. 4(a) at φ = 0.3 and
FD/Fp = 0.15. The clumps are anisotropic and show
some alignment along the y-direction, while the corre-
sponding structure factor in Fig. 4(b) has a ringlike signa-
ture. At higher drives above depinning when some of the
disks are moving, the disk density is more homogeneous,
as shown in Fig. 4(c) at FD/Fp = 0.6. The correspond-
ing S(k) plot in Fig. 4(d) has a more diffuse structure.
Near FD/Fp = 1.0, most of the disks are in motion and
form chainlike structures, as illustrated in Fig. 5(a,b) and
in [59] for FD/Fp = 1.05. The disk density is not uni-
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FIG. 5: (a) The disk positions (circles) for the system in Fig. 1
at φ = 0.3 for FD/Fp = 1.05, where the disks form chainlike
patterns. (b) The corresponding S(k) plot. (c) The same
system at FD/Fp = 2.0 in the moving phase where the disks
form a series of chains or stripes. (d) The corresponding S(k)
has smectic ordering. (e) Blow up of disk positions from panel
(c) showing formation of 1D chains.

form, with some chains closer together and others further
apart; however, the denser regions are still too sparse to
form sections of triangular lattice of the type that appear
at φ = 0.61 in Fig. 3(a). As FD increases for the φ = 0.3
sample, the moving chains of disks become better de-
fined, as shown in Fig. 5(c) and in [60] at FD/Fp = 2.0.
The interchain spacing becomes small enough that the
disks in neighboring chains are almost touching, and the
corresponding structure factor in Fig. 5(d) shows strong
smearing along the ky direction.

These results indicate that even though φ is below the
close-packed density of φ = 0.9, different dynamic phases
can arise and there can be transitions into states with
smectic ordering, similar to the smectic states observed
for driven superconducting vortices [9, 20–22, 24]. In gen-
eral, the 1D channeling effect illustrated in Fig. 5(c) is
much more pronounced in the disk system than in sys-

tems with longer range interactions. The moving disks
are unstable against the formation of chainlike structures
due to a velocity collapse phenomenon. If one moving
disk slows down, the disk immediately behind it can run
into it and cause it to speed up again, but once the two
disks move beyond their steric interaction range, there
are no particle-particle interactions to push them further
apart, so the disks tend to pile up behind each other
in the longitudinal direction. For φ = 0.85, the system
forms a dense cluster with polycrystalline triangular or-
dering, and for FD/Fp > 1.0 the disks form a single trian-
gular domain that is aligned with the driving direction.

We find two specific phenomena that differ from what
is observed in systems of externally driven particles with
longer range interactions. These are: (1) a density phase
separation, where high and low density phases coex-
ist as shown in Fig. 3(a), and (2) the formation of 1D
chains as illustrated in Fig. 3(c) and Fig. 5(c). The
density phase separation generally occurs in the range
0.9 < FD/Fp < 1.2, just above the drive at which all
the disks become mobile, while the 1D chains appear for
FD/Fp > 1.2 when all the disks are rapidly flowing. In
Fig. 5(e) we show a blow up of moving 1D chains from
the system in Fig. 5(c,d) indicating that the chains form
in the longitudinal direction, and that in this direction
the disks are almost touching to give a density along the
length of the chain close to φ = 0.9. Although cluster-
ing has been observed in active matter systems [44–46],
such 1D chaining does not occur for active disk systems,
and results from a combination of the x direction driv-
ing force and the highly anisotropic fluctuations of the
moving disks.

C. Transverse Diffusion and Topological Order

We can characterize the different phases by measur-
ing the particle displacements in the direction transverse

to the applied drive, 〈δy2〉 = N−1d
∑Nd

i=1(yi(t) − yi(t0))2,
for varied FD/Fp. In general we find 〈δy2〉 ∝ tα at long
times. In the disordered homogeneous density regimes,
α = 1.0, indicative of diffusive behavior, while α < 1.0
just above depinning and in the moving chain state. In
Fig. 6 we plot the value of 〈δy2〉 obtained at a fixed time
of 5×106 simulation time steps versus FD/Fp along with
the corresponding value of α for the system in Fig. 1 at
φ = 0.25, 0.3, 0.43, 0.55, 0.61, and 0.71. For φ = 0.25
and φ = 0.3 in Fig. 6(a,b), there is a peak in 〈δy2〉 near
FD/Fp = 1.0, where α ≈ 1.0, indicating diffusive behav-
ior. The maximum amount of transverse diffusion falls
at the same value of FD/Fp as the peak in d〈Vx〉/dFD
shown in Fig. 1(b). At low drives where the system forms
a clogged state, the transverse diffusion is suppressed. At
higher drives where the disks form 1D channels, the dif-
fusion in the direction transverse to the drive is strongly
suppressed and α → 0, indicating that the 1D channels
are frozen in the transverse direction.

For φ = 0.43, 0.55, and 0.61 in Fig. 6(c,d,e), 〈δy2〉 has
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FIG. 6: The transverse displacements 〈δy2〉 obtained after
4× 106 simulation time steps (red squares) and the diffusive
exponent α (blue circles) vs FD/Fp for the system in Fig. 1
at φ = (a) 0.25, (b) 0.3, (c) 0.43, (d) 0.55, (e) 0.61, and (f)
0.71.

a double peak feature. The first peak corresponds to the
onset of the homogeneous moving phase, while the sec-
ond peak occurs when the system starts to undergo phase
separation. For φ = 0.61, where the strongest phase sepa-
ration is observed, there is even a region of drive for which
〈δy2〉 exhibits superdiffusive behavior with α > 1.0. At
longer times the behavior transitions to regular diffusion.
For higher drives, both 〈δy2〉 and α decrease with increas-
ing drive as the system forms a moving chain state. For
φ = 0.71 in Fig. 6(f), the double peak feature begins to
disappear. Numerical studies of vortices in type-II super-
conductors [24, 61] show that the vortices exhibit strong
transverse diffusion above the depinning transition, while
at higher drives where a moving smectic state appears,
the transverse diffusion is strongly suppressed and the
system freezes in the transverse direction. The vortex
system typically has only a single peak in 〈δy2〉 rather
than the double peaks we observe here. The regime of
superdiffusive behavior for φ = 0.61 arises due to collec-
tive transverse motion of the disks in the dense phase.

Another measure often used to characterize interacting
particles driven over disorder is the fraction P6 of sixfold

coordinated particles. Here P6 = N−1d
∑Nd

i δ(zi − 6),
where zi is the coordination number of disk i obtained
from a Voronoi tessellation. In the case of superconduct-
ing vortices in the absence of pinning, the ground state
is a triangular lattice with P6 = 1.0, while when strong
disorder is present, the pinned state is disordered and
contains numerous topological defects so that P6 < 1.0.
At high drives, where the effect of pinning is reduced, the
system can dynamically reorder into a moving triangu-
lar lattice with P6 = 1.0 or into a moving smectic where
some topological defects persist that are aligned with the
direction of drive, giving P6 . 1 [3, 4, 17, 20–22, 24].

FIG. 7: The fraction P6 of sixfold coordinated disks vs FD/Fp

for the system in Fig. 1 for φ = (a) 0.25, (b) 0.3, (c) 0.43, (d)
0.61, (e) 0.71, and (f) 0.85. For φ = 0.61 in panel (d), the
local maximum in P6 near FD = 1.0 is correlated with the
formation of the phase separated state shown in Fig. 3(a).

In Fig. 7 we plot P6 versus FD/Fp for the system in
Fig. 1 at φ = 0.25, 0.3, 0.43, 0.61, 0.71, and 0.85. Al-
though there are several similarities to the behavior of P6

observed for superconducting vortices, there are a num-
ber of notable differences. For φ = 0.25 and φ = 0.3 in
Fig. 7(a,b), there is an increase in P6 above FD/Fp = 1.0
which corresponds to the formation of the moving chain
state illustrated in Fig. 5(a), followed by a saturation
of P6 at higher drives to P6 = 0.55. This is in marked
contrast to the behavior observed in the vortex system,
where P6 saturates to a value much closer to P6 = 1.0
due to the longer range particle-particle repulsion which
favors the formation of a triangular vortex lattice down
to quite low vortex densities. At φ = 0.43 in Fig. 7(c),
P6 shows a similar trend as in the systems with lower
disk densities; however, P6 saturates to a higher value of
P6 = 0.68. In Fig. 7(d) at φ = 0.61, there is a local max-
imum in P6 for 0.9 < FD/Fp < 1.4 that coincides with
the density phase separated regime. The disks in the
dense phase have mostly triangular ordering, as shown
in Fig. 3(a,b). For higher drives of FD/Fp > 1.4, where
the disks become more spread out, P6 drops again. At
φ = 0.71 in Fig. 7(e), for low drives P6 ≈ 0.55, and
then P6 gradually increases with increasing drive up to
a value of P6 = 0.9, indicating that most of the sample
has developed triangular ordering. Finally, for φ = 0.85
in Fig. 7(f), at the lowest drives the system forms a poly-
crystalline solid containing a small number of defects, so
that the initial value of P6 ≈ 0.81, while as FD increases,
the polycrystal anneals into a single domain crystal that
is aligned in the direction of drive, with P6 = 0.99, indi-
cating almost complete triangular ordering.

For 0.3 < φ < 0.85, the P6 curves in Fig. 7 show
a small peak near FD/Fp = 0.2 due to the pile up or
clustering effect. Within the clusters the local density
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FIG. 8: Schematic phase diagram as a function of FD/Fp

vs φ for the system in Fig. 1. I: Pinned or clogged state.
II: Homogeneous plastic flow. III: Density phase separated
state. IV: Moving smectic or moving chain state. V: Moving
polycrystalline state. VI: Moving crystal state.

φloc is φloc ≈ 0.85, producing increased sixfold ordering
and a corresponding increase in P6. Once the drive is
large enough to break apart these clusters, there is a
drop in P6 as the system enters the homogeneous moving
phase.

D. Dynamic Phase Diagram

From the features in the velocity-force curves, P6,
〈δy2〉, and the disk configurations, we can construct a
schematic phase diagram of the evolution of the different
phases, as shown in Fig. 8. Phase I corresponds to the
pinned or clogged state, phase II is homogeneous disor-
dered plastic flow, phase III is the density phase sepa-
rated state, phase IV is the moving smectic or moving
chain state, phase V is the moving polycrystalline state,
and phase VI is the moving single domain crystal state.

Many of the features in the phase diagram can be un-
derstood with force balance arguments. The depinning
line separating phase I from phase IV for φ < 0.2 falls
at the constant value of FD/Fp = 1. At these low disk
densities the disks are pinned individually, so the depin-
ning threshold is determined only by the value of Fp.
For φ > 0.2, not all of the disks are directly captured by
pinning sites; instead, some disks are unable to find an
empty pinning site and move through the system as in-
terstitials, pinned only through their interaction with di-
rectly pinned disks. The interstitials can flow plastically,
so phase II exists only when interstitials are present. In-
terstitials emerge once a percolating fraction pf ∼ 0.67 of
the pinning sites are filled, so if we write φequiv = 0.314 as
the density of disks that we would have if every pinning
site were filled with exactly one disk, we expect the onset
of phase II flow to occur for φ & pfφequiv = 0.21. For

φ > 0.2, due to the pairwise disk interactions the depin-
ning threshold gradually becomes dominated by the driv-
ing force at which an unpinned disk can depin a pinned
disk with which it is in contact, reducing the depinning
threshold from Fc = Fp to Fc = Fp/2. In Fig. 8, the
depinning line separating phases I and II gradually de-
creases from FD/Fp = 1 at φ = 0.2 to FD/Fp = 0.5
at φ = 0.3. As φ increases further, three or more disks
can come into contact and the depinning force falls off as
Fc = Fp/(Navg + 1) where Navg is the average number of
unpinned disks in force contact with a pinned disk. Since
Navg increases with disk density we expect Fc ∼ Fp/φ,
consistent with the decrease in the depinning line mark-
ing the end of phase I for φ > 0.3 in Fig. 8.

Phase II in Fig. 8 consists of a combination of pinned
and moving disks. Since all of the disks depin for
FD/Fp ≥ 1.0, the upper boundary of phase II should
be close to FD/Fp = 1, as we observe. Similarly to the
depinning line, the upper boundary of phase II gradually
decreases with increasing φ as multiple disk interactions,
which tend to depin the pinned disks, become more im-
portant. For φ & 0.77 the system is so dense that the
depinning becomes elastic, as observed in earlier studies
of depinning for binary disk systems, so that phase II dis-
appears and is replaced by phase V, which again extends
up to a maximum drive of FD/Fp = 1. The φ ≈ 0.77 line
separating the high density phases V and VI from the
lower density phases is a type of random close packing
(RCP), but it falls below the clean system RCP value
of φ = 0.82[53, 54] due to the presence of the quenched
disorder.

Phase III, the phase separated state, in Fig. 8 occurs
when two conditions are met: (1) all the disks are mov-
ing, and (2) the dynamical fluctuations are strong enough
that the moving disks have a component of their root
mean square (RMS) motion in the direction transverse
to the drive that is ballistic over a sufficiently long time
interval to permit noticeable transverse grain motion to
occur. Phase III only occurs for φ > 0.2, in agree-
ment with previous work [19], and consistent with the
observation in active matter that cluster formation oc-
curs only for sufficiently high density and activity. For
FD/Fp < 1.0 there are still pinned disks present that can
interfere with the phase separation and make the density
more uniform, so the lower boundary of phase III falls
near FD/Fp ≈ 1.0. The transverse RMS motion of the
disks decreases with increasing FD since the magnitude
of the fluctuations δy induced by the pinning sites di-
minishes as the disks travel faster, δy ∝ 1/FD, similar to
the effective temperature found in superconducting vor-
tex systems. Once these transverse fluctuations become
small enough, the clustering is lost. This has similarities
to the loss of clustering in active matter systems as the
run length is reduced [45, 46] or the active diffusion is
reduced [55, 56], but the origin of the fluctuations in the
disk and the active matter systems is quite different.

When the drive is high enough and the transverse dis-
placements 〈δy2〉 are smaller than the longitudinal fluctu-
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FIG. 9: (b) Schematic plot of the effective shaking temper-
ature or activity A vs FD/Fp for a sample with φ = 0.3.
The vertical dashed black line at FD/Fp = 0.5 separates
the pinned phase (I) from homogeneous plastic flow (II). At
FD/Fp = 1.0 all the particles begin to move, producing an
effective shaking temperature or activity with an amplitude
A that decreases as 1/FD. There is a critical shaking activ-
ity, Ac (horizontal red line), above which clustering can begin
to occur, so that a phase separated state (III) appears above
FD/Fp = 1.0. Phase III disappears above the value of FD/Fp

marked by a vertical solid green line, which is determined by
the point at which A drops below Ac. At high drives where
A < Ac, Phase IV, the moving smectic state, appears as the
externally applied driving force begins to dominate the be-
havior of the system and the effective shaking temperature
becomes unimportant.

ations, the system enters the moving chain state marked
phase IV in Fig. 8. This phase is analogous to the moving
smectic state found for vortices driven over random dis-
order [19–22, 24]; however, unlike the vortices, the disks
can form chains that have an almost close-packed density
of φ = 0.9 along their length while still experiencing zero
overlap energy as long as the disks are not touching. In
contrast, for a system with longer range interactions of
1/r, e−κr/r, or Bessel function form, due to the energy
divergence at small r such extreme chaining would be
very energetically costly and hence would be unstable.
As FD further increases, the longitudinal fluctuations δx
also decrease in magnitude; however, once the system has
entered the chain state, the chains can persist up to ar-
bitrarily high drives. At densities φ > 0.77, above the
RCP transition to elastic pinning, Fig. 8 indicates that
for high drives the system forms the moving solid state
marked phase VI.

To highlight the role of the effective shaking temper-
ature or activity in inducing dynamic phase changes, in
Fig. 9 we plot a schematic of A, the amplitude of the ef-
fective shaking temperature or the effective activity, ver-
sus FD/Fp at φ = 0.3. The I-II transition occurs when
the force F net

D acting on all n interstitial disks in contact

FIG. 10: (a) 〈Vx〉 vs FD/Fp at φ = 0.55 and Fp = 1.0
for Np/Nd = 0.0, 0.072, 0.144, 0.216, 0.288, 0.36, 0.432,
0.504, and 0.576, from top to bottom. (b) The corresponding
d〈Vx〉/dFD vs FD/Fp curves showing peaks near FD/Fp = 0.5
and FD/Fp = 1.0.

with a pinned disk as well as on the pinned disk itself
exceeds the pinning force Fp. At φ = 0.3, as shown in
Fig. 9, there is an average of n = 1 interstitial disk in con-
tact with each pinned disk, so F net

D = (n+ 1)FD = 2FD
and depinning occurs at FD/Fp = 0.5; in contrast, for
φ < 0.2, n = 0 and depinning occurs at FD/Fp = 1.0.
The activity A in the pinned phase I is A = 0. For
0.5 < FD/Fp < 1.0, the system is in phase II and contains
both pinned and moving disks. In this case the shak-
ing activity is bimodal and the fluctuations are strongly
non-Gaussian, so A is not well defined and we indicate
its value as A = 0. For Fd/Fp > 1.0 all the particles are
moving, so A is well defined and has its highest value at
FD/Fp = 1.0 before decreasing according to A ∼ 1/FD.
We can define a disk density-dependent critical activ-
ity level, Ac, needed for clustering to occur. As long as
A > Ac, the system remains in phase III, but when A
drops below Ac, clustering is lost and the system transi-
tions into phase IV.

IV. VARIED PINNING DENSITY

We next consider the case of a fixed disk density of
φ = 0.55, corresponding to Nd = 2500, and vary the
number of pinning sites to give a ratio of Np/Nd rang-
ing from Np/Nd = 0 to Np/Nd = 0.576. In Fig. 10(a,b)
we show 〈Vx〉 and d〈Vx〉/dFD versus FD/Fp for a sample
with Fp = 1.0. There is one peak in d〈Vx〉/dFD near
FD/Fp = 1.0, the drive above which all of the disks are
moving, and a second peak near FD/Fp = 0.5, the drive
at which the clogged state breaks apart. We observe a
similar set of dynamical phases as those described in Sec-
tion III, but find that the density phase separated state is
more prominent at lower pinning density, as shown in the
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FIG. 11: Cluster size Cl vs FD/Fp for the system in Fig. 10 at
Np/Nd = (a) 0.072, (b) 0.216, (c) 0.288, and (d) 0.432. The
local peaks in (b) and (c) correspond to the formation of a
density phase separated state. In panel (c) the lettering indi-
cates the FD/Fp values represented in the real space images
in Fig. 12.

plots of Cl versus FD/Fp in Fig. 11 for Np/Nd = 0.072,
0.216, 0.288, and 0.432. In particular, Np/Nd = 0.216 in
Fig. 11(b) andNp/Nd = 0.288 in Fig. 11(c) exhibit strong
peak features associated with the density phase separated
state. The double peak feature in the d〈Vx〉/dFD curves
is generally absent for 2D studies of particles with longer
range repulsion driven over disorder, where typically only
one peak is observed, and is thus a unique feature of the
2D disk system. In addition, for particles with longer
range interactions, measures of P6 and hence Cl generally
show only monotonic behavior above depinning, in con-
trast to the disk system, which shows a clear nonmono-
tonic behavior with a second peak near FD/Fp = 1.0.

To show more clearly the evolution of the cluster state,
in Fig. 12 we illustrate the disk positions for the system at
Np/Nd = 0.288 for increasing FD. The letters a through
f in Fig. 11(c) indicate the values of FD/Fp that match
these images. In Fig. 12(a) at FD/Fp = 0.05, where
Cl = 0.85, the system forms a clogged state. Within the
cluster regions, which are colored red, the disk density
is close to φ = 0.85, and these clusters are separated
by low density regions of disks. As the drive increases,
the large cluster becomes more spread out, as shown in
Fig. 12(b) for FD/Fp = 0.3, where Cl drops to Cl = 0.78.
At FD/Fp = 0.6 in Fig. 12(c), which corresponds to a lo-
cal minimum in Cl in Fig. 11(c), the disks are completely
spread out and form a homogeneous disordered phase. In
Fig. 12(d) at FD/Fp = 1.05, which corresponds to a local
maximum in Cl in Fig. 11(c), a density phase separated
state appears. Disks that are in a cluster containing at
least three disks are colored red in order to more clearly
highlight the dense region, within which the disks have
developed triangular ordering. As the drive is further
increased, the disks spread apart in the direction trans-

FIG. 12: The disk positions for the system in Figs. 10 and
11 at Np/Nd = 0.288 for drive values marked with letters in
Fig. 11(c). In panels (a) and (d), red disks are part of clusters
containing three or more disks, while blue disks are isolated or
in a cluster containing only two disks. (a) The pinned cluster
state at FD/Fp = 0.05. (b) At FD/Fp = 0.3 the moving
disks form more spread out clusters. (c) At FD/Fp = 0.6,
corresponding to the local minimum of Cl in Fig. 11(c), a
homogeneous disordered state forms. (d) At FD/Fp = 1.05,
corresponding to the peak in Cl in Fig. 11(c), a density phase
separated state forms. At (e) FD/Fp = 1.5 and (f) FD/Fp =
2.0, the disks are in a moving chain state.

verse to the drive to form the moving chain state illus-
trated in Fig. 12(e,f) at FD/Fp = 1.5 and FD/Fp = 2.0,
respectively, which also coincides with a reduction of Cl
in Fig. 11(c). For Np/Nd = 0.55 and above, the den-
sity phase separated state becomes less well defined, as
indicated in Fig. 11(d) at Np/Nd = 0.432.

In Fig. 11(a) at Np/Nd = 0.072, although Cl does
not show a peak near FD/Fp = 1.0, there is still a
pronounced density phase separated state; however, this
phase has shifted to lower FD/Fp. Since the low density
clogged state transitions directly into the flowing den-
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FIG. 13: The disk positions for a system with φ = 0.55 at
Np/Nd = 0.072, where there is no peak in Cl in Fig. 11(a).
Red disks are part of clusters containing three or more disks,
while blue disks are isolated or in a cluster containing only two
disks. (a) A density phase separated state at FD/Fp = 0.3.
(b) A moving chain state forms at higher drives, shown here
at FD/Fp = 1.5.

FIG. 14: (a) Schematic phase diagram as a function of FD/Fp

vsNp/Nd for the system in Fig. 10 at fixed φ = 0.55. I: Pinned
or clogged state. II: Homogeneous plastic flow. III: Density
phase separated state. IV: Moving smectic or moving chain
state. (b) Phase diagram for the same system at φ = 0.55
and Np/Nd = 0.288 as a function of FD vs Fp.

sity phase separated state, there is no dip in Cl. The
density phase separated state breaks apart at lower val-
ues of FD/Fp compared to samples with higher values of
Np/Nd. In Fig. 13(a) we show the disk configurations at
Np/Nd = 0.072 and FD/Fp = 0.3 where a density phase
separated state appears, while in Fig. 13(b) we illustrate
the moving chain phase that forms at FD/Fp = 1.5 in
the same system. From the images we can construct a
schematic phase diagram for the φ = 0.55 sample as a
function of FD/Fp versus Np/Nd, as shown in Fig. 14(a),
which highlights the extents of regions I through IV.
Here, the widths of regions I and II grow with increasing
Np/Nd, while region III reaches its largest extent near
Np/Nd = 0.3. We note that for Np/Nd = 0, the system
forms a moving disordered state for all FD > 0.

In the dynamic phase diagram of Fig. 14(a), the de-
pinning transition marking the upper bound of phase I

FIG. 15: (a) The cluster size Cl vs FD for samples with φ =
0.55 and Np/Nd = 0.288 at Fp = 0.0 (blue circles), 0.2 (blue
squares), 0.4 (green diamonds), 0.6 (orange triangles), and 1.0
(red circles). (b) 〈Vx〉 vs FD − Fc for the velocity-force curve
obtained at φ = 0.55 and Np/ND = 0.576. The solid line is a
power law fit with an exponent of β = 1.6.

increases linearly with increasing Np, a behavior similar
to that observed in other systems, such as superconduct-
ing vortices, that exhibit plastic depinning [1]. The upper
boundary of phase III varies non-monotonically with Np
due to the behavior of the fluctuations. Phase III arises
due to the transverse fluctuations produced by a combi-
nation of interactions with the pinning sites and disk-disk
collisions. When Np is small, there are not enough pin-
ning sites to create strong nonequilibrium fluctuations,
so the extent of phase III decreases with decreasing Np.
At high Np, the situation is similar to that in the phase
diagram of Fig. 8 at high φ, where fluctuations in the disk
motion are larger in the longitudinal or x direction than
in the transverse or y direction, and as a result chain-
like structures are destabilized and the width of phase
III decreases with increasing Np.

We have considered varying Fp while holding φ and
Np/Nd fixed, and find that the same general phases ap-
pear. In Fig. 14(b), the upper boundary of phase I in-
creases linearly with increasing Fp, as expected for a de-
pinning transition. The line separating phases II and III
marks the point at which all of the disks are moving,
and this line also increases linearly with Fp. The line
separating phases III and IV appears at the point when
the transverse fluctuations become too small to permit
density phase separation to occur, and since the fluctua-
tions are affected by the pinning strength, this line also
increases linearly with Fp. In Fig. 15(a) we plot Cl ver-
sus FD in a sample with φ = 0.55 and Np/Nd = 0.288
for Fp = 0.0, 0.2, 0.4, 0.6, and 1.0 to show the evolution
of the second peak, which both increases in width and
shifts to higher values of FD as Fp increases.

For depinning in systems with longer range interac-
tions, such as superconducting vortices, colloidal parti-
cles, and electron crystals, scaling near the depinning
threshold is observed in the velocity-force curves, which
have the form V ∝ (FD − Fc)

−β . In plastic depin-
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ning, where particles exchange neighbors as they move,
β > 1.0, while for elastic depinning, in which the particles
maintain the same neighbors as they move, β < 1.0 [1].
In systems with long range Coulomb interactions [8] and
screened Coulomb interactions [12, 62], plastic depinning
is associated with exponents of β ≈ 1.65 and β ≈ 2.0,
respectively. More recently, simulations of depinning of
superconducting vortices with a Bessel function vortex-
vortex interaction give β = 1.3 [63]. Due to the observed
variations in these exponents, it is not clear that existing
simulations of plastic depinning are large enough to ac-
curately obtain the true scaling since it is expected that
a critical phenomenon would be associated with a unique
exponent.

It is interesting to ask whether similar scaling of
the velocity-force curves occurs in the disk system. In
Fig. 15(b) we plot 〈Vx〉 versus FD −Fc on a log-log scale
for a sample with φ = 0.55 at Np/ND = 0.576. The
solid line indicates a scaling fit with β = 1.6. At higher
drives, well above depinning, the slope of the velocity-
force curve becomes linear, as expected since the effec-
tiveness of the pinning is lost in this regime. In general,
we find that for Np/Nd > 0.288, the velocity-force curves
can be fit to a power law with 1.4 < β < 1.7. The
variation in the exponents we obtain is a result of the
limited size of our simulation, but our values are within
the range of those reported for plastic depinning of sys-
tems with longer range interactions [8, 12, 62]. It remains
an open question whether plastic depinning for systems
with short range interactions falls in the same universal-
ity class as plastic depinning for systems with long range
interactions. For Np/Nd < 0.288, the depinning thresh-
old Fc = 0 since there are few enough pinning sites that
some disks can pass completely through the system with-
out being trapped directly by pinning or indirectly by
becoming lodged behind pinned disks.

V. DISCUSSION

The dynamic density phase separation we find has not
been observed in studies of superconducting vortices or
colloids driven over random disorder. As noted previ-
ously, under certain conditions such as low flux density
or very small penetration length, superconducting vor-
tices could behave like a hard disk system and exhibit
density phase separation or the formation of 1D flow-
ing chains. Observation of such effects would require the
use of weak pinning samples that provide access to the
flux flow regime at low fields. There have been exam-
ples of clump-like vortex states observed at low fields in
certain materials; however, these clumps may be the re-
sult of competing attractive and repulsive interactions
between the vortices [51], rather than from reaching an
effective hard disk interaction limit. There have been
some numerical studies of vortex avalanches in which the
vortex-vortex repulsion was modeled as as harmonic re-
pulsion [66]; however, these studies were performed in

a 1D system, which is a very different limit from the
system we consider. Numerical studies of vortices mov-
ing through periodic substrate arrays showed that under
certain conditions the system can form vortex density
or soliton waves [67]; however, these studies are again
in a very different regime from that which we consider.
There has also been work showing that phase separation
into high density regions as well as stripe ordering oc-
curs for particles driven over random disorder when the
pairwise interactions between particles include both a re-
pulsive and an attractive term [64, 65]; however, in the
disk system we consider here, the disk-disk interaction is
purely repulsive.

The phase separation we observe has similarities to
the active matter clustering found in simulations of hard
disks undergoing active Brownian motion or run-and-
tumble type dynamics. In the active matter systems,
when the activity is high enough, the particles phase
separate into a dense solidlike region and a low density
fluid [43–46] due to a combination of the nonequilibrium
nature of the fluctuations and the fact that the mobil-
ity of the particles is dependent on the local particle
density [44]. In the driven disk system, velocity fluc-
tuations transverse to the driving direction are generally
largest when there is a coexistence of disks being pinned
or slowed down by the pinning along with faster moving
unpinned disks. When the disks collide with each other,
they generate velocity fluctuations that have a ballistic
component in the transverse direction, similar to the mo-
tion of active particles. This also produces time intervals
in the transverse diffusion that exhibit superdiffusive be-
havior similar to that found in active matter systems [46].
Additionally, the disks have a reduced mobility when the
disk density increases. When the drive is large enough,
both the speed differential of the disks and the velocity
fluctuations transverse to the drive are lost, and since
these effects are necessary to produce the clustering and
the density phase separation, the clustering and density
phase separation also disappear. The same effects could
arise in systems with longer range interactions; however,
the large energy cost of high density regions would sup-
press the density phase separation we observe for the
short range repulsive disks. Experimentally, the dynamic
phase separation could be observed using colloids, emul-
sions, or micelles that have only steric interactions mov-
ing over random substrates. Experiments with quasi-
2D granular systems could include grains flowing over a
rough landscape under the influence of gravity or shak-
ing; however, in this case, inertial and intergrain fric-
tional effects would also need to be taken into account.
In our work we focus on the case of monodisperse disks,
so that the system forms triangular ordering in the dense
phase; however, we have also considered a case for bidis-
perse disks with a radius ratio of 1 : 1.4 and find the
same features, where the phase separated state is shifted
to a somewhat lower density, suggesting that the dense
phase separated regions are in fact jammed since it is
well known that jamming occurs for lower densities in
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bidisperse disks than for monodisperse disks [38].

VI. SUMMARY

We have numerically examined the dynamical phases
for monodisperse repulsive disks driven over random dis-
order. Despite the simplicity of this system, we observe
a rich variety of distinct dynamics, many of which have
significant differences from the dynamic phases observed
for other systems of collectively interacting particles with
longer range repulsion, such as vortices in type-II super-
conductors and colloids with Yukawa interactions. The
phases we find include a heterogeneous clogged state
where the disks form local immobile clumps, a homo-
geneous disordered plastic flow state, a moving density
phase separated state where the system forms a dense
region with mostly triangular ordering coexisting with a
low density disordered phase, and a stripe or chainlike
state at higher drives. The density phase separation oc-
curs due to the density dependent mobility of the disks
and the short range nature of their interaction with each
other, which permits the disks to pack closely together
with little overlap energy. In contrast, in systems with
longer range repulsion, density phase separated states are

prevented from forming since more homogeneous states
have a much lower particle-particle interaction energy.
The chain formation can occur in the disk system since
the disks can approach almost within a radius of each
other without paying an overlap energy cost, whereas
in systems with longer range interactions, such strongly
anisotropic structures would have a very high energy cost.
From the features in the transverse diffusion, structure
factor, and velocity-force curves, we map the evolution
of the different phases as a function of disk density, pin-
ning site density, and pinning force. Our results sug-
gest that the dynamic density phase separation and the
chainlike state should be general features in systems with
short range steric interactions driven over random disor-
der. These effects could be observed experimentally us-
ing sterically interacting colloids, emulsions, micelles and
even superconducting vortices at low fields moving over
random disorder.
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phases of driven vortex systems, Phys. Rev. Lett. 77,
2778 (1996).



14

[21] F. Pardo, F. de la Cruz, P.L. Gammel, E. Bucher, and
D.J. Bishop, Observation of smectic and moving-Bragg-
glass phases in flowing vortex lattices, Nature (London)
396, 348 (1998).

[22] C.J. Olson, C. Reichhardt, and F. Nori, Nonequilibrium
dynamic phase diagram for vortex lattices, Phys. Rev.
Lett. 81, 3757 (1998).

[23] A.C. Marley, M.J. Higgins, and S. Bhattacharya, Flux
flow noise and dynamical transitions in a flux line lattice,
Phys. Rev. Lett. 74, 3029 (1995).

[24] A. Kolton, D. Domı́nguez, and N. Grønbech-Jensen, Hall
noise and transverse freezing in driven vortex lattices,
Phys. Rev. Lett. 83, 3061 (1999).

[25] M.C. Marchetti, A.A. Middleton, K. Saunders, and J.M.
Schwarz, Driven depinning of strongly disordered media
and anisotropic mean-field limits, Phys. Rev. Lett. 91,
107002 (2003).

[26] J. Zhu, M. Li, R. Rogers, W. Meyer, R.H. Ottewill, STS-
73 Space Shuttle Crew, W.B. Russel, and P.M. Chaikin,
Crystallization of hard-sphere colloids in microgravity,
Nature (London) 387, 883 (1997).

[27] C.P. Royall, W.C.K. Poon, and E.R. Weeks, In search of
colloidal hard spheres, Soft Matter 9, 17 (2013).

[28] J. Bibette, F.L. Calderon, and P. Poulin, Emulsions: ba-
sic principles, Rep. Prog. Phys. 62, 969 (1999).

[29] M. Borkovec, From micelles to microemulsion droplets:
Size distributions, shape fluctuations, and interfacial ten-
sions, J. Chem. Phys. 91, 6268 (1989).

[30] B.E. Burkhardt, P.V. Gopalkrishnan, S.D. Hudson, A.M.
Jamieson, M.A. Rother, and R.H. Davis, Droplet growth
by coalescence in binary fluid mixtures, Phys. Rev. Lett.
87, 098304 (2001).

[31] L. Bragg and J.F. Nye, A dynamical model of a crystal
structure, Proc. R. Soc. London, Ser. A 190, 474 (1947).

[32] M. Dennin, Statistics of bubble rearrangements in a
slowly sheared two-dimensional foam, Phys. Rev. E 70,
041406 (2004).

[33] M.J. Bowick, L. Giomi, H. Shin, and C.K. Thomas,
Bubble-raft model for a paraboloidal crystal, Phys. Rev.
E 77, 021602 (2008).

[34] Y. Forterre and O. Pouliquen, Flows of dense granular
media, Ann. Rev. Fluid Mech. 40, 1 (2008).

[35] C. Reichhardt and C. J. Olson Reichhardt, Aspects of
jamming in two-dimensional athermal frictionless sys-
tems, Soft Matter 10, 2932 (2014).

[36] T. Bohlein, J. Mikhael, and C. Bechinger, Observation of
kinks and antikinks in colloidal monolayers driven across
ordered surfaces, Nature Mater. 11, 126 (2012).

[37] J. Mikhael, J. Roth, L. Helden, and C. Bechinger,
Archimedean-like tiling on decagonal quasicrystalline
surfaces, Nature (London) 454, 501 (2008).

[38] C.S. O’Hern, L.E. Silbert, A.J. Liu, and S. R. Nagel,
Jamming at zero temperature and zero applied stress:
The epitome of disorder, Phys. Rev. E 68, 011306 (2003).

[39] C.J. Olson Reichhardt, E. Groopman, Z. Nussinov, and
C. Reichhardt, Jamming in systems with quenched dis-
order, Phys. Rev. E 86, 061301 (2012).

[40] A.L. Graves, S. Nashed, E. Padgett, C.P. Goodrich, A.J.
Liu, and J.P. Sethna, Pinning susceptibility: The effect of
dilute, quenched disorder on jamming, Phys. Rev. Lett.
116, 235501 (2016).

[41] A. Kudrolli, M. Wolpert, and J. P. Gollub Cluster for-
mation due to collisions in granular material, Phys. Rev.
Lett. 78, 1383 (1997).

[42] I. Aranson and L. Tsimring, Patterns and collective be-
havior in granular media: Theoretical concepts, Rev.
Mod. Phys. 78, 641 (2006).

[43] J. Tailleur and M.E. Cates, Statistical mechanics of in-
teracting run-and-tumble bacteria, Phys. Rev. Lett. 100,
218103 (2008).

[44] M.E. Cates and J. Tailleur, When are active Brownian
particles and run-and-tumble particles equivalent? Con-
sequences for motility-induced phase separation, Euro-
phys. Lett. 101, 20010 (2013).

[45] C. Reichhardt and C.J. Olson Reichhardt, Active mi-
crorheology in active matter systems: Mobility, intermit-
tency, and avalanches, Phys. Rev. E 91, 032313 (2015).

[46] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt,
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