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Abstract

A modified test-chain self-consistent field theory (SCFT) is presented to study the intra- and

intermolecular correlations of linear and branched polymers in various solutions and melts. The

key to the test-chain SCFT is to break the the translational symmetry by fixing a monomer at

the origin of a coordinate. This theory successfully describes the crossover from self-avoiding

walk at short distances, to screened random walk at long distances in a semi-dilute solution or

melt. The calculations indicated that branching enhances the swelling of polymers in melts, and

influences stretching at short distances. The test-chain SCFT calculations show good agreement

with experiments and classic polymer theories. We highlight that the theory presented here provides

a solution to interpret the polymer conformation and behavior in various conditions within the

framework of one theory.
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I. INTRODUCTION

The conformational properties of polymers are of renewed interest with the progress in

synthesizing branched polymers with complex architectures[1–12]. Such novel synthesis can

strictly control the number of branches and the polymerization degree, e.g., molecules of

multiple armed star[4] and end-branched structures[5].

Conformations within a single polymer molecule can be strongly influenced by enthalpic

interactions, steric repulsions and conformational entropy, particularly for polymers with a

high number of arms emanating from one or multiple branching points. In this case, crowding

can lead to stretching of arms near the branch points resulting in overall swelling of the

polymer. The single molecule conformation can in turn influence how this molecule interacts

with surrounding molecules. These intramolecular correlations influence interpenetration

and miscibility in the case of blends, but can also be expected to influence entanglements

and chain dynamics.

The characterization of the correlations in polymer homogeneous solutions and melts

have been widely studied using scattering techniques[13–16]. In recent years small angle

neutron scattering (SANS) has extended to polymer micelles, gel networks and inhomoge-

neous systems, e.g., copolymers in solution or in blends, and polymer blends containing novel

nonlinear architectures[17]. In the interpretation of the SANS experiments, Gaussian chain

conformations for melts are commonly assumed for branched polymers[16, 18–20], neglecting

the possibility of swelling due to steric crowding.

The polymer conformation isn’t always Gaussian. In semi-dilute polymer solutions in

good solvent, the polymer conformations undergo a crossover from self-avoiding walk (SAW)

to random walk statistics at a length scale corresponding to the blob size ξ[21, 22]. In the

Daoud and Cotton[23] model for star polymers, the blob size increases with increasing

distance from the core to the outside, behaving as an unswollen core and a swollen regime

near the core, up to the concentration blob size ξ when the internal concentration matches

the solution concentration.

Several molecular simulation studies have been carried out showing the swelling of nonlin-

ear polymers. A molecular dynamics simulation performed by Grest et al.[24] indicated that

the conformation of arms in a star polymer follows SAW. Recent Monte Carlo simulations[25–

27] showed that the backbone of a highly branched comb stiffens and stretches as the side
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branches become longer and more closely spaced in general agreement with scaling expec-

tations. Yethiraj[28] performed Monte Carlo simulations for highly branched polymers,

and concluded that increasing the number or the length of branches without changing the

backbone length will increase the stiffness of backbone significantly, but increasing side-chain

stiffness does not always increase the stiffness of the backbone. A simulation of star polymers

in a good solvent[29] also showed that the intramolecular density distribution corresponds to

SAW statistics for arm conformation. These excellent simulation works consistently demon-

strated that the nonlinear structure can result in swelling and stretching of both polymer

backbones and side branches due to crowding effects.

Theories of the conformation of polymer melts and blends have been widely developed.

For long-chain polymers, coarse-grained descriptions of the conformations have been suc-

cessful not only for polymers of varying architectures in the bulk, but also for polymers

at interfaces[22, 30–35]. In particular for SCFT, the Gaussian chain model is extended to

account for the influence of surrounding chains by a self-consistent mean field. SCFT has

enjoyed wide success in explaining the compositional distributions of a wide variety of ho-

mogeneous and inhomogeneous polymers[36–39]. However, one drawback of conventional

SCFT is that correlations between monomers are only accounted for by the mean field.

For highly crowded branched polymers, the correlations become more significant, and it

would be desirable to break through the limit of the conventional SCFT to account for such

correlations, even in homogeneous systems.

A well-developed method in the study of polymeric bulk thermodynamics is the polymer

reference interaction site model (PRISM) theory[40–45]. The PRISM theory solves the

liquid polymer system by calculating an integral equation (the PRISM equation) to obtain

the intermolecular correlation function. PRISM theory is a general method capable to

solve polymeric systems regardless of architectures. Grayce et al.[43] performed PRISM

calculations and found swelling of star polymers in both solutions and melts. The stretching

of arms was found near the branch point because of the long range excluded volume effect

crowding around the core region. Later, Patil et al.[46] studied star and comb polymer melts

applying PRISM. Their results indicated that swelling was enhanced with more compact

arms or branches. For a long branched comb with a small number of branches, packing

and swelling behaved as if a linear chain of the same length of its backbone. However, by

increasing number while shortening the length of branches, the intermolecular correlation
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FIG. 1. Schematic illustration of linear and branched architectures[5].

of a highly branched comb was found to be significantly different from the linear chain,

exhibiting an enhanced swelling similar to a star polymer melt.

In this paper, a test-chain self-consistent field theory algorithm is presented to study the

conformations of linear and branched polymers in solutions and and melts. The SCFT is

applied with an excluded volume potential and extends the theory to an algorithm capturing

intra- and intermolecular correlations due to the steric and entropic driving force. Note that

a similar but more restricted approach was implemented in a lattice model by Scheutjens

and Fleers [47] for a homopolymer by fixing the joint of a star polymer as a grafted monomer

at a boundary and calculating the intramolecular density profile in dilute solutions[48, 49].

The current study focuses on the swelling of linear and star-branched polymers with the

scaling analysis for solutions and melts. The polymers tested are architecturally symmetric

star and linear molecules shown in Fig. 1. We found that the branching can stretch the

polymer at short distances from the core and result in overall swelling conformation of

polymers in melts. The calculation of the modified SCFT showed good agreement with

many experiments and computations.

II. THEORY AND FORMALISM

A. Scaling theory
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Edwards [50] showed that in a semi-dilute solution, the monomers are screened by inter-

molecular interactions beyond the correlation length, ξE =
√
12vρbb, where b is the statistical

segment length, ρb is the bulk density, and the excluded volume parameter v is positive for

repulsive monomer interaction. De Gennes [22] commented that the Edwards correlation

length does not reveal the swelling effect of polymers in solutions. The scaling theory for the

intramolecular density distributions and the distance from one monomer of a SAW molecule

is derived below. We focus on the scaling of the density profile and the excluded volume

v. The symbol ”∼=”in the derivation represents a full scaling expression with every variable,

and the symbol ∼ denotes a scaling relation between two variables.

The scaling law of the monomer density distribution in a single linear chain as a function

of distance from a given monomer can be written

ρ̄(r) ∼= cr̄α, (1)

where ρ̄ = ρ(r̄)b3 and r̄ = r/b are dimensionless monomer density and distance, respectively.

c is independent of r̄ and the degree of polymerization N , but a function of the dimen-

sionless excluded volume v̄ = vb−3. The scaling exponent α depends on the single chain

conformation. Particularly, α = −1 for an ideal Gaussian chain, and α = −4
3
for a swollen

chain obeying SAW statistics, which is the Edwards’ law[51]. The dimensionless size of the

molecule, R̄, scales as

R̄ ∼= v̄βNγ , (2)

For a single chain with infinite dilute concentration that completely has SAW (i.e., α =

−4/3), β = 1/5 and γ = 3/5, respectively.

The integral of ρ̄(r) over the range of chain length scale R̄ is the degree of polymerization,

N of the chain:

N =

∫ R̄

0

ρ̄(r̄)dr̄3 ∼=
∫ R̄

0

4πcr̄(α+2)dr̄, (3)

which gives

c ∼= NR̄−(α+3), (4)

where the dimensionless size of molecule R̄ must satisfy

R̄ ∼= (v̄)βN
1

(α+3) (5)
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to guarantee c is independent of N . Substitute eq 5 into eq 4 to obtain the general form of

the dimensionless pre-factor c′ as a function of v′,

c ∼= (v̄)−β(α+3). (6)

Therefore, eq 1 can be written as

ρ̄(r̄) ∼= (v̄)−β(α+3)r̄α (7)

within the length scale of the molecule R̄. Eq 7 shows the general scaling law for a single

chain with finite excluded volume. For v̄ → 0, the intramolecular density profile of the

molecule is expected to be the Gaussian random walk. Otherwise eq 7 diverges.

The crossover from SAW to random walk occurs when the intermolecular density begins

is equal to dimensionless bulk density ρ̄b = ρbb
3. The real chain correlation length ξ̄real is

thus defined at where ρ̄(ξ) = ρ̄b. The general form of correlation length ξ can be written

ξ̄ ∼= (v̄)
β(α+3)

α ρ̄(ξ)
1
α . (8)

The screening length ξreal for a Flory real chain is given as

ξ̄real ∼= (ρ̄b)
− 3

4 (v̄)−
1
4 b, (9)

and eq 6 reads

c ∼= (v̄)−
1
3 , (10)

which is consistent with de Gennes’ derivation[22].

B. The test-chain formalism

The general idea using SCFT to study the polymer bulk properties originated from the

analytical single chain problem proposed by Edwards[50, 51], which involves one chain with a

fixed end. The numerical solutions of SCFT basically followed the representation by Helfand

for solving inhomogeneous polymer systems. A single chain consisting of N sites with unit

Gaussian step length b is first considered. A density propagator called Green’s function in a

potential Ŵ observing site t position r and site t′ at position r′ can be defined as the path

integral over all the polymer configurations:

G(r, r′; t, t′) =

∫

DR(t)P (R)exp(−W (R))δ(R(t)− r)δ(R(t′)− r′)
∫

DR(t)P (R)δ(R(t)− r)
, (11)
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where R(t) is the configuration of the chain as a function of monomer index t. P (R(t))

is the Gaussian statistics satisfying the Wiener distribution. (The energy unit of kBT is

chosen) For a chain labeled as α,

P (Rα(t)) ∝ exp

[

− 3

2b2

∫ N

0

dt

∣

∣

∣

∣

dRα(t)

dt

∣

∣

∣

∣

2
]

, (12)

and the compressible homogeneous interaction energy in terms of excluded volume effect Ŵ

is given as a functional

Ŵ [ρ̂(r)] =
v

2

∫

drρ̂(r)2, (13)

where ρ̂(r) is the microscopic density operator defined as

ρ̂(r) =

n
∑

α=1

∫ N

0

dtδ(r−Rα(t)). (14)

The canonical partition function of the system containing n chains is given by

Z =

∫ n
∏

α=1

DRα(t)P (Rα)exp(−Ŵ )

= Z0

∫

DρDµQn
0 exp

[−v

2

∫

drρ(r)2 +

∫

drµ(r)ρ(r)

]

, (15)

where Z0 = V n/n! (V is the volume of the system). Q0 is the single chain partition function

in an external field µ. The free energy functional is

F [ρ, µ] =

∫

dr
[v

2
ρ(r)2 − µ(r)ρ(r)

]

− n lnQ0[µ]. (16)

Eq 15 can be written in terms of the Green’s function defined by eq 11:

Z =

∫∫

dr′dr′′G(r′, r′′;N, 0)

=

∫∫∫

drdr′dr′′G(r′, r; t, 0)G(r, r′′;N, t), (17)

The above integrals are simplified by defining the weight function

q(r; t) =

∫

dr′G(r′, r; t, 0) (18)

and

q†(r; t) =

∫

dr′′G(r, r′′;N, t), (19)
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which represent the statistical weight for a chain of t sites starting at the origin to the chain

end at r and the statistical weight of N − t sites starting at r to the opposite direction,

respectively.

The weight functions q and q† satisfy the modified diffusion equation

∂q(r)

∂t
=

b2

6
∇2q(r)− µ(r)q(r), (20)

where µ(r) = vρ(r) is the self-consistent mean field potential by saddle-point approximation

satisfying[36]:
∂F [ρ, µ]

∂ρ
=

∂F [ρ, µ]

∂µ
= 0. (21)

The monomer density ρ(r) is thus given by

ρ(r) = −∂lnQ0[µ]

∂µ
, (22)

and it can be evaluated by

ρ(r) = N
∫ N

0
dtq(r; t)q†(r; t)

∫∞

0
d3rq(r;N)q†(r;N)

, (23)

where N is the normalization constant. The integrand of the numerator is the unnormalized

density distribution at r. The denominator guarantees that the probability of finding one

segment over the volume is 1.

The Laplacian in eq 20 is reduced to be radius r dependent only because of the spherical

symmetry, which is given as

∂q(r; t))

∂t
=

b2

6

(

∂2q(r; t)

∂r2
+

2

r

∂q(r; t)

∂r

)

− µ(r)q(r; t), (24)

with boundary conditions q(r < 0; t) = q†(r < 0; t) = 0 and ∂q
∂r
|rmax = ∂q†

∂r
|rmax = 0, where

rmax represents the radius of the system.

Define qfix(r; t; tfix) and q†fix(r; t; tfix) as the statistical weight functions of the molecule

with a fixed site tfix. The initial conditions are qfix(r; 0; tfix) = 1 and q†fix(r;N ; tfix) = 1.

However, when t = tfix, the diffusion along monomers by eq 20 is reset to solve qfix(r; t >

tfix; tfix) and q†fix(r; t < tfix; tfix). The reset intitial conditions at tfix must satisfy qfix(r; t =

tfix; tfix) = δ(r) and q†fix(r; t = tfix; tfix) = δ(r), respectively. Similarly, define qfree(r; t; tfix)

and q†free(r; t; tfix) to represent the statistical weights of one of the free polymer around the

fixed chain in the system. The initial conditions for the free molecule are qfree(r; 0; tfix) = 1

and q†free(r;N ; tfix) = 1.
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In bulk polymers, considering multiple chains by fixing tfix of one molecule, the complete

SCF potential is therefore

µ(r; tfix) = v
(

ρfix(r; tfix) + ρfree(r; tfix)
)

, (25)

where ρfix is the intramolecular density of the chain selected to hold tfix at the origin, and

ρfree is the density distribution of all free molecules The intramolecular monomer density

distribution of the fixed chain from site tfix is thus written as

ρfix(r; tfix) =

∫ N

0

dt qfix(r; t; tfix)q
†fix(r; t; tfix)

4π

∫ rmax

0

dr qfix(r;N ; tfix)q
†fix(r;N ; tfix)r

2

, (26)

and the intermolecular density ρfree(r; tfix) is

ρfree(r; tfix) =
ρbV

N

∫ N

0

dt qfree(r; t; tfix)q
†free(r; t; tfix)

4π

∫ rmax

0

dr qfree(r;N ; tfix)q
†free(r;N ; tfix)r

2

, (27)

where ρb is the bulk monomer density.

The calculation of the density propagators of a branched structure can be referenced by

Fredrickson[37]. Taking a 3-arm structure labeling 1, 2, and 3 for each arm as an example.

tfix locates on arm 3. q1(r; t; tfix) diffuses from the end of arm 1, and q1†(r; t; tfix) diffuses

towards the end of arm 1. q2 and q3 diffuses from the end of arm 2 and 3, respectively.

At tjoint, q1
†(r; tjoint; tfix) is given as q1†(r; tjoint; tfix) = q2(r; tjoint; tfix)q3(r; tjoint; tfix). A brief

illustration of propagating q and q† is given in Fig. 2.

The SCF calculation iterates by solving eq 24, eq 25, eq 26 and eq 27, including two sets

of modified diffusion equations to solve the fixed and free chain statistical weight functions.

The segment length b is set to be 1 to keep the results in dimensionless units. The Crank-

Nicolson algorithm is used to solve the differential equations, and the Picard algorithm is

applied in SCF iteration by updating µi. A mixing ratio λ = 0.05 (λ ∈ (0, 1]) is applied to

update µi in terms of µi = (1 − λ)µi−1 + λvρi(r). Minimize ǫ =
∑

j |µ
i
j−µi−1

j |
∑

j |µ
i
j |

until satisfying

the tolerance of the convergence ǫt < 10−7, where i is the index of the ith iteration and j is

the index of the spatial grids.
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FIG. 2. Illustration to calculate the local density probability of a 3-arm structure. In this example,

the molecule is fixed at tfix. As q3 is solved from the end of the chain and reaches tfix, q3 is reset

to an initial condition, q3(r; t = tfix; tfix) = δ(r).

III. RESULTS AND DISCUSSION

A. Dilute solution of linear and star polymers

A single linear chain of N = 50 in a dilute solution is studied using test-chain SCFT. Eq 7

and eq 8 indicate that the molecular weight N does not influence the scaling of density and

ξ. The resolution of the discretization grids is ∆r = 0.02b unless otherwise specified. The

excluded volume parameter v̄ ranges from 0 to 100. v̄ is dependent of the compressibility[33].

In Fig. 3(a), the monomer density profiles show the real chain scaling of −4/3 if v̄ is suffi-

ciently large as a result of fixing the center of the molecule at the origin. The density profiles

when v̄ <∼ 0.1 show less steep slopes, indicating that a weak excluded volume effect does

not exhibit swelling. The plot for v̄ = 0 is very close to v̄ = 0.01 and indistinguishable from

this scale, reflecting a Gaussian conformation with a slope close to 1. In the cases of v̄ >∼ 1,

the density profiles indicate that the polymer conformation becomes swollen and the slope

of the single chain density profile is very close to −4/3 within the range of the plot when

v̄ = 10. Another feature of strong excluded volume is that the slope changes at a length scale

of R, which is likely due to weaker correlations further from the center of mass. For r̄ → 0,

the molecule should be always SAW because the monomer with a finite excluded volume

do not interact with other monomers. However, due to the finite grid size, this limit is not

captured by the calculation. The density profiles from the held end monomer of the same
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FIG. 3. The intramolecular density profiles of a linear single molecule for different values of excluded

volume v̄ in log-log scales. (a) The intramolecular density profiles of a linear molecule from the

center. (b) The intramolecular density profiles of a linear molecule from the end. The length of

the molecule N = 50.

linear chain is plotted in Fig. 3(b). The scaling exponent is analogous to that of holding the

center. Its slope close to -4/3 indicates the swelling of the molecule in a dilute solution for

v̄ >∼ 10, and a slope close to −1 for v̄ <∼ 0.1 indicates the Gaussian conformation. The

magnitude of the density from the end monomer scales 1/2 compared to the density from

the center (Fig. 3(a)) because the accumulative density from the end is only half of that

from the center.

A further study of star molecules in dilute solutions is performed using a model of 4-star

with the arm length, Narm = 25 and N = 100. Analogous results to the case of single linear

molecule of the density profiles from the joint and the end are shown in Fig. 4(a) and b,

respectively. For v̄ = 0, the density profile is also indistinguishable from the plot of v̄ = 0.01.
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FIG. 4. The intramolecular density profiles of a 4-star polymer with Narm = 25 for different values

of excluded volume v̄ calculated from (a) the joint and (b) from the end.

The slope of ρ(r) from the joint, similar to a linear molecule, implies that the conformation

is similar to a SAW when v̄ >∼ 1. Fig. 4(b) shows that the molecule density from the held

end behaves completely as a SAW when v̄ = 10 until the monomers are near the joint at

a length scale of R. Thus, a small increase in density is present at long distances from the

center. The scaling exponent of the SCFT agrees with the scaling theory for linear polymer

solutions [22] and Monte Carlo simulations of star polymers demonstrated in Reference [29].

A series of f -stars with an identical arm length Narm = 25 were computed. The density

distributions are shown in Fig. 5. The density profiles from the joint of f -star shown in

Fig. 5(a) are similar to the profiles in the 4-star. The scaling exponent of the density

profiles when v̄ = 0.1 is intermediate between -4/3 and -1, reflecting partially swollen. This

indicates that the number of arm does not impact local swelling of a polymer in dilute
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FIG. 5. Density distributions of f -star Narm = 25 and v̄ = 0.1 in a dilution solution condition

calculating from (a) the joint and (b) the end, Respectively. Narm = 25, Nstar = 100.

solutions. However, the number of arm has a influence at long distances. For example,

Fig. 5(b) shows the density profiles from the ends of polymer with increased number of

arms. The scaling exponent of the density of the 16-star increases and then plateaus with a

slope close to zero where the end monomer sees the accumulative density of the joint. This

shows a good agreement with SANS results for the size of star polymers[52].

B. The end-to-end distance distribution

The end-to-end distance can be generated straightforwardly in the test-chain SCFT al-

gorithm by holding one chain end fixed. In SCFT, the distributions of the distance between

two ends can be written in terms of q(r;N ; 0), which is the statistical weight by holding

the end 0 and diffuse to where the other end N . Thus, the three-dimensional normalized
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end-to-end distance distribution is

P (r) =
q(r;N ; 0)

4π

∫ ∞

0

q(r;N ; 0)r2dr

. (28)

The SCFT result reduces to an exact Gaussian chain without the mean field. If applying the

excluded volume effect, the distribution function becomes a real chain type and is comparable

with the des Cloizeaux’s form[53]:

P (r) ∼=
(

r
√

〈R2〉

)σ

exp

(

−G

(

r
√

〈R2〉

)τ)

, (29)

where the exponents and prefactors can be estimated[54, 55] as

P (r) ≈ 0.278〈R2〉−3/2 r
√

〈R2〉
0.28

exp



−1.206

(

r
√

〈R2〉

)2.43


 (30)

for a Flory real chain. The mean square end-to-end distance 〈R2〉 is given

〈

R2
〉

= 4π

∫ ∞

0

P (r)r4dr. (31)

Fig. 6 provides the SCFT results of the monomer end-to-end distribution profiles of the

linear (N = 100) and 4-star (N = 100) molecule in dilute solutions. As shown in Fig. 6(a),

by increasing v̄, the linear chain becomes non-Gaussian and narrowly distributed. The des

Cloizeaux plot is close to the SCFT plot with v̄ = 1. The end-to-end distribution profiles

for strong repulsive polymers v̄ >∼ 10 show that the ends are distant close to
√

〈R2〉.
However, the same calculation for a 4-star with v̄ = 100 in Fig. 6(b) shows that the end-end

distribution is wider than a linear chain having the same degree of polymerization.

C. Semi-dilute solution and polymer melts

1. Density distribution functions

The test-chain SCFT can help understand the conformations of linear and non-linear

polymers in a semi-dilute or concentrated solutions as well. As the density becomes finite,

chains are screened due to intermolecular interactions. Eq 9 nicely captures a crossover

in scaling exponent from self-avoiding to random walk, indicating that the intermolecular
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FIG. 6. The single chain end-to-end distribution function of (a) a linear molecule (N = 50) and

(b) a 4-star (N = 100) by SCFT as a function of the reduced distance x = r√
〈R2〉

. The Gaussian

model is provided as well for comparison.

interaction dominates at long distance.The SCFT calculations are performed in a linear

solution with a finite density. The degree of polymerization of the linear molecule is N = 50

and the reduced average bulk monomer density ρ̄b = ρbb
3, which is defined by the total

number of monomers over volume, is variable. The excluded volume parameter v̄ is variable

as well.

The intra- and intermolecular density profiles of linear polymers in semi-dilute solutions

(ρ̄b = 0.2) as a function of excluded volume parameters v̄ from the joint and end are shown

in Fig. 7. The intramolecular density profiles show different scaling exponents at the low

r̄ regime at approximately r̄ <∼ 2 in the figure. They cross over at r̄ ≈ 3, and merge
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FIG. 7. Density profiles of a linear polymer with N = 50, and ρ̄b = 0.2 in melts. The thin solid,

dash and dash-dot lines correspond to the total, intra- and intermolecular density profiles when

v̄ = 1, respectively. The thick solid, dash and dash-dot lines are the total, intra- and intermolecular

density profiles with v̄ = 100, respectively.

at r̄ >∼ 5 in the range of the plot. A ”correlation hole” is obtained on the plot of the

intermolecular concentration profile. For v̄ = 100, less monomers approach to the short

distance regime (r̄ ≈ 1) for the strong repulsion due to monomer excluded volume.

Fig. 8(a) shows the intramolecular densities of a linear polymer with N = 50, ρ̄b = 0.2

with varying excluded volumes. In homogeneous solutions, the overlap concentration is

c∗ ∼= N−4/5b−3 for chains in SAW. The bulk density of ρ̄b = 0.2 in Fig. 8(a) refers to

a concentration above the limit of the semi-dilute solution because c∗ is ∼ O(10−2)b−3.

Again, the calculations show that the monomer density decreases as the strength of monomer

exclusion v̄ increases.

For solutions with small excluded volume (e.g., v̄ < 0.01), the molecule behaves as

Gaussian random walk. This is the same as the single chain conformation in dilute so-

lutions. Moreover, as increasing v̄ from 0.01 to 1, a partially screened regime can be ob-

tained(Fig. 8(a)). Although the complete SAW scaling exponent, −4/3, within the blob[22]

is not captured by test-chain SCFT, the calculation is still expected to yeld SAW at r̄ → 0.

In the current resolution(∆r̄ = 0.02), at short distances from the origin where r̄ ≈ 0.1, the

density profile has a transitional exponent between −4/3 and −1 and the profiles merge to

Gaussian random walk exponent, −1, at long distances. However, the random walk regime

is vanishing as v̄ approaches 100. In particular, the intramolecular density profile of v̄ = 100
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FIG. 8. The intramolecular density profiles for linear polymer in various solutions. (a) ρ̄b = 0.2, v̄

varies from 0.01 to 100. The slope of the density profile in the log-log scales is between −4/3 and

−1 at r̄ ≈ 0.1. (b) v̄ = 1, ρ̄b varies from 0.02 to 2.

does not show a random walk slope of −1 but a higher density in the bulk in the log-log

scales. This is due to the strong repulsion among monomers. If the bulk concentration is

increased while fixing the excluded volume, as is shown in Fig. 8(b), the screening of the

molecules can therefore still be captured at a higher concentration. When r̄ goes to zero,

the intramolecular density profiles will merge together regardless of the value of the bulk

densities.
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2. The scaling analysis

In the section, we discussed the scaling of excluded volume in the intramolecular density

profile at short distances, ρ̄(r̄) ∼ r̄αv̄−β(α+3). The plot of ρ̄(r̄)/r̄α vs. v̄ is shown in Fig. 9(a)

at distances r̄ < 0.1. The bulk density keeps constant ρ̄b = 0.2. When v̄ 6 0.01, α = −1;

when v̄ > 1, α = −4/3, according to the discussion of Fig. 8(a). In particular, two regimes

for ρ̄(r̄)/r̄α against v̄ in log-log scales are identified. When v̄ 6 0.01, ρ̄(r̄)/r̄α is independent

of v̄. However, when v̄ > 1, the scaling relationship between the monomer density and

distance shows that ρ̄(r̄)/r̄α ∼ (v̄)−1/3, which is consistent with eq 10 as a SAW chain. The

two regimes cross over within the range of 0.01 < v̄ < 1.

The scaling analysis based on expressions from eq 1 to eq 10 primarily assumes that at

short distances, the intramolecular density profile in a melt is the same as it is in dilute

solutions. This assumption is true at r̄ 6 0.1 in the SCFT calculations above, because

the total monomer density at short distances is dominated by the intramolecular density

(Fig. 7). However, significant differences are seen at long distances in melts with strong

excluded volumes when comparing Fig. 3(a) and Fig. 8(a). As shown in Fig. 9(b), we found

that ξ̄ also crosses over at approximately v̄ = 1 but the slope for v̄ > 1 is -1/8. This is

only half of the expected scaling exponent, ξ̄ ∼ v̄−1/4, according to eq 9. If applying the

intramolecular density profiles in dilute solutions, which are the crossed points in Fig. 9(b),

the plot of ξ̄ against v̄ shows the scaling exponent of ξ̄ ∼ v̄−1/4. The inset in Fig. 9(b) shows

the difference of the screening lengths determined from intramolecular density profiles in a

dilute solution and a melt. From the inset figure, a difference in conformation is seen at the

regime of ρ̄(r) ≈ ρ̄b between the dilute and semi-dilute solutions. In particular, the single

chain must maintains SAW at ξ̄, but the chain conformation of the semi-dilute solution

with ρ̄b = 0.2 becomes non-SAW at much shorter distances than ξ̄. The existence of both

SAW and Gaussian random walk within ξ̄ by SCFT leads to a weaker scaling exponent, -1/8

than the scaling theory, −1/4. Moreover, the crossover from weak v dependence to strong

v dependence in Fig. 9 is consistent with the expected criteria of observing SAW using the

z parameter:

z =
3

2π

3/2 v

b3
N1/2 ≈ v

b3
N1/2, (32)

where the actual excluded volume, v ≈ b3 is the limit of observing SAW with a given N .
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FIG. 9. Scaling analysis of the monomer density and correlation lengths against the excluded

volume in concentrated solutions and melts of linear polymers. (a) The scaling dependence of

scaled monomer density ρ̄(r̄)/r̄α on excluded volume v̄ at r̄ = 0.1 in solutions with ρ̄b = 0.2 and

N = 50. (b) The scaling dependence of correlation lengths ξ̄ on v̄ in solutions. The circles are

obtained from the intramolecular densities of solutions in Fig. 8(a). Crossed points are obtained

assuming that the intramolecular density profile in a melt is the same as the dilute solution (Fig. 3).

The inset of (b) shows the way to obtain ξ̄, where ρ(ξ̄) = ρ̄b, from the intramolecular density

profiles. The dashed line: v̄ = 10, ρ̄b = 0.2. The solid line: A dilute solution with v̄ = 10.

3. The swelling of star polymers in semi-dilute solutions and melts

Homogeneous melts composed of 4-star (N=100) molecules with different ρ̄b, and v̄, are

studied. In general, the behavior of the star polymer conformation is found to be similar to

that of the linear ones with N=50 (A linear is equivalent to a 2-star from the center as shown

in Fig. 1). Fig. 10(a) and (b) compare the intramolecular density profiles by varying v̄ and
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FIG. 10. The density profiles from the joint of 4-star chains with N = 100. (a) ρ̄b = 0.2 and

varying v̄. (b) v̄ = 1 and varying ρ̄b.

ρ̄b, respectively. The density distribution of the 4-star melts are expected to merge to SAW

at r̄ → 0. For v̄ < 10, the observed exponents at short distances in the figure, r̄ < 0.1, are

all less steep than that for v̄ = 10. Moreover, the distance where crossover occurs decreases

as its density increases, as shown in Fig. 10(b). For instance, in the case of ρ̄b = 10 and

v̄ = 1, the polymers hardly show any SAW. On the contrary, the intramolecular density of

the star solution with ρ̄b = 0.02 is close to a dilute solution exhibiting an exponent close to

SAW.
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D. Structure factors of polymers in solutions and melts

The test-chain SCFT can be used to calculate the radial distribution function by holding

every monomer each time and averaging by the degree of polymerization. The radial distri-

bution for the intramolecular correlation, ω(r) and the intermolecular correlation, g(r) of a

polymer melt can be written directly as

ω(r) =
1

N

N
∑

tfix=0

ρfix(r; tfix) (33)

and

g(r) =
1

Nρb

N
∑

tfix=0

ρfree(r; tfix). (34)

Given a polymer melt with ρb and the degree of polymerization N , the total structure

factor is composed of both intra- and intermolecular contributions, which is

S(k) = ρbNω(k) + ρ2bh(k), (35)

where ω(k) is the intramolecular structure factor and h(k) is the intermolecular contribution.

ω(k) and h(k) are three-dimensional Fourier transforms of pair correlation functions in

spherical coordinate system, ω(r) and h(r) = g(r)− 1. The dimensionless structure factors

are written as

ω(k̄) = 4π

∫ ∞

0

dr
r̄sin(k̄r̄)

k̄
ω(r̄), (36)

and

h(k̄) = 4π

∫ ∞

0

dr̄
r̄sin(k̄r̄)

k̄
(g(r̄)− 1), (37)

where k̄ = kb.

ω(k̄) of the 4-star molecule of Gaussian, in a good dilute solution, in semi-dilute solution

with ρ̄b = 0.2 and in melts with ρ̄b = 10, respectively, are shown in Fig. 11(a). In homo-

geneous melts, (e.g., ρ̄b = 10), ω(k̄) is similar to the profile of a Gaussian chain. ω(k̄) in

a semi-dilute solution is intermediate between the dilute solution and the ideal chain, re-

flecting a partially swollen conformation. In Fig. 11(b), the intermolecular structure factor

h(k̄) in four typical 4-star solutions are shown. In the case of ρ̄b = 10, h(k̄) is almost zero

indicating the absence of intermolecular correlations in high density melts. Fig. 12 shows

the total static structure factors of the 4-star molecules in different solutions. The peaks at
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FIG. 11. The intramolecular ω(k) and intermolecular h(k) structure factors of 4-star molecules

(Nstar = 100). The Gaussian chain is also shown in (a) for comparison.

low k̄ in the case of v̄ = 1 and ρ̄b = 10 correspond to melts with high bulk density and strong

contribution of intermolecular structure factors, ρ2bh(k̄). The result shows that a peak in

S(k̄) only depends on ρ̄b but not v̄. This theoretical prediction has not been observed in

SANS experiments for homogeneous polymer melts or blends, and remains an interesting

question to explain the results of test-chain SCFT S(k) at high density.
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IV. CONCLUSION

A test-chain SCFT is presented to study polymer conformations of linear and branched

polymers in various conditions. The results of linear polymers are in good agreement with

classic polymer theory and simulation results[52, 56]. We summarized our finding as follows:

(1) The density profile of polymers from dilute solutions to melts, strongly depends on the

excluded volume, v̄. In dilute solutions, the conformation of a linear polymer is Gaussian

when v̄ < 0.1. The conformation is smoothly swollen as increasing v. When v̄ > 1, the

conformation can be identified as SAW. The conformation of branched polymers exhibit

analogous behaviors.

(2) The calculations successfully captured a crossover regime from SAW to Gaussian in

semi-dilute solutions and melts at a correlation length that decreases as v̄ increases. The

Gaussian regime is vanishing as v̄ approaches 100. Moreover, the correlation length where

the crossover occurs decreases as its density increases.

(3) Branching enhances the swelling of polymers in all conditions especially at regimes

close to the branching point.

Finally, we emphasized that the test-chain theory is not only limited to any particular

cases in this work. It is rather a universal means to modeling a broad variety of polymer

systems[18, 57–61]. The algorithm presented here is to generalize a solution to model poly-

mers with various architectures within the framework of one theory. This theory can be used

to describe the polymer conformation and behaviors in many other complex environments
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with a broad range of polymer concentrations[17, 60, 62–65].
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