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Abstract

The shape equation and linking conditions for a vesicle with two-phase domains are derived. We

refine the conjecture on the general neck condition for the limit shape of a budding vesicle proposed

by Jülicher and Lipowsky [Phys. Rev. Lett. 70, 2964 (1993); Phys. Rev. E 53, 2670 (1996)], and

then we use the shape equation and linking conditions to prove that this conjecture holds not only

for axisymmetric budding vesicles, but also for asymmetric ones. Our study reveals that the mean

curvature at any point on the membrane segments adjacent to the neck satisfies the general neck

condition for the limit shape of a budding vesicle when the length scale of the membrane segments

is much larger than the characteristic size of the neck but still much smaller than the characteristic

size of the vesicle.
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I. INTRODUCTION

In 1855 Virchow proposed his famous cell theory “Omnis cellula e cellula”, which means

all cells come from pre-existing cells by division. As a crucial stage of cell division, cytokinesis

is an orchestrated process that marks the beginning of a new cellular generation. All cells are

enclosed by plasma membranes which maintain the physical integrity of cells and regulate

the intercellular exchange of matter and information. During cytokinesis, a contractile

ring grows beneath the plasma membrane, which is a structure mainly composed of actin

filaments and motor proteins. When constricted, the contractile ring generates a force on

the plasma membrane, and then partitions the cell into two daughters. Although the tension

generated by the contractile ring has a great effect on cytokinesis, this force has still not been

accurately measured since the spatial organization and motions of the components within

the contractile ring are poorly characterized [1].

Budding lipid vesicles have long been used as ideal models to mimic cytokinesis. The

budding configurations are determined by several physical factors [2–14] including the spon-

taneous curvature and bending elasticity of lipid membranes, as well as the line tension that

reflects the constricting force of contractile ring. Therefore the study of budding vesicles

may provide a potential approach to measure the force induced by contractile ring. Seifert

et al. [2] investigated a budding vesicle in uniform phase without taking into account of

the line tension. By numerically optimizing Helfrich’s free energy [15] in the axisymmetric

situation, Seifert and his co-workers found that the following neck condition

1

RI
+

1

RII
= c0 (1)

holds for a limit shape consisting of two spheres connected by an infinitesimal neck, where

c0 is the spontaneous curvature of the lipid bilayer that constitutes the lipid vesicle. RI and

RII represents the radius of two spheres, respectively. By doing variation of Helfrich’s free

energy [15] with an axisymmetric trial configuration consisting of two hemispheres connected

by a catenoid-like surface, Fourcade et al. [16] analytically confirmed the numerical result

obtained by Seifert and his co-workers. Jülicher and Lipowsky subsequently found a more

general neck condition for a budding vesicle with two-phase domains through numerical

simulations where the bending energy of both domains, as well as the line tension of the

separation boundary of two domains were involved [3, 4]. They obtained the following neck
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condition
kIc
RI

+
kIIc
RII

=
1

2
(kIcc

I
0 + kIIc c

II
0 + γ) (2)

for a limit shape consisting of two spheres connected by an infinitesimal neck. RI and

RII represent the radius of two spheres, respectively. kIc and kIIc are bending moduli of

two domains, respectively. cI0 and cII0 are the spontaneous curvatures of the two domains,

respectively. γ represents the line tension of the separation curve between two domains.

They also analytically confirmed this neck condition [4] using the method developed by

Fourcade and his co-workers. This relation degenerates to Eq. (1) for a budding vesicle with

uniform phase where kIc = kIIc , c
I
0 = cII0 and γ = 0. Their numerical study further reveals

that the limit shape consisting of two axisymmetric but nonspherical vesicles connected by

an infinitesimal neck satisfy a general neck condition

kIc
(

2H I
ǫ + cI0

)

+ kIIc
(

2H II
ǫ + cII0

)

+ γ = 0. (3)

Here, H I
ǫ and H

II
ǫ denote the mean curvatures at points in the two domains adjacent to the

neck. Note that the sign of mean curvature here is opposite to those defined in the work

by Jülicher and Lipowsky [4]. In order to indicate the degree of adjacency measured by a

parameter ǫ, we add ǫ as the subscript of the mean curvature H .

The general condition (3) is an elegant identity, which connects the spontaneous curva-

ture, local mean curvature and line tension. Although Jülicher and Lipowsky merely verified

this identity by using the special trial configuration consisting of two hemispheres connected

by a catenoid-like surface, they conjectured that the neck condition for limit shapes is quite

general, which at least holds for axisymmetric budding vesicles. In this paper and to be

consistent with the convention adopted in the literature [3, 4], the limit shape is generally

defined as a configuration consisting of two individual shapes connected by an infinitesimal

neck and the two domains appear to be tangentially “kissing” at a single point from the

macroscopic view. The conjecture has generated a great deal of studies [17–26] on shape

transitions of vesicles with two-phase domains. If such a conjecture is true, researchers may

utilize the general neck condition as a remedy to overcome the aforementioned difficulty in

the measurement of the force generated by the contractile ring during cytokinesis. However,

it is still an open question whether the conjecture on general neck condition for limit shapes

is true or false, even in the axisymmetric situation. In addition, Jülicher and Lipowsky

did not specify the applicable range of the neck condition. In other words, the meaning of
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“adjacent to the neck” [4] remains unclear. In this paper we will theoretically prove that

the “general” neck condition (3) is indeed quite universal, which is applicable not only for

axisymmetric budding vesicles, but also for asymmetric ones. Furthermore, we offer a quan-

titative definition of the “adjacency to the neck”, i.e., a specification of the characteristic

length scale ǫ that has appeared in the equation (3).

The limit shape of a budding vesicle involves multiple spatial scales. The first scale lv is

the characteristic length of the vesicle. For a vesicle with lv being the characteristic length,

after substituting the corresponding mean curvature and Gaussian curvature into the shape

equation of lipid vesicles obtained in Ref. [27, 28], one may find that the order of lv is in

accordance with the smaller one among the reciprocal of spontaneous curvature and the

ratio of surface tension to osmotic pressure. Thus for a vesicle with two-phase domains we

may take

lv ≃ min{1/cI0, 1/cII0 , λI/p, λII/p}, (4)

where λα and p are the surface tension of domain α (= I, II) and the osmotic pressure

of the budding vesicle. The second scale ln is the characteristic length of the infinitesimal

neck, which is much smaller than lv. Although the curvatures of the neck curve at different

points on the neck take different values, we expect that all of them are of the same order of

magnitude. For simplicity, we take

ln ≃ 1

κm
(5)

with κm being the maximum curvature of the neck curve. Since ln ≪ lv in the limit

shape, these two length parameters may be regarded as macroscopic and microscopic scales,

respectively. There also exists an intermediate scale li which may be constructed from the

macroscopic and microscopic scales

li =
√

lnlv. (6)

Obviously this construction guarantees ln ≪ li ≪ lv if ln ≪ lv.

Before depicting the length scale of ǫ in Eq. (3) which indicates the degree of proximity

that a point approaches the neck, we first give a geometric definition of ǫ. As shown in

Fig. 1, at any point Q on the neck (dash line in the figure), the tangent vector, the normal

vector and the binormal vector are denoted as t, N and b, respectively. The plane that

is determined by N and b has an intersection curve R with the surface of budding vesicle

in the opposite direction of N. Take a point Q′ in the opposite direction of N such that
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FIG. 1. (Color online) Geometric definition of ǫ in Eq. (3).

the distance between Q and Q′ is ǫ. P1 and P2 are the intersection points of the curve R

and the line which goes through point Q′ and is parallel to b. H I
ǫ and H II

ǫ in the general

neck condition (3) represent the mean curvatures of membrane surface at points P1 and P2,

respectively. For the points in the vicinity of the neck, ǫ should be much smaller than the

scale of the vesicle, i.e., ǫ≪ lv. Our further study will reveal that the general neck condition

(3) holds when

ln ≪ ǫ≪ li (7)

regardless of symmetry of the vesicle.

The rest of this paper is organized as follows. In Sec. II, the shape equation and linking

conditions of two-domain vesicles are derived. In Sec. III, we discuss the neck condition (3)

in axisymmetric situation. The picture in the axisymmetric situation is relatively intuitive

and the derivation is more accessible. The main findings also offer hints to the subsequent

proof in Sec. IV for the more general case without any symmetry assumption. A brief

summary is given in Sec. V and essential technical details are provided in the Appendixes

at the end of this paper.

II. SHAPE EQUATION AND LINKING CONDITIONSOF TWO-DOMAIN VESI-

CLES

Since the lateral dimensions of lipid vesicles are much larger than their thickness, they

may be effectively modeled as two-dimensional surfaces which are locally characterized by

the mean curvature and Gaussian curvature. Three kinds of elastic models of lipid bilayers

have been proposed in the literature to analyze the shape of vesicles: the spontaneous-

curvature model where a parameter c0 (so called spontaneous-curvature) was introduced to
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reflect the asymmetric factors between the two leaves of the bilayer [15]; the bilayer-couple

model where the area of each monolayer of the bilayer was fixed [29, 30]; the area difference

elasticity model where the energy cost due the change of the area difference between the two

leaves of the bilayer was included [31]. In this paper, we take the spontaneous-curvature

model to study budding lipid vesicles following the work of Jülicher and Lipowsky [4].

Q
I

II

FIG. 2. (Color online) A vesicle with two-phase domains.

Let us consider a vesicle with two-phase domains (domain I and domain II) shown in

Fig. 2. The separation boundary curve C is parameterized by arc length s. At any point

Q on curve C, denote t as the tangent vector of curve C at point Q. We take two vectors

bI and bII in the tangent plane of membrane surface at point Q with bα (α = I, II) being

perpendicular to t and pointing to the side of domain i. We assume that the surface is

smooth enough such that bII = −bI at any point Q on curve C.

The free energy of a vesicle may be expressed as [4]:

F =
kIc
2

∫

(2H I + cI0)
2dAI +

kIIc
2

∫

(2H II + cII0 )
2dAII

+λIAI + λIIAII + γ
∮

ds+ pV. (8)

The first two terms represent the bending energy of both lipid domains with vanishing

Gaussian bending modulus. Hα (α = I, II) in the above equation represents the mean

curvature of a point in domain α. Note that the sign of mean curvatures here is opposite

to those defined by Jülicher and Lipowsky. kαc , c
α
0 , λ

α, Aα, p and V represent the bending

modulus, the spontaneous curvature, the surface tension, the surface area of domain α

(α = I, II), the osmotic pressure and the volume of the whole lipid vesicle, respectively. γ

is the line tension of the separation boundary. It is worth noting that when the Gaussian

bending moduli of two domains take the same value, the free energy of a vesicle may always

6



be expressed as Eq. (8) according to Gauss-Bonnet theorem. The only difference is an

insignificant constant.

The first order variation of free energy functional (8) can be calculated following the

procedure proposed in Ref. [21, 22] and the shape equation valid in the domain α (α = I, II)

can be derived:

kαc (2H
α + cα0 )[2(H

α)2 − cα0H
α − 2Kα]

+ kαc∇2(2Hα)− 2λαHα + p = 0. (9)

Simultaneously, we can derive three linking conditions that are satisfied on the separation

boundary C as well:

kIc(2H
I + cI0)

∣

∣

∣

C
= kIIc (2H

II + cII0 )
∣

∣

∣

C
, (10)

∂
[

kIc(2H
I + cI0)

]

∂bI

∣

∣

∣

∣

∣

∣

C

+
∂
[

kIIc (2H
II + cII0 )

]

∂bII

∣

∣

∣

∣

∣

∣

C

= γκn, (11)

kIc
2
[4(H I)2 − (cI0)

2]|C − kIIc
2
[4(H II)2 − (cII0 )

2]|C = λI − λII + γκg, (12)

where κn and κg are the normal curvature and geodesic curvature of curve C, respectively.

Directional derivatives bI and bII equals to an inner product between corresponding unit

vector and the gradient, respectively. The above three linking conditions are related to the

balances of force and moment on the separation curve (Detailed derivation and explanation

of their physical meanings as well as the general derivations for Eqs.(9)-(12) are available in

the Supplemental Material [32]). It is easy to see that Eq. (9) is just the shape equation of

lipid vesicles obtained in Ref. [27, 28]. In addition, the above linking conditions (10)-(12)

degenerate to the boundary conditions of an open lipid membrane [33] if all elastic constants

for domain II vanish.

III. PROOF IN AXISYMMETRIC SITUATION

To get an intuitive picture and to make the derivation more accessible, we first investigate

the neck condition in axisymmetric situation.

An axisymmetric vesicle can be generated by its contour line which is represented by z =

z(ρ) with ρ being revolution radius. As shown in Fig. 3, the surface may be parameterized
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FIG. 3. (Color online) Counter line of an axisymmetric vesicle.

as

x = ρ cosφ , y = ρ sinφ , z =
∫

tanψ(ρ)dρ (13)

where φ is the azimuth angle in cylindrical coordinate. ψ is the angle between the tangent

of the counter line and the horizontal.

The mean curvature and Gaussian curvature can be derived as follows:

2H = −
[

sinψ

ρ
+

d (sinψ)

dρ

]

, K =
sinψ

ρ

d sinψ

dρ
(14)

Substituting the above equations into general shape equation (9), we obtain:

cos3 ψ
d3ψ

dρ3
− 4 sinψ cos2 ψ

dψ

dρ

d2ψ

dρ2
+

2 cos3 ψ

ρ

d2ψ

dρ2

+cosψ

(

sin2 ψ − cos2 ψ

2

)(

dψ

dρ

)3

− 7 sinψ cos2 ψ

2ρ

(

dψ

dρ

)2

−


λ̃− 2c0 sinψ

ρ
−
(

sin2 ψ − 2 cos2 ψ
)

2ρ2



 cosψ
dψ

dρ

+
(1 + cos2 ψ) sinψ

2ρ3
− λ̃ sinψ

ρ
= p̃ (15)

where λ̃ = λ/kc + c20/2 and p̃ = p/kc. The above equation is in fact identical to the

axisymmetric shape equation obtained by Hu and Ou-Yang [34]. Following Ref. [35], we can

transform it into a second-order differential equation

η =
ρ sinψ cos2 ψ

2

(

dψ

dρ

)2

− ρ cos3 ψ
d2ψ

dρ2
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− cos3 ψ
dψ

dρ
+
ρ sinψ

2

(

sinψ

ρ
− c0

)2

+ρ

(

λ̃− c20
2

)

sinψ +
sinψ cos2 ψ

ρ
+
p̃ρ2

2
(16)

with an integral constant η (the so called first integral).

A budding vesicle can be intuitively regarded as two open lipid vesicles docking together

with the same boundary curve. We assume that the separation boundary happens to be the

neck. This assumption is reasonable when the Gaussian bending modulus of lipid bilayer is

omitted [4]. The neck is a circle with radius 1/κ where κ is the curvature of the neck curve.

For the limit shape, κ is infinity since the neck is infinitesimal. Membrane in the vicinity

of the neck is highly singular where two principal curvatures with opposite signs are on the

order of magnitude much larger than 1/lv. The Gaussian curvature is singular while the

mean curvature may be finite in the vicinity of the neck. In this paper we only consider the

situation that the mean curvature is finite, otherwise the general neck condition would not

be true. Next we will analyze the local behavior of the membrane segments adjacent to the

neck.

Introducing an auxiliary function

Φ(ρ) = −(2H + c0) =
sinψ

ρ
+

d(sinψ)

dρ
− c0. (17)

and substituting it into Eq.(16), we may achieve:

η =
sin3 ψ

2ρ
− ρ sinψ

2

(

Φ + c0 −
sinψ

ρ

)2

− c0 sin
2 ψ

−ρ
(

1− sin2 ψ
) dΦ

dρ
+ λ̃ρ sinψ +

p̃ρ2

2
. (18)

By considering the natural boundary condition that sinψ = 1 at the neck, we obtain the

integral constant

η =

[

λ̃− (Φ0 + c0)
2

2

]

1

κ
+ Φ0 +

p̃

2κ2
(19)

with Φ0 = Φ(1/κ).

Considering the definition of Φ, i.e., Eq. (17), we may solve

sinψ =
1

ρκ
+
c0 (ρ

2 − 1/κ2)

2ρ
+

1

ρ

∫ ρ

1

κ

ρΦdρ

=
1

ρκ
+
c0u

2

[

uκ+ 2

uκ+ 1
+

2

c0u

∫ u

0

u′κ+ 1

uκ+ 1
Φdu′

]

. (20)
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When writing the second term on the second line of the above equation, we have changed

the variable ρ to u = ρ−1/κ. This term is of the same order of c0u for the bounded function

Φ, thus sinψ may be further reduced to a concise form:

sinψ =
1

ρκ
+O(c0u). (21)

If we are only concerned with the local shape of the membrane in the scale much smaller

than the intermediate length scale, i.e.,

u = ρ− 1/κ≪ li ≤
√

1/c0κ, (22)

we can readily see c0u ≪ 1/ρκ and sinψ ≈ 1/ρκ because 1/κ ≪ 1/c0. Then p̃ρ2/2 may

be neglected since it is much smaller than λ̃ρ sinψ in Eq. (18) with the consideration of

ρ≪ li ≤
√

λ/(pκ). It should be noticed that c0 in (22) refers to the larger one of cI0 and c
II
0 .

Considering this point, substituting Eqs. (19) and (21) into Eq. (18), we obtain

Φ

ρ2κ2
− ρ2 − (1/κ)2

ρ

dΦ

dρ
− Φ0

− (Φ2 − Φ2
0)

2κ
− c0 (Φ− Φ0)

κ
= 0. (23)

From Eq. (22) we have c0/κ ≪ 1/ρ2κ2, which implies that the last two terms of the above

equation may be neglected. Then the above equation is transformed into the following

concise form:
Φ

ρ2κ2
− ρ2 − (1/κ)2

ρ

dΦ

dρ
− Φ0 = 0. (24)

The full solution to the above equation is

Φ = Φ0

[

1−
√

1− 1

ρ2κ2
ln
(

ρκ+
√

ρ2κ2 − 1
)

]

+B

√

1− 1

ρ2κ2
(25)

where B is a constant. We find that Φ0 should be 0, otherwise the local free energy for the

membrane segments adjacent to the neck is quite large, which is unfavourable for minimiz-

ing the free energy. Detailed discussion can be found in the Appendix A. Therefore the

physically acceptable solution is

Φ(ρ) = B

√

1− 1

ρ2κ2
(26)

when ρ≪ li.
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Note that the above equations (15)-(26) hold for both domains. The parameters kc, c0,

λ, η and B correspond to kIc, c
I
0, λ

I, ηI and BI for domain I. The same notation is applicable

to domain II.

Next we turn to the linking conditions (10)-(12), which may be expressed as

kIcΦ
I
∣

∣

∣

ρ=1/κ
= kIIc Φ

II
∣

∣

∣

ρ=1/κ
, (27)

kIc
dΦI

dρ
cosψ

∣

∣

∣

∣

∣

ρ=1/κ

+ kIIc
dΦII

dρ
cosψ

∣

∣

∣

∣

∣

ρ=1/κ

− γκ = 0, (28)

kIcΦ
I(ΦI − 2cI0)

∣

∣

∣

ρ=1/κ
− kIIc Φ

II(ΦII − 2cII0 )
∣

∣

∣

ρ=1/κ
= 2(λI − λII) (29)

in axisymmetric situation, respectively. The solution (26) automatically satisfies linking

condition (27). Substituting (26) into (28), we have

kIcB
I + kIIc B

II + γ = 0 (30)

Now let us turn our attention back to the neck condition (3). With the consideration of

Eqs. (17), (26), (30), and the geometric definition of ǫ shown in Fig.1, we may obtain:

kIc
(

2H I
ǫ + cI0

)

+ kIIc
(

2H II
ǫ + cII0

)

=kIc

(

−ΦI
∣

∣

∣

ρ=ǫ+1/κ

)

+ kIIc

(

−ΦII
∣

∣

∣

ρ=ǫ+1/κ

)

=γ
√

1− 1/(ǫκ+ 1)2. (31)

We find that when ǫ ≫ 1/κ, Eq. (31) leads to the neck condition (3). Since (26) holds for

ρ ≪ li, ǫ should be also much smaller than ρ ≪ li. Thus the neck condition is true in the

region adjacent to the neck as described in (7).

IV. GENERAL PROOF

Non-axisymmetric budding as a common pattern has been experimentally observed when

studying the mitosis process of a budding yeast [36] and in the budding process of a binary

vesicle composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dilauroyl-

sn-glycero-3-phosphoethanolamine(DLPE) [37]. Recent numerical work [38] suggests that

non-axisymmetric budding is not only observed, but also preferred over axisymmetric one.

In this section we will give a general proof without the axisymmetric assumption.
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The discussion in the above section reveals that only the local behavior plays a role in the

proof of the neck condition. On account of this point, we first parameterize the local surface

adjacent to the neck. The neck is described as r(s) with s being the arclength parameter,

which does not have to be a planar curve. As shown in Fig. 4, at any point Q on the neck

r(s), the tangent vector, the normal vector and the binormal vector are denoted as t, N and

b, respectively. S1 is the plane determined by t and N, while S2 is determined by N and b.

Any point P on the intersection curve between the plane S2 and the membrane surface may

be expressed as a vector

Y(s, u) = r(s)− uN+ z (s, u)b (32)

where the parameter u represents the distance between the projection of P on plane S1 and

point Q. z = z(s, u) is the distance from P to plane S1.

t

N

b

z s,u( )

r(s)

u

P

Q

S1

S2

FIG. 4. (Color online)Local surface in the vinicity of the neck.

The above equation (32) is actually a local parameterization of the membrane surface in

the neck region. The shape of membrane in the vicinity of the neck is determined not only

by r(s) but also by z(s, u). The membrane surface adjacent to the neck is highly singular

where two principal curvatures with opposite signs are on the order of magnitude much

larger than 1/lv. One principal curvature is of the order of κ(s) which is the curvature of

the neck at point Q. The other one is on the order of the curvature of the counter curve

z = z(s, u) for given s, which can be easily calculated as −zuu/(1 + z2u)
3

2 where zu and zuu

represent the first and the second derivatives of z with respect to u, respectively. Since

the mean curvature, that is the sum of both principal curvatures, is finite, we see that the

two principal curvatures should be on the same order, which implies zuu ∼ κz3u. The latter
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principal curvature mentioned above is a large magnitude relative to 1/lv, which implies that

z varies quickly with respect to u in the neck region. On the other hand, from the geometric

point of view the shape of the counter curve z′ = z(s + ∆s, u) departs slightly from that

of z = z(s, u) for small ∆s. Therefore we make the following reasonable assumption on the

membrane adjacent to the neck: z(s, u) is the fast variable with respect to u but a slow

variable with respect to s. Besides, we also assume that κ(s) varies not too quickly with

respect to s, though the magnitude of κ(s) itself is much larger than 1/lv.

Under the above assumptions we may derive the leading order of the mean curvature and

the Gaussian curvature as below:

2H = − zu
(

u+ 1
κ

)√

1 + z2u
− zuu

(1 + z2u)
3

2

,

K =
zuuzu

(1 + z2u)
2
(

u+ 1
κ

) .

Detailed derivations can be found in Appendix B. By introducing two new variables ψ ≡
arctan zu and ρ ≡ u+ 1/κ(s), the above two curvatures can be expressed as

2H = −sinψ

ρ
− ∂ sinψ

∂u
, K =

sinψ

ρ

∂ sinψ

∂u
. (33)

We further derive

∇2 (2H) =
cosψ

ρ

∂

∂u

[

ρ cosψ
∂ (2H)

∂u

]

(34)

through some tedious calculations and comparison on the orders of magnitude. Detailed

derivations can be found in Appendix C.

Substituting the above two equations into shape equation (9), we obtain

cos3 ψ
∂3ψ

∂u3
− 4 sinψ cos2 ψ

∂ψ

∂u

∂2ψ

∂u2
+

2 cos3 ψ

ρ

∂2ψ

∂u2

+cosψ

(

sin2 ψ − cos2 ψ

2

)(

∂ψ

∂u

)3

− 7 sinψ cos2 ψ

2ρ

(

∂ψ

∂u

)2

−


λ̃− 2c0 sinψ

ρ
−
(

sin2 ψ − 2 cos2 ψ
)

2ρ2



 cosψ
∂ψ

∂u

+
(1 + cos2 ψ) sinψ

2ρ3
− λ̃

sinψ

ρ
= p̃ (35)

where λ̃ = λ/kc + c20/2 and p̃ = p/kc. The curvature κ(s) is a constant in axisymmetric

situation, which implies ∂/∂u = d/dρ, thus the above equation (35) degenerates to (15).
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Similarly, equation (35) may also be transformed into a second-order equation:

η(s) =
ρ sinψ cos2 ψ

2

(

∂ψ

∂u

)2

− ρ cos3 ψ
∂2ψ

∂u2

+
sinψ cos2 ψ

ρ

∂ρ

∂u
+
ρ sinψ

2

(

sinψ

ρ
− c0

)2

+ρ

(

λ̃− c20
2

)

sinψ − cos3 ψ
∂ψ

∂u
+
p̃ρ2

2
(36)

The above equation degenerates to (16) with η(s) being a constant in axisymmetric situation.

Now, let us introduce an auxiliary function

Ψ(s, u) = −(2H + c0)

=
sinψ

u+ 1/κ(s)
+
∂ sinψ

∂u
− c0. (37)

Substituting (37) into (36), by analogy with similar discussion in axisymmetric situation,

we may obtain

Ψ

[1 + uκ(s)]2
− [1 + uκ(s)]2 − 1

[1 + uκ(s)]κ(s)

∂Ψ

∂u
−Ψ0 = 0 (38)

with Φ0 = Ψ(s, 0) when u ≪ li. Note that c0 here refers to the larger one of cI0 and cII0 . A

physically acceptable solution for (38) is

Ψ(s, u) = B

√

√

√

√1− 1

[1 + uκ(s)]2
, (39)

where B is a constant.

Note that the above equations (35)-(39) hold for both domains. The parameters kc, c0,

λ and B correspond to kIc, c
I
0, λ

I and BI for domain I. The same notation is applicable for

domain II.

Then we turn to the linking conditions (10)-(12), which may be expressed as

kIcΨ
I
∣

∣

∣

u=0
= kIIc Ψ

II
∣

∣

∣

u=0
, (40)

kIc
∂ΨI

∂u
cosψ

∣

∣

∣

∣

∣

u=0

+ kIIc
∂ΨII

∂u
cosψ

∣

∣

∣

∣

∣

u=0

− γκ(s) = 0 (41)

kIcΨ
I(ΨI − 2cI0)

∣

∣

∣

u=0
− kIIc Ψ

II(ΨII − 2cII0 )
∣

∣

∣

u=0
= 2(λI − λII) (42)

respectively. The above solution (39) automatically satisfies linking condition (40). Substi-

tuting (39) into (41), we have

kIcB
I + kIIc B

II + γ = 0 (43)
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Now we turn our attention back to the general neck condition (3). With Eqs. (37), (39),

(43), and the geometric definition of ǫ shown in Fig.1, we may obtain

kIc
(

2H I
ǫ + cI0

)

+ kIIc
(

2H II
ǫ + cII0

)

=kIc
(

−ΨI
∣

∣

∣

u=ǫ

)

+ kIIc
(

−ΨII
∣

∣

∣

u=ǫ

)

=γ

√

√

√

√1− 1

[1 + ǫκ(s)]2
. (44)

We find that when ǫ ≫ 1/κ(s), the above equation returns the neck condition (3). Since

the solution (39) holds for u ≪ li, ǫ should be also much smaller than li. Thus the neck

condition is true in the region adjacent to the neck as described in (7).

V. CONCLUSION

In the above discussions we have refined and proved the conjecture on the general neck

condition (3) proposed by Jülicher and Lipowsky. Our study reveals that the mean curvature

of the membrane segments adjacent to the neck satisfies the general neck condition for the

limit shape of a budding vesicle when the length scale of the membrane segments is much

larger than the characteristic size of the neck but still much smaller than the characteristic

size of the vesicle. In the more general proof, we did not introduce any axis-symmetry

assumption or special trial configuration, which implies that the elegant neck condition (3)

is indeed broadly applicable. From the derivations given in our proof, we see that the local

neck condition for the limit shape of a budding vesicle is unaffected by the global shape of the

vesicle. In other words, the relationship between the mean curvature of membrane segments

adjacent to the neck and the spontaneous curvature of the membrane is determined by the

line tension of the separation curve, which would not be affected by the specific morphology

of two daughter vesicles.

The general neck condition (3) degenerates to a more concise form for a budding vesicle

with uniform phase. Since kIc = kIIc ≡ kc and c
I
0 = cII0 ≡ c0 in the uniform phase, from (3)

we obtain

H I
ǫ +H II

ǫ + c0 + γ/2kc = 0. (45)

If we consider a special limit shape consisting of two spheres connected by an infinitesimal

neck, the mean curvatures of two spheres can be expressed asH I
ǫ = −1/RI andH II

ǫ = −1/RII,

15



where RI and RII represent the radii of two spheres, respectively. Then the above equation

is transformed into

1/RI + 1/RII = c0 + γ/2kc, (46)

which implies that one may experimentally estimate the force generated by the contractile

ring by measuring the sizes of two daughter cells.

It is worth emphasizing several notable features of our proof. Firstly, we draw lessons

from the idea of separation of fast and slow variables. When specifying the local behavior of

membrane surface adjacent to the neck of a budding vesicle, we assume that z(s, u) varies

quickly with respect to u but slowly with respect to s. This leads to a concise local shape

equation (35) which has the similar form as the axisymmetric shape equation (15). Such

a consequence is consistent with our expectation that any finite deviation from the axis-

symmetry is insignificant in the region close to the singular set, which in our discussion

refers to the neck curve of the budding vesicle in the limit shape. In addition, multiscale

analysis is used in the proof. We introduce three length scales including a macroscopic scale

lv, a microscopic scale ln and an intermediate scale li which is macroscopically infinitesimal

but microscopically infinite large. Based on the multiscale analysis we can give a quantitative

definition (7) of what means to be “adjacent to the neck”.

We would like to give some remarks on several open questions in the end. The Gaussian

bending energy has not been taken into account in the free energy (8). When the Gaussian

bending moduli of two domains of a budding vesicle take on the same value, the neck

condition (3) still holds according to the Gauss-Bonnet theorem. However, if the Gaussian

bending moduli of two domains differ, the separation boundary between two domains may

not be the neck any more [4]. Thus the neck condition (3) is no longer applicable. In this

situation whether there exists a more general neck condition is yet unclear. In addition,

we have made a hypothesis of finite mean curvature in the vicinity of the neck to prove the

conjecture of general neck condition. This hypothesis has been adopted in previous studies as

well [2–4]. We expect that this hypothesis can be derived from a more fundamental principle.

This issue might be resolved with further physical considerations of the boundedness of the

free energy and free energy density. Furthermore, in the present work we merely consider

the vesicle of external budding where two domains are located on different sides of the neck.

We are not concerned with the internal budding in which the daughter vesicle is produced

inside a mother vesicle. The latter kind of budding has been observed in many cellular
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processes, such as endocytosis, autophagy and so on [39–42]. The general neck condition in

such a situation needs to be further investigated.
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Appendix A: The solution to Eq. (24)

The general solution to Eq. (24) is

Φ = Φ0

[

1−
√

1− 1

ρ2κ2
ln
(

ρκ +
√

ρ2κ2 − 1
)

]

+B

√

1− 1

ρ2κ2
. (A1)

We discuss the free energy of a ribbon with radius ρ between ξ to 2ξ. The specific value

of ξ is taken to satisfy 1/κ ≪ ξ ≪ li. When 1/κ ≪ ξ < ρ < 2ξ ≪ li, Φ ≈ Φ0 ln(2ρκ) + B.

The free energy of the ribbon turns out to be

∫

(2H + c0)
2dA

=
∫ 2π

0
dφ
∫ 2ξ

ξ
Φ2 ρ
√

1− 1
ρ2κ2

dρ

≈ 2π
∫ 2ξ

ξ
[B + Φ0 ln(2ρκ)]

2 ρdρ

= 2π [B + Φ0 ln(2ρ̄κ)]
2 ρ̄ξ (A2)

with ξ < ρ̄ < 2ξ. The last equality is due to the mean value theorem of integral form. When

ρ̄≫ 1/κ, the term containing ln(2ρ̄κ) would be a relatively large term, which is unfavourable

for minimizing the free energy. Thus a reasonable choice is Φ0 = 0.

Appendix B: Derivation of mean curvature and Gaussian curvature

According to the local parametrisation

Y(s, u) = r(s)− uN+ z (s, u)b (B1)
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we may derive the following equations

Ys(s, u) = (1 + κu) t− zτN + (zs − uτ)b, (B2)

Yu(s, u) = −N+ zub, (B3)

Ysu(s, u) = κt− zuτN+ (zsu − τ)b, (B4)

Yss(s, u) = (uκs + zτκ) t+
(

zss − zτ 2
)

b,

+
(

κ+ uκ2 + uτ 2 − 2zsτ
)

N, (B5)

Yuu(s, u) = zuub (B6)

by means of Frenet formula













ts

Ns

bs













=













0 κ(s) 0

−κ(s) 0 τ(s)

0 −τ(s) 0

























t

N

b













. (B7)

Here Ys and Yss represent the first and the second derivatives of Y with respect to s. The

same notation is taken for other quantities such as t, N, b and z.

The coefficients of the first fundamental form of the surface may be deduced as:

g11 = Ys ·Ys = (1 + κu)2 + (zs − uτ)2 + z2τ 2, (B8)

g12 = Ys ·Yu = zτ + (zs − uτ) zu, (B9)

g22 = Yu ·Yu = 1 + z2u. (B10)

The normal vector of the surface is

n =
Ys ×Yu

|Ys ×Yu|

=
(zs − uτ − zuzτ) t− (1 + κu) zuN

√

(zs − uτ − zuzτ)
2 + (1 + κu)2 (z2u + 1)

− (1 + κu)b
√

(zs − uτ − zuzτ)
2 + (1 + κu)2 (z2u + 1)

. (B11)

The coefficients of the second fundamental form may also be expressed as

L11 = Yss · n

= − zu (u
2κ2 + uκ+ u2τ 2 + z2τ 2 − 2uzsτ)

√

(

zs
1
κ
− u τ

κ
− zuz

τ
κ

)2
+
(

1
κ
+ u

)2
(z2u + 1)
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−
zu
(

zuκs
τ
κ
+ uτ τ

κ
− 2zs

τ
κ
+ zτs

1
κ
+ uzτs

)

√

(

zs
1
κ
− u τ

κ
− zuz

τ
κ

)2
+
(

1
κ
+ u

)2
(z2u + 1)

+

(

1
κ
uκs + zτ

)

(zs − uτ)
√

(

zs
1
κ
− u τ

κ
− zuz

τ
κ

)2
+
(

1
κ
+ u

)2
(z2u + 1)

−
(zss − zτ 2 − uτs)

(

1
κ
+ u

)

√

(

zs
1
κ
− u τ

κ
− zuz

τ
κ

)2
+
(

1
κ
+ u

)2
(z2u + 1)

, (B12)

L12 = Ysu · n

=
z2uτ

(

1
κ
+ u

)

− zuzτ + zs
√

(

zs
1
κ
− u τ

κ
− zuz

τ
κ

)2
+
(

1
κ
+ u

)2
(z2u + 1)

−
uτ + (zsu − τ)

(

1
κ
+ u

)

√

(

zs
1
κ
− u τ

κ
− zuz

τ
κ

)2
+
(

1
κ
+ u

)2
(z2u + 1)

, (B13)

L22 = Yuu · n

=
−
(

1
κ
+ u

)

zuu
√

(

zs
1
κ
− u τ

κ
− zuz

τ
κ

)2
+
(

1
κ
+ u

)2
(z2u + 1)

. (B14)

According to our assumption about the fast and slow variables, we know that zu ≫ zs

and zuu ≫ zus. Meanwhile though the magnitude of κ(s) itself is much larger than 1/lv,

κ(s) does not vary so quickly with respect to s. The torsion of neck curve is assumed to

be finite, τ ≪ κ. In the vicinity of neck, z and u are much smaller than the characteristic

length of the vesicle. Then the leading terms of coefficients in (B8)-(B14) may be expressed

as

g11 = (1 + κu)2 , (B15)

g12 = (zs − uτ) zu, (B16)

g22 = 1 + z2u, (B17)

L11 =
−zuuκ2
√

(z2u + 1)
, (B18)

L12 =
z2uτ

√

(z2u + 1)
− zuzτ
(

1
κ
+ u

)√

(z2u + 1)
, (B19)

L22 =
−zuu

√

(z2u + 1)
. (B20)
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We further obtain

L12g12 =
τ (zs − uτ) z3u
√

(z2u + 1)
− zτ (zs − uτ) z2u
(

1
κ
+ u

)√

(z2u + 1)

∼ uτ 2z2u, (B21)

L11g22 =
−zuuκ2 (1 + z2u)
√

(z2u + 1)
∼ uκ2z2u, (B22)

L22g11 =
−zuu (1 + κu)2
√

(z2u + 1)
∼ zuu (1 + κu)2

zu
, (B23)

which implies that

L12g12 ≪ L11g22, L12g12 ≪ L22g11. (B24)

When writing the second term, we have used the argument zuu ∼ κz3u in Sec. IV. Besides,

from (B15)-(B17), we ready derive

g212 ≪ g11g22. (B25)

Thus the mean curvature may be expressed as

2H =
L11g22 − 2L12g12 + L22g11

g11g22 − g212

≈ L11g22 + L22g11
g11g22

=
L11

g11
+
L22

g22

≈ −zu
(

1
κ
+ u

)√

(1 + z2u)
− zuu

(1 + z2u)
3

2

. (B26)

In addition, considering that

L11L22 =
zuzuuuκ

2

(z2u + 1)
∼ uκ2zuu

zu + 1
, (B27)

L2
12 =







z2uτ
√

(z2u + 1)
− zuzτ
(

1
κ
+ u

)√

(z2u + 1)







2

∼ τ 2z2u, (B28)

which implies L11L22 ≫ L2
12, the Gaussian curvature may be expressed as

K =
L11L22 − L2

12

g11g22 − g212
≈ L11L22

g11g22

≈ zuzuu
(

1
κ
+ u

)

(1 + z2u)
2
. (B29)

20



Appendix C: Laplace operator

Considering the components of the metric (B8)-(B10), we may obtain the first derivative

of the components of the metric g with respect to u

g11u = 2κ (1 + κu) + 2 (zs − uτ) (zsu − τ)

+2zτ 2zu, (C1)

g12u = (zs − uτ) zuu + (zsu − τ) zu, (C2)

g22u = 2zuzuu (C3)

and s

g11s = 2 (1 + κu)uκs + 2 (zs − uτ) (zss − uτs)

+2zzsτ
2 + 2z2ττs, (C4)

g12s = zsτ + zτs + (zss − uτs) zu + (zs − uτ) zsu, (C5)

g22s = 2zuzsu, (C6)

respectively. In addition, the first derivative of the metric g with respect to u and s can be

obtained:

gu = g11ug22 + g11g22u − 2g12u, (C7)

gs = g11sg22 + g11g22s − 2g12s. (C8)

Taking the analysis of the magnitude of the variables in last section into account, we know

that g22u is much larger than other derivatives and thus gu ≫ gs.

For function h(s, u), the Laplace term takes the form of

∇2h =
1√
g

∂

∂u

(

g11√
g

∂h

∂u
− g21√

g

∂h

∂s

)

+
1√
g

∂

∂s

(

g22√
g

∂h

∂s
− g12√

g

∂h

∂u

)

=
1√
g





g11u
√
g − g11

2
√
g
gu

g

∂h

∂u
−
g12u

√
g − g12

2
√
g
gu

g

∂h

∂s
+
g11√
g

∂2h

∂u2
− g21√

g

∂2h

∂s∂u





+
1√
g



−
g12s

√
g − g12

2
√
g
gs

g

∂h

∂u
+
g22s

√
g − g22

2
√
g
gs

g

∂h

∂s
+
g22√
g

∂2h

∂s2
− g12√

g

∂2h

∂s∂u





≈ 1√
g





g11u
√
g − g11

2
√
g
gu

g

∂h

∂u
+
g11√
g

∂2h

∂u2
+
g22√
g

∂2h

∂s2



 (C9)
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when ∂h/∂u ≫ ∂h/∂s, ∂2h/∂u2 ≫ ∂2h/∂s2 and ∂2h/∂u2 ≫ ∂2h/∂s∂u.

According to equation (33) in Sec IV, i.e.,

2H = −sinψ

ρ
− ∂ sinψ

∂u
, K =

sinψ

ρ

∂ sinψ

∂u
(C10)

and the assumption of ψ ≡ arctan zu and ρ ≡ u+ 1/κ(s), we may derive that

cosψ =
1

√

1 + z2u
, sinψ =

zu
√

1 + z2u
(C11)

∂ρ

∂s
=

−κs
κ2

,
∂ρ

∂u
= 1 (C12)

∂ψ

∂s
=
∂ (arctan zu)

∂s
=

zus
1 + z2u

,
∂ψ

∂u
=

zuu
1 + z2u

(C13)

∂2ψ

∂s2
=

zuss
(1 + z2u)

− 2zuz
2
us

(1 + z2u)
2
, (C14)

∂2ψ

∂u2
=

zuuu
(1 + z2u)

− 2zuz
2
uu

(1 + z2u)
2 , (C15)

∂2ψ

∂s∂u
=

zuus
(1 + z2u)

− 2zuzuuzus

(1 + z2u)
2
. (C16)

Thus

∂ (2H)

∂u
= −cosψ

ρ

∂ψ

∂u
+

sinψ

ρ2

+ sinψ

(

∂ψ

∂u

)2

− cosψ
∂2ψ

∂u2
, (C17)

∂2 (2H)

∂u2
=

sinψ

ρ

(

∂ψ

∂u

)2

+
2 cosψ

ρ2
∂ψ

∂u
− cosψ

ρ

∂2ψ

∂u2

− 2 sinψ

ρ3
+ cosψ

(

∂ψ

∂u

)3

+ 3 sinψ
∂ψ

∂u

∂2ψ

∂u2
− cosψ

∂3ψ

∂u3
, (C18)

∂2 (2H)

∂s2
=

sinψ

ρ

(

∂ψ

∂s

)2

+
2 cosψ

ρ2
∂ρ

∂s

∂ψ

∂s
− 2 sinψ

ρ3

(

∂ρ

∂s

)2

+ cosψ

(

∂ψ

∂s

)2
∂ψ

∂u
+ sinψ

∂2ψ

∂s2
∂ψ

∂u

+ 2 sinψ
∂ψ

∂s

∂2ψ

∂u∂s
− cosψ

∂ ∂2ψ
∂s∂u

∂s
. (C19)

The leading term of ∂ (2H)/∂u, ∂2 (2H)/∂s2 and ∂2 (2H)/∂u2 is on the order of κ2/(1 +

uκ), κz2su/z
2
u and κ3z2u/(1 + uκ), respectively. By comparison of the highest orders of the
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remaining terms in (C9), the Laplace term in the free energy should be

∇2 (2H) =
1√
g





g11u
√
g − g11

2
√
g
gu

g

∂ (2H)

∂u
+
g11√
g

∂2 (2H)

∂u2





=
1√
g

∂

∂u

[

g11√
g

∂ (2H)

∂u

]

. (C20)
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