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The emergent dynamics in networks of recurrently coupled spiking neurons depends on the in-
terplay between single-cell dynamics and network topology. Most theoretical studies on network
dynamics have assumed simple topologies, such as connections which are made randomly and in-
dependently with a fixed probability (Erdös-Rényi network) (ER), or all-to-all connected networks.
However, recent findings from slice experiments suggest that the actual patterns of connectivity
between cortical neurons are more structured than in the ER random network. Here we explore
how introducing additional higher-order statistical structure into the connectivity can affect the dy-
namics in neuronal networks. Specifically, we consider networks in which the number of pre-synaptic
and post-synaptic contacts for each neuron, the degrees, are drawn from a joint degree distribution.
We derive mean-field equations for a single population of homogeneous neurons and for a network
of excitatory and inhibitory neurons, where the neurons can have arbitrary degree distributions.
Through analysis of the mean-field equations and simulation of networks of integrate-and-fire neu-
rons, we show that such networks have potentially much richer dynamics than an equivalent ER
network. Finally, we relate the degree distributions to so-called cortical motifs.

INTRODUCTION

The dynamics in neuronal networks is strongly influ-
enced by the patterns of synaptic connectivity. Networks
in which connections are made randomly and indepen-
dently with a fixed probability, so-called Erdös-Rényi
(ER) networks, exhibit broad distributions of firing rates
by virtue of the quenched variability in inputs coupled
with the expansive nonlinearity of the neuronal transfer
function in the fluctuation-driven regime [1, 2]. Allowing
for clustered structure, in which neurons are more likely
to be connected within clusters than across them, leads to
multi-stable attractor states which may underlie working
memory in cognitive tasks [3–5]. Analogously, networks
in which the connectivity between neurons depends on
the difference in their selectivity for a continuously vary-
ing quantity, e.g. orientation or spatial angle, can exhibit
bump attractors [6, 7]. The detailed shape of such “spa-
tially” structured connectivity (space may refer to feature
space as opposed to distance along the cortical surface)
in conjunction with synaptic delays determines the sta-
bility of such bumps and can lead to wave propagation
[8].

Experimental data on patterns of synaptic connectiv-
ity in cortical slices indicates that cortical networks are
not ER [9–11]. In particular, motifs between neuron pairs
and triplets measured in experiment deviate from the ex-
pected values from ER networks, e.g. reciprocal connec-
tions are more frequent than expected. Additionally, it
is found that neurons which share more common neigh-
bors are more likely to be connected, a feature which has

been attributed to the presence of clustering, e.g. [11],
although this remains to be shown directly.

Inspired by these findings, recent theoretical work has
looked at how changes in the frequency of second order
motifs affects the synchronization of neuronal oscillators
[12]. It has also been shown that allowing for broad de-
gree distributions (distributions of the numbers of incom-
ing and outgoing connections) can strongly affect dynam-
ics in networks of asynchronous spiking neurons [13]. In
that work, a heuristic firing rate equation was derived
which showed that the in-degree distribution, which is
related to the frequency of convergent connectivity mo-
tifs, strongly shapes the firing rate dynamics. On the
other hand, the out-degree (divergent motifs) affects sub-
threshold correlations. However, the firing rate equations
did not allow for correlations between in-degree and out-
degree.

In this paper we derive and analyze heuristic mean-
field equations for a network of neurons with arbitrary
degree distributions (DDs), including those with corre-
lated in-degree and out-degree. We first illustrate the
derivation with a single population of neurons, and show
that increasing the covariance between in-degree and out-
degree is equivalent to increasing the strength of synap-
tic weights as far as the linear stability of fixed point
solutions is concerned. We then derive the mean-field
equations for a network of excitatory and inhibitory neu-
rons (E-I network) and show that there are four rele-
vant macroscopic variables: the four synaptic outputs
See, Sei, Sie, Sii, as opposed to the two firing rates re, ri
traditionally used in mean-field descriptions of ER or all-
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to-all coupled networks. Finally, we show that the covari-
ance between degrees is related to chain and reciprocal
motifs, allowing one to use our model to study how such
motifs shape the mean-field dynamics.

A MEAN-FIELD MODEL FOR NETWORKS

WITH ARBITRARY DEGREE DISTRIBUTIONS

We consider how network topology affects dynamics
in large networks of recurrently coupled neurons. Specif-
ically, we look at a measure of network connectivity called
the degree distribution (DD), which is the distribution
of numbers of pre-synaptic and post-synaptic inputs, or
in-degree and out-degree of the cells, respectively. For
simplicity we first derive a mean-field description for a
single neuronal population of statistically homogeneous
neurons. We then extend this framework for a canoni-
cal circuit which includes both excitatory and inhibitory
neurons (E-I). Our main finding is that allowing for cor-
related DDs increases the dimensionality of the standard
Wilson-Cowan firing rate description of an E-I circuit
from two to four, increasing the range of possible network
behaviors. This expansion in the underlying dimension
occurs because the correct mean-field model for neuronal
networks with correlated DDs is in terms of the synap-
tic output, of which there are four types (EE,EI,IE,II).
Finally, we express the moments of the DDs in terms
of so-called cortical motifs, which allows one to see at a
glance the effect of certain motifs on mean-field dynamics
in our framework.

A mean-field description of a single neuronal

population

In this section, we develop mean-field equations that
describe the activity of a single statistically homogeneous
population of neurons with degree distribution ρ(x, y),
where x denotes (normalized) in-degree and y denotes
(normalized) out-degree. We formulate a firing rate equa-
tion based on the Wilson-Cowan formalism by letting
r(x, t) be the firing rate at time t of a neuron with in-
degree x. We start with the following heuristic equation
rate equation (see Appendix for a derivation)

τ ṙ(x, t) = −r(x, t)+Φ

(

Jx

∫∫

ỹr(x̃, t)ρ(x̃, ỹ)dx̃ dỹ + I

)

.

(1)
The key difference from typical Wilson-Cowan equations
is that the sum over the network became the integral over
the degree distribution ρ(x̃, ỹ) with coupling strength
Jxỹ that is proportional to the pre-synaptic neuron’s out-
degree ỹ and the post-synaptic neuron’s in-degree x.
The firing rate equation, Eq.(1) is an infinite-

dimensional system of equations, as it represents an equa-
tion for r(x, t) for all values of the in-degree x. Even if we
transformed the equation to include just a finite number

of in-degrees, using Eq. (1) directly would require keeping
track of the firing rate for neurons of each in-degree. To
more concisely capture the behavior of the population,
we would like to develop a mean-field description of the
population’s activity, i.e., develop a closed equation for a
single population-averaged quantity.
A natural choice for a population-averaged quantity is

the average of the firing rate over the population. We
begin by attempting to derive an equation for the evo-
lution of the average firing rate R(t) = 〈r(x, t)〉, where
〈·〉 denotes the average over the network: 〈f(x, y)〉 =
∫

f(x, y)ρ(x, y)dx dy. If we integrate each term in Eq. (1)
over the distribution of degrees ρ(x, y), we obtain the fol-
lowing equation for the dynamics of the firing rate:

τṘ = −R+

〈

Φ

(

Jx

∫∫

ỹr(x̃, t)ρ(x̃, ỹ)dx̃ dỹ + I

)〉

,

(2)
Unfortunately, the dependence of the recurrent input,
or integral term, in Eq. (2) on r(x, y) is not in terms
of the mean firing rate R(t). Knowing the value of the
mean R(t) (and nothing more about the individual rates
r(x, t)) is insufficient to determine the recurrent input,
so we cannot close the system into an equation for just
R(t).
There is one exception where we can develop a closed

equation for the mean rate R(t): when the in-degree and
out-degree are uncorrelated and hence the joint degree
distribution factorizes into ρ(x, y) = ρx(x)ρy(y). In this
case, the recurrent input depends on r(x, t) only through
the mean R(t):

Jx

∫∫

ỹr(x̃, t)ρ(x̃, ỹ)dx̃dỹ

= Jx
(

∫

ỹρy(ỹ)dỹ
)(

∫

r(x̃, t)ρx(x̃)dx̃
)

= JxR(t).

(Recall that y represents in-degree normalized by the
mean degree, so 〈y〉 = 1.) In this special case, Eq. (2)
closes to become a mean-field equation for R(t):

τṘ = −R+
〈

Φ(JxR + I)
〉

. (3)

Eq. (3) and variants thereof for networks with delay and
for E-I networks have been studied already in [13][14].
The upshot is that changing the width of the in-degree
distribution is akin to changing the gain of the fI curve
Φ as far as linear stability is concerned. Therefore, net-
works with broad in-degree distributions can be more (or
less) susceptible to instabilities, e.g. to oscillatory states.
In this paper we go beyond this simple case and con-
sider networks for which in-degree and out-degree may
be correlated. If they are, then Eq. (3) is no longer valid.
In the general case with correlated degrees, we cannot

express the mean firing rate self-consistently. In general,
rather than being proportional to the mean rate, the re-
current input in Eq. (1) is proportional to the mean of
the firing rates r(x̃, t) multiplied by the out-degree ỹ.
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Since, with correlated degrees, the out-degree ỹ depends
on the in-degree x̃ in r(x̃, t), we must change our per-
spective from averaging the firing rate alone to averaging
the firing rate weighted by the number of outgoing con-
nections. The form of Eq. (1) dictates that the relevant
mean-field variable is actually the firing rate weighted by
the number of outgoing connections

S(t) = 〈yr(x, t)〉. (4)

We will call S(t) the synaptic drive as it represents the
average activity of the synapses, or the edges in the net-
work. It’s the synaptic drive S(t), rather than the mean
firing rate R(t), that is the correct projection of the firing
rates r(x, t) in the presence of correlated degrees, allow-
ing us to derive a closed mean-field equation.
If we average each term in Eq. (1), weighted by the

out-degree, we obtain a self-consistent equation for the
synaptic drive

τṠ = −S +
〈

yΦ(JxS(t) + I)
〉

. (5)

This mean-field synaptic drive equation for the single
quantity S(t) captures the influence of an arbitrary de-
gree distribution ρ(x, y) on the dynamics of the network.
(Recall that the mean 〈·〉 is an average over ρ(x, y).)
Once the synaptic drive S(t) is determined from Eq. (5),
one could reconstruct the mean firing rate R(t) from
Eq. (2) or even the distribution of firing rates r(x, t) as a
function of in-degree from Eq. (1). Both these equations
are driven solely by the synaptic drive, as they can be
rewritten as

τṘ = −R+ 〈Φ (JxS(t) + I)〉

τ ṙ(x, t) = −r(x, t) + Φ (JxS(t) + I) .

If the fI curve Φ were linear, Eq. (5) could be greatly
simplified by noting that

〈y(JxS(t) + I)〉 = J〈xy〉S(t) + I

= J(1 + cov(y, x))S(t) + I.

This calculation reveals that the covariance of the in-
degree and out-degree modulates the strength of the re-
current input, creating an effective coupling strength of
J(1 + cov(y, x)). (Note that this covariance is normal-
ized by the square of the mean degree d2; the effect of the
mean degree is already included in J .) As a consequence,
a positive covariance (indicating that the neurons that re-
ceive many inputs also have many outputs) is equivalent
to having stronger synapses, as far as the first order effect
on mean rates goes. A strong negative covariance (indi-
cating that those neurons with many outputs receive but
few inputs) diminishes the recurrent input and, in an ex-
treme case, could essentially eliminate the effects of the
coupling. (Since x and y are non-negative with mean 1,
we can conclude that cov(y, x) ≥ −1).
For nonlinear fI curves, the effect of the degree co-

variance can no longer strictly be reduced to multiplying

the effective coupling strength by 1 + cov(y, x). How-
ever, a similar effect of the covariance on the stability of
steady state solutions can be seen. We consider the sta-
bility of a steady-state synaptic drive S0 with the ansatz
S(t) = S0 + δSeλt, where δS ≪ 1. Plugging this expres-
sion into Eq. (5) yields the characteristic equation for the
eigenvalue λ

τλ = −1 + J(1 + cov(y, x))Φ̃
′

0, (6)

where

Φ̃
′

0 =
〈xyΦ

′

(JxS0 + I)〉

〈xy〉
(7)

is an “effective gain”, a weighted average of the gains
Φ′. This result is comparable in form to the charac-
teristic equation of a standard one-population Wilson-
Cowan equation with equivalent notation, which is τλ =
−1 + JΦ

′

0, where Φ
′

0 is the gain at the steady state. For
the standard Wilson-Cowan equation, an instability oc-
curs if the product JΦ

′

0 of the synaptic weight and the
gain of the nonlinear transfer function at the steady state
is greater than one. The characteristic equation for arbi-
trary degree distributions, Eq. (6), reflects two new fea-
tures introduced by the network structure. The first is
the introduction of the “effective gain” Φ̃

′

of Eq. (7).
Ref. [13] studied how the degree distribution shapes this
gain when the degrees were uncorrelated; correlations be-
tween degrees may introduce additional effects. The sec-
ond new feature is the dependence of the stability on
the covariance of the degrees through the modification
of the effective coupling strength to J(1 + cov(y, x)), as
described in the case with a linear fI curve.

Mean-field equations for an EI network

We extend the mean-field analysis to a network of two
populations straightforwardly. Since the EI firing rate
equations of Eqs. (27) are in the same form as the single
population firing rate equations of Eq. (26), we would
run into the same difficulty if we attempted to close the
equations in terms of the two population average firing
rates. Instead, the equations dictate that the correct
projection of the firing rates is again in terms of synaptic
drives. With two populations, however, we obtain four
different synaptic drive variables.
The synaptic drive variables correspond to the four re-

current input integrals of Eqs. (27). Let 〈·〉a denote an
average over the degree distribution ρa(xa,ya) of popu-
lation a:

〈f(xa,ya)〉a =

∫

f(xa,ya)ρa(xa,ya)dxadya,

where xa = (xae, xai) denotes the E in-degree and I in-
degree to a neuron in population a and y = (yea, yia)
denotes the E out-degree and I out-degree from a neu-
ron in population a. (See the appendix for more details
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on the two population degree distribution.) Then, the
synaptic drive from population b onto population a is the
firing rate of population b weighted by the corresponding
out-degree:

Sab(t) = 〈yabrb(xb, t)〉b (8)

These four scalar quantities for a, b ∈ {e, i} capture the
averages of the firing rates that determine the dynamics
of the network. We can write self-consistent equations for
these drives by multiplying the equations from Eq. (27)
by the appropriate out-degree and integrating:

τeṠee = −See +
〈

yeeΦe

(

JeexeeSee − JeixeiSei + Ie

)〉

e
(9a)

τeṠie = −Sie +
〈

yieΦe

(

JeexeeSee − JeixeiSei + Ie

)〉

e
(9b)

τiṠei = −Sei +
〈

yeiΦi

(

JiexieSie − JiixiiSii + Ii

)〉

i
(9c)

τiṠii = −Sii +
〈

yiiΦi

(

JiexieSie − JiixiiSii + Ii

)〉

i
. (9d)

With correlated degree distributions, we require four
equations, rather than the typical two, to capture the dy-
namics of two population. This requirement stems from
the fact that, with correlated degree distributions, the
dynamics of each type of input can be different for the
excitatory and inhibitory populations. For example, the
excitatory synaptic drives See and Sie to the excitatory
and inhibitory population would have identical dynam-
ics only for special network structures for which the in-
tegrals of Eq. (9a) and Eq. (9b) were identical, i.e., the
integrals were invariant to the distinction between the E
out-degree yee and the I out-degree yie of the excitatory
population. Below, we show that differences among the
correlations between in- and out-degrees are sufficient to
create four independent equations.

Linear Stability

We would like to know if the mean-field Eqs. (9) ex-
hibit richer dynamics than the standard two-dimensional
firing rate equations commonly used to describe the ac-
tivity in E-I networks. As a first step we consider the lin-
ear stability of fixed point solutions. As in the case of a
single population, linearizing about the fixed-point solu-
tion leads to terms which are proportional to the product
of an effective gain and a covariance of degrees. The dif-
ference with the simple, one-population model is that in
the two-population model now there are eight covariance
terms; see Fig. 1.
Each of the four equations in Eqs. (9) depends on

two of those covariances, as determined by the xab and
yab factors in the equation. In general, these eight co-
variances in the network structure will differ from one
another. As a result, each of the four synaptic drives
will have different dynamics, i.e. the dynamics are four-
dimensional.
For example, consider the excitatory synaptic drives

See and Sie. In the standard firing rate equations, there
would be only one excitatory variable, the average firing
rate of the excitatory population. Depending on the net-
work structure, as captured by the covariances of Fig. 1,
the excitatory synaptic drive could be different for the
excitatory population (See) than for the inhibitory pop-
ulation (Sie). The first column in Fig. 1 illustrates one
pair of covariances that could lead to a difference in those
excitatory synaptic drives. Fig. 1(a) is the covariance be-
tween the E in-degree and the E out-degree of excitatory
cells (cov(yee, xee)). On the other hand, Fig. 1(e) is the
covariance between the E in-degree and the I out-degree
of excitatory cells (cov(yie, xee)).
Imagine a network where these two covariances were

significantly different, say where cov(yee, xee) > 0 and
cov(yie, xee) < 0. In this case, those excitatory neu-
rons which receive the most recurrent excitatory input
would (A) project broadly to other excitatory cells and
(B) project little to inhibitory cells. On the other hand,
those excitatory neurons which receive the least recurrent
excitatory input would (A) project little to other exci-
tatory cells and (B) project broadly to inhibitory cells.
As a result, the excitatory and inhibitory populations
sample the excitatory synaptic output in very different
ways. This effect is not equivalent to any change in the
average synaptic weights Jee and Jie; it requires correla-
tions among the network edges as captured by the covari-
ances between in- and out-degrees (or similar correlations
among the synaptic weights between individual neurons
in a weighted network).
As with the single population case, the covariances

hidden in the equations are revealed when one linearizes
Eq. (9) to determine the stability of a steady-state synap-
tic drive S0

ab. Since each equation is of the form,

τbṠab = −Sab +
〈

yabΦb

(

JbexbeSbe − JbixbiSbi + Ib

)〉

b
,

we can replace Sab = S0
ab + δSabe

λt and linearize the
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FIG. 1. The eight degree covariances in a network of excitatory and inhibitory neurons. (a) Cov(yee,xee), (b) Cov(yee,xei), (c)
Cov(yei,xii), (d) Cov(yei,xei), (e) Cov(yie,xee) , (f) Cov(yie,xei), (g) Cov(yii,xii), (d) Cov(yii,xie). In our analysis, we include
the effect of the covariance cov(yab, xbc) in the parameter βabc; see Eq. (13).

integral term as

〈

yabΦb

(

Jbexbe(S
0
be + δSbee

λt)− Jbixbi(S
0
bi + δSbie

λt)
)〉

b

≈
〈

yabΦb

(

JbexbeS
0
be − JbixbiS

0
bi

)〉

b

+ Jbe

〈

yabxbeΦ
′

b

(

JbexbeS
0
be − JbixbiS

0
bi

)

〉

b
δSbee

λt

− Jbi

〈

yabxbiΦ
′

b(JbexbeS
0
be − JbixbiS

0
bi)
〉

b
δSbie

λt

= 〈yΦb〉
0
ab + Jbe〈Φ

′

b〉abe
(

1 + cov(yab, xbe)
)

δSbee
λt

− Jbi〈Φ
′

b〉abi
(

1 + cov(yab, xbi)
)

δSbie
λt, (10)

where 〈yΦb〉
0
ab =

〈

yabΦb

(

JbexbeS
0
be − JbixbiS

0
bi

)〉

b
is the

value of this integral at the steady state and

〈Φ
′

b〉abc =
〈yabxbcΦ

′

b(JbexbeS
0
be − JbixbiS

0
bi)〉b

〈yabxbc〉b
(11)

is the effective gain of population b, averaged and nor-
malized with respect to the covariance of the in-degree
from population c and the out-degree to population a for
a, b, c ∈ {e, i}. Hence, the triple subscript eei, for exam-
ples, represents the covariance between the I in-degree
and E out-degree of an excitatory neuron, a covariance
of degrees that influences the number of chains of connec-
tions from an inhibitory neuron onto excitatory neuron

onto another excitatory neuron. For brevity in notation,
we will combine the effective gain and covariance terms
into a single parameter,

〈Φ
′

b〉abc
(

1 + cov(yab, xbc)
)

= βabc, (12)

which is the effective gain of population b, combined with
the covariance of its in-degree from population c and out-
degree to population a. Note that βabc ≥ 0.

We will consider how changes in this parameter can
affect the linear stability of fixed point solutions. In do-
ing so, we will focus exclusively on the role of changes
in the covariance, that is, we will consider the effective
gain to be fixed. This assumes, for example, that as the
covariances in the degrees are varied additional param-
eters must be adjusted (such as the external input) to
maintain constant gain. This is a reasonable assumption
given that what is observable and hence known in cortical
circuits is the pattern of activity, e.g. mean firing rates,
and not the patterns of connectivity. Therefore we will
be investigating the effect of changes to the connectivity,
while holding the level of activity, and hence gain, fixed.

Using this notation, the linear stability analysis leads
to the following characteristic equation for the eigenvalue
λ:

(τeλ+ 1)(τiλ+ 1)
[

(τeλ+ 1− Jeeβeee)(τiλ+ 1 + Jiiβiii) + JieJeiβieiβeie

]

+JieJei

[

Jii(τeλ+ 1)βiei(βeieβiii − βiieβeii) + Jee(τiλ+ 1)βeie(βieeβeei − βeeeβiei)
]

+JieJeiJeeJii

[

βiieβeii(βeeeβiei − βieeβeei) + βeieβiii(βieeβeei − βeeeβiei)
]

= 0. (13)

To compare to typical characteristic equations of
Wilson-Cowan models, imagine a special case of the net-

work structure where the integrals Eq. (9a) and Eq. (9b)
were identical and the integrals of Eq. (9c) and Eq. (9d)
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were identical. In that case the excitatory synaptic drives
would be identical, See = Sie and the inhibitory synaptic
drives would be identical, Sei = Sii, reducing Eqs. (9) to
two equations. In order for these equations to be identi-
cal, the top row of covariances in Fig. 1 must be identical

to the bottom row, i.e., βeab = βiab for any pair of popu-
lations a and b. For this special case, we can drop the first
index of β and just refer to it as βab. With this simplifi-
cation, the combinations of β’s in parentheses cancel due
to symmetry, and the characteristic equation Eq. (13)
simplifies to just its first term

(τeλ+ 1)(τiλ+ 1)
[

(τeλ+ 1− Jeeβee)(τiλ+ 1 + Jiiβii) + JieJeiβeiβie

]

= 0. (14)

The factor in the square brackets is essentially the char-
acteristic equation for a standard Wilson-Cowan descrip-
tion for an E-I network.
In the full characteristic equation, Eq. (13), the second

and third terms reflect effects from having the covariances
of first row in Fig. 1 differ from those of the second row,
i.e., they capture the effects of having the inhibitory and
excitatory populations sample the recurrent excitation
and inhibition in different ways, as quantified by different
degree covariances. We will provide an example of such
an effect in the next section, without doing an exhaustive
analysis.

Steady Instability: λ = 0

A steady instability indicates a saddle node bifurca-
tion and a region of bistability, which can be computa-
tionally relevant for modeling working memory states.
For E-I networks that reduce to two-dimensional dynam-
ics (which include standardWilson-Cowan E-I networks),
setting λ = 0 in Eq. (14) indicates that a steady insta-
bility occurs only when the recurrent excitatory input
is sufficiently strong, i.e. when Jeeβee exceeds a critical
value. For standard Wilson-Cowan E-I networks, this
instability can occur either by increasing the strength
Jee of the recurrent excitatory synaptic weights, or in-
creasing the gain, for example through external inputs
(as βee includes only the gain factor when one ignores
degree covariances). Without recurrent excitation it is
not possible to have steady instabilities and hence work-
ing memory states in standard Wilson-Cowan equations
for E-I networks. The same conclusion is true even for
networks with strong degree correlations, as long as the
dynamics remain two-dimensional due to the top row of
covariances in Fig. 1 being identical to the bottom row.
In general, however, the presence of correlated DDs

in E-I networks can actually allow for working memory
states even in the absence of recurrent excitation. To see
this, we set Jee = 0 in Eq. (13), which (for λ = 0) gives

(1 + Jiiβiii) + JieJeiβieiβeie

+ JieJeiJiiβiei(βeieβiii − βiieβeii) = 0. (15)

Since the parameters J and β are non-negative, we must
have βiieβeii > βeieβiii in order for there to be a steady

instability. What does this condition mean? To begin,
notice that βeie and βiie represent the covariances from
Fig. 1(d) and (h), respectively; βeii and βiii represent the
covariances from Fig. 1(c) and (g), respectively. We have
already determined that we need the covariances in the
top and bottom rows of Fig. 1 to differ in order to obtain
bistability in the absence of recurrent excitation. The
necessary condition for bistability, βiieβeii > βeieβiii,
specifies in what manner these covariances must differ
for the bistability.
To begin, let’s focus on the covariances from the fourth

column of Fig. 1 ((d) and (h)). If we have a network
where βiie > βeie and the covariances in the third col-
umn are equal, the necessary condition for bistability is
met. This pattern of covariances indicates that inhibition
onto inhibitory neurons is stronger than the inhibition
onto excitatory neurons, again not because of different
synaptic weights, but rather because E and I are sam-
pling inhibitory outputs in very different ways. When
βeie is small, E cells would tend to receive inhibition from
I cells which receive little excitation. At the same time,
when βiie is large, I cells would receive inhibition from
strongly excited I cells. This pattern is illustrated by
Fig. 2(b) and (d).
An alternative pattern to meet the necessary condition

for bistability involves the covariances from the third col-
umn of Fig. 1 ((c) and (g)): a network where βeii > βiii

while the covariances in the fourth column are equal.
This pattern would mean that E cells tend to receive
inhibition from I cells which are strongly inhibited, with
the opposite pattern for I cells, as illustrated in Fig. 2(a)
and (c).
This scenario of working memory states through dis-

inhibition of excitatory neurons has been explored before
when there are two distinct inhibitory populations, e.g.
[15]. Here we have a similar mechanism, which however
relies on distinct ways of sampling a single highly hetero-
geneous population of inhibitory neurons.

Simplified mean-field model

The mean-field equations Eqs. (9) are unwieldy due to
the integration over the joint degree distributions repre-
sented by the 〈·〉a. The integration essentially amounts
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FIG. 2. A situation conducive to working memory states,
even in the absence of recurrent excitation. (a) E cells tend to
receive inhibition from neurons which are strongly inhibited,
i.e. cov(yei,xii) is large. (b) E cells tend to receive inhibition
from neurons which are weakly excited, i.e. cov(yei, xie) is
small. (c) I cells tend to receive inhibition from neurons which
are weakly inhibited, i.e. cov(yii, xii) is small. (d) I cells rend
to receive inhibition from cells which are strongly excited,
i.e. cov(yii,xie) is large. This situation is consistent with
the condition βiieβeii > βeieβiii, which is necessary to satisfy
Eq. (15).

to a re-scaling and translation of the nonlinear transfer
function Φ. We can write down simplified mean-field
equations with an effective nonlinear transfer function
with the same overall structure as Eqs. (9).

τeṠee = −See +Φee

(

Jee(1 + αeee)See − Jei(1 + αeei)Sei + Ie

)

, (16a)

τeṠie = −Sie +Φie

(

Jee(1 + αiee)See − Jei(1 + αiei)Sei + Ie

)

, (16b)

τiṠei = −Sei +Φei

(

Jie(1 + αeie)Sie − Jii(1 + αeii)Sii + Ii

)

, (16c)

τiṠii = −Sii +Φii

(

Jie(1 + αiie)Sie − Jii(1 + αiii)Sii + Ii

)

. (16d)

Specifically, we choose the nonlinear transfer functions
Φ so that Eqs. (16) have an identical fixed point struc-
ture and linear stability as in Eqs. (9). Furthermore, as
long as the DD is unimodal the effective nonlinearity in
Eqs. (9) is monotonically increasing and hence qualita-
tively similar to that in Eqs. (16). The resulting equa-
tions are in the same form as standard Wilson-Cowan
equations for four populations, two excitatory and two
inhibitory, with a particular form of coupling given by the
parameters Jab(1+αcab). The parameters α are chosen so
that the linear stability of perturbations of fixed points in
Eqs. (16) is given by Eq. (13) with βcab = Φ

′

ca(1 +αcab).
Given the definition of β in Eq. (12), we see that param-
eters are essentially

αcab ≈ cov(yca, xab), (17)

i.e., αcab represents the covariance between the in-degree
xab and the out-degree yca.

One advantage of the simplified equations is that their
bifurcation diagrams can be quickly computed once one
chooses a form of the nonlinearities Φ. Fig. 3 shows
an example of a bifurcation diagram for Eqs. (16) when

Jee = 0, in which case See can be eliminated and the sys-
tem reduces to three dimensions. (See the figure caption
for parameter values.) When all of the degree covari-
ances are the zero, i.e. αcab = 0 for all combinations of
a, b and c, then Eqs. (16) actually reduce to only two
equations and bistability is not possible without recur-
rent excitation, as seen earlier. Bistability occurs when
the covariance between the E in-degree and I out-degree
of inhibitory neurons is increased so that αiie = 1. This
parameter choice corresponds to increasing the covari-
ance in Fig. 2(d), which is conducive to bistability.

A sample simulation of bistable behavior is shown in
Fig. 4. At time t = 200 the external input to the excita-
tory neurons is increased transiently, causing an increase
in excitatory output Sie Fig. 4(a). There is an accom-
panying drop in the inhibitory output to excitatory cells
Sei Fig. 4(b), although the synaptic inhibition onto in-
hibitory cells increases Sii, Fig. 4(c). Finally, an increase
in the external input to inhibitory cells at t = 400 causes
Sie to drop back down to a low-activity fixed point.
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FIG. 3. An example of bistability without recurrent excita-
tion. Shown is a bifurcation diagram of fixed point solutions
to Eqs. (16) for both a case without bistability (black lines)
and a case with bistability (colored lines). Solid lines corre-
spond to stable equilibria and dashed lines to unstable equi-
libria. (a) Black line Sie for αiie = 0. Thin red line Sie for
αiie = 1. (b) Black line Sei and Sii for αiie = 0. (These
synaptic drives are indistinguishable in this case.) Thin red
(thick green) lines: Sei (Sii) for αiie = 1. The dotted ver-
tical line indicates the value of Ii for which the simulations
in Fig. 4 were done. The bistable region is shaded. Param-
eters: αabc = 0 for all a, b, c ∈ {e, i} except where noted,
Ie = 1, τe = τi = 1, Jee = 0, Jei = 1, Jie = Jii = 2,
Φee(x) = Φie(x) = 0, x2 or 2

√

x− 3/4 if x ≤ 0, 0 < x < 1
and x ≥ 1 respectively. Φei(x) = Φii(x) = 0 if x < 0 and x
otherwise.

FIG. 4. A sample simulation in the bistable regime. The value
of Ii = 1.9 (see vertical dotted line in Fig. 3). (a) Excitatory
synaptic output to I cells. (b) Inhibitory synaptic output to
E cells. (c) Inhibitory synaptic output to I cells. (d) External
input to E cells (black) and I cells (red).

FIG. 5. The inhibitory population degree distribution of the
network underlying bistability induced by degree correlations.
(a) Correlation between inhibitory in-degree and out-degree
to E cells. (b) Correlation between excitatory in-degree and
out-degree to E cells. (c) Correlation between inhibitory in-
degree and out-degree to I cells. (d) Correlation between ex-
citatory in-degree and out-degree to I cells. Since αchain

eie is
small the E out-degree and E in-degree of the inhibitory pop-
ulation are highly anti-correlated ((b), c.f., Fig. 2(b)). Since
αchain
iie is large, the I out-degree and E in-degree of the in-

hibitory population are highly correlated ((d), c.f. Fig 2(d)).
The I in-degree is uncorrelated with the out-degrees of the
inhibitory population ((a) and (c)).

Integrate-and-fire simulations

To further demonstrate how degree correlations can
bestow bistability even without recurrent excitation, we
simulated a network of 4000 excitatory and 1000 in-
hibitory integrate-and-fire neurons without E to E con-
nectivity, seeAppendix for details of the network and sim-
ulations. We coupled the neurons using a SONET net-
work, a network model that allows one to generate net-
works with prescribed degree correlations. In the SONET
model, one specifies the number of different types of
chains, which corresponds to the degree covariances, as
shown below. In particular, the SONET chain parame-
ters αchain

abc correspond to the αabc in the simplified mean-
field model above.

If we set all chain parameters αchain
ijk = 0, the network

does not display bistability, consistent with the theory.
To generate a network with appropriate covariances for
working memory, we used parameters based on the right
column of Fig. 2, which lead to the degree distribution of
the inhibitory population shown in Fig. 5. We reduced
the number of E to I to E chains, setting αchain

eie = −0.9,
yielding degree correlations depicted in Fig. 2(b) and ev-
ident in Fig. 5(b). We increased the number of E to I to I
chains, setting αchain

iie = 0.9, yielding degree correlations
depicted in Fig. 2(d) and evident in Fig. 5(d).

Fig. 6 demonstrates the presence of bistability in this
network analogous to Fig. 4. The excitatory population
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FIG. 6. Integrate-and-fire network without recurrent excita-
tory coupling demonstrating bistability due to degree corre-
lations. (a) Raster plot of 50 neurons from the excitatory
population. (b) Average firing rate of excitatory population.
Bottom: Input to excitatory population RIe. Integrate-and-
fire parameters: Er = −65 mV, Ee = 0 mV, Ei = −70 mV,
vth = −50 mv, vreset = −60 mV, τe = 20 ms, τi = 10 ms,
τa = 2 ms, τg = 10 ms, τref = 1 ms, Jei = 0.2, Jie = 0.1,
Jii = 0.013, and RIi = 25 mV. Network parameters: pee = 0,
pei = pie = pii = 0.1, αrecip

ei = αrecip
ii = 0.0, αconv

e,ii = 0.3,

αdiv
ii,e = 0.3, αchain

eie = 0, αconv
i,ee = 1, αconv

i,ii = 0.3, αdiv
ee,i = 1,

αdiv
ii,i = 1, αconv

i,ei = 0, αdiv
ei,i = −0.9 αchain

eie = −0.9, αchain
iii = 0,

αchain
iie = 0.9, αchain

eii = 0.

can be switched from a high firing mode to a low firing
mode with transient changes to its input rate. Fig. 7
illustrates that this bistability is facilitated by a shift
of the firing pattern of inhibitory neurons. During the
high firing mode (Fig. 7(b)), the only inhibitory neurons
that fire rapidly are those that receive a large amount of
excitation and project minimally to the excitatory pop-
ulation. As shown in Fig. 5(d), these neurons also tend
to project broadly to other inhibitory neurons. Hence, in
the high firing rate mode, inhibitory neurons that project
broadly to excitatory neurons are silenced, allowing the
excitatory population to fire more quickly.

Degree covariances are proportional to the number

of chains in the network

We have seen that the dynamics in E-I networks can be
strongly shaped by the presence of correlations between
DDs. What do these correlations mean in terms of simple
connectivity motifs, which can be determined straightfor-
wardly in slice experiments? In fact, positive covariances
indicate the presence of added chain motifs, above and
beyond what is expected in an Erdös-Rényi network. In
the SONET model, we manipulated the number of chain
motifs to create degree correlations. In general, one can
show that a network with positive degree correlations has
over-represented chain motifs.
This relationship between chains and degree correla-

FIG. 7. Average firing rates of inhibitory neurons illustrated
as a function of their degree. (A) During the low firing rate
mode (first or last second of simulation), the firing rates of
individual inhibitory neurons are not strongly correlated with
their degree. (b) During the high firing rate mode (middle
period of simulation), only the inhibitory neurons with a high
E in-degree and a low E out-degree are firing rapidly.

tions is illustrated in Fig. 8 which shows a chain motif
from neuron i to k through j. We can calculate the proba-
bility of finding this particular motif based on the degrees
of the neurons. In particular, the probability that cell i
connects to cell j is just proportional to the product of
the degrees douti dinj , while the probability that j connects

to k is proportional to doutj dink . The probability of this
chain motif in a network of N ≫ 1 neurons is then

pchain(i → j → k) =
douti dinj d

out
j dink

d2N2
, (18)

where d is the mean degree. Assuming independence be-
tween degrees of neighboring nodes (i.e., neglecting any
assortativity or other higher order correlations), the ex-
pected value of this probability in the network is

Echain =
E(douti dinj doutj dink )ijk

d2N2
,

=
E(douti )iE(dinj doutj )jE(dink )k

d2N2
,

=
E(dindout)

N2
,

=
d2 + cov(din, dout)

N2
,

= p2(1 + cov(x, y)), (19)

where p = d/N and (x, y) are the degrees normalized by
the mean degree d. When the covariance is zero, then
the probability of a chain motif is just p2, whereas in-
creasing or decreasing covariance increases and decreases
the probability of chains respectively. Therefore we can
study the affect of different chain motifs on the mean-field
by directly varying the covariances. In an E-I network,
the number of chains from cell type A → B → C where
A,B,C ∈ {E, I} is varied by changing the covariance
cov(yCB, xBA).
Finally, we remark that reciprocal motifs are also a

type of chain which goes from i → j → i. A calcula-
tion analogous to Eq. (19) shows that the probability of
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FIG. 8. The probability of a chain motifs depends on the
degrees. In this example there is a chain from excitatory
neuron i to j to k. This particular motif depends on the four
degrees douti , dinj , doutj and dink .

reciprocal connections also depends on the covariance as
Erecip = p2(1 + cov(x, y))2. We also note that the prob-
abilities of convergent and divergent motifs are propor-
tional to the variance of the in-degree and the out-degree
respectively [12, 13]. Therefore, a large fraction of chain
motifs in such networks necessarily implies large fractions
of convergent and divergent motifs as well.

DISCUSSION

In this paper we have derived mean-field equations for
a network of neurons with a given degree distribution.
The formulation is based on the simple idea that the
probability of a connection between two cells should be
proportional to both the out-degree of the pre-synaptic
cell and the in-degree of the post-synaptic cell. Indeed,
in a network where connections are made randomly and
with equal probability conditioned on degree, the prob-
ability that a single given out-going synapse from a cell
j is made onto a cell i must be proportional to dini , the
in-degree of cell i. To obtain the total probability of a
connection from j to i, we multiply by doutj , the number
of out-going synapses from cell j. The overall connection
probability is hence proportional to the product of de-
grees, dini doutj . This approximation is reasonable as long
as the number of neurons is large compared to the mean
degree in the network.
One key consequence of this work is the discovery that

the resulting relevant mean-field variables are not the fir-
ing rates of the neurons, but rather their synaptic output.
As the number of different types of synaptic connections
scales with the square of the number of populations, the
effect of network structure is to dramatically increase the
dimension of the mean-field dynamics.
For example, in a canonical E-I network, with two pop-

ulations of neurons, incorporating the effects of the net-
work structure leads to four-dimensional mean-field equa-
tions, in contrast to the standard two-dimensional mean-
field equations of an Erdös-Rényi random E-I network.
Fig. 9 illustrates the interactions among the four mean-
field variables See, Sie, Sei and Sii, which we call synap-
tic drives. These synaptic drives represent the edges of
the original network, but they become the nodes of the

FIG. 9. Illustration of the effective mean-field network ob-
tained from an EI network with arbitrary degree distributions.
(a) For an Erdös-Rényi random network, one can obtain two-
dimensional mean-field dynamics of the firing rates Re and
Ri of the excitatory and inhibitory population, coupled by an
average connectivity Jab. (b) In general, the presence of cor-
relations between neurons’ in- and out-degrees creates four-
dimensional mean-field dynamics. One can represent these
equations as a network with the four synaptic drives See, Sie,
Sei and Sii as the nodes. The coupling among these nodes
is determined not just by the average connectivity Jab, but
also the correlations αabc among the in- and out-degrees, as
captured in Eq. (16).

effective graph (Fig. 9(b)). Using the simplified descrip-
tion of Eq. (16), each edge in the effective graph corre-
sponds to one of the eight different types of covariance
αcab (Eq. (17)) of the degree-distribution. Since these
degree-covariances correspond to chains of two edges in
the original network, we see that these two-edge chains
become the edges of the effective graph describing the
network dynamics.

These results indicate that given certain types of de-
gree distributions, the excitatory (or inhibitory) synap-
tic output to excitatory neurons can be radically differ-
ent from the output to inhibitory neurons. Fig. 9 illus-
trates how this effect is not equivalent to changing aver-
age synaptic weights. For example, in the standard E-I
firing rate model (Fig. 9(a)), when the synaptic weights
Jii and Jei are different, then I cells and E cells receive
different amounts of synaptic inhibition, in magnitude.
However, the time course of the synaptic input is identi-
cal for both populations, as it simply given by the time
course of the single dynamical variable Ri. In the case
of our mean-field equations (Fig. 9(b)), the synaptic out-
puts Sii and Sei are dynamically independent variables.

It may seem counterintuitive that we obtain more dy-
namic variables than classes of neurons in the original
network. However, the dynamics of different pooled out-
puts of a single population can have distinctly different
dynamics if that population is highly heterogeneous. For
example, the I cells illustrated in Fig. 7 have highly het-
erogeneous behavior, depending on their degrees. Since
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E cells and I cells received their input primarily from dif-
ferent “sub-classes” of I cells, these two inhibitory inputs
were dynamically independent. In reality, there are no
sub-classes in our model; merely, the broad continuum
of degrees leads to some I cells that receive many E in-
puts and some I cells that receive very few E inputs. For
this example network, E cells received their inhibition
from I cells that received few E inputs, while I cells re-
ceived their inhibition from I cells that received many E
inputs, i.e., the two population sampled the activity of
very different I cells. This scenario can be summarized
succinctly by stating that the covariance cov(yei, xie) is
small and cov(yii, xie) is large, which is in fact conducive
to working memory-like bistability in E-I circuits. (See
the right-hand column of Fig. 2.)

In fact, in our network any such “sampling-of-different-
sub-classes” argument relies on there being a significant
difference in covariances related to differential inputs be-
tween E and I cells. In a classic E-I Erdös-Rényi random
network all covariances are zero and a description of the
mean-field activity in terms of firing rates alone is pos-
sible. Similarly, in a network in which DDs are broadly
distributed, if in- and out-degrees are independent then
a mean-field description in terms of firing rates is self-
consistent [13]. Even in the presence of significant co-
variances between degrees, the mean-field dynamics will
be two-dimensional as long as the degree distribution
has symmetries that ensure the synaptic output does not
depend on the target population. At the level of the
simplified dynamics captured by Eqs. (16) and 17, the
symmetries are the requirement that degree covariances
do not depend on the type of output from the neuron,
i.e., cov(yeb, xbc) = cov(yib, xbc) for all b, c ∈ {e, i}. In
this case, Eqs. (16) would simplify to two equations for
Se = See = Sie and Si = Sei = Sii; the four-node ef-
fective graph of Fig. 9(b) would collapse to a two-node
graph in terms of Se and Si.

Recent work has studied the spectrum of random ma-
trices for graphs with broad, correlated degree distribu-
tions [16]. In this case, for a network of size N , the
spectrum consists of a large number of eigenvalues (of
order N) which lie within a disk in the complex plane,
as well as a small number of outliers. One of these out-
liers lies along the real axis and moves to the right as
the degree correlation increases. This result was found
previously by one of our authors in studying the dynam-
ics in networks of coupled oscillators [12]. It also agrees
with and complements previous work on approximating
the largest eigenvalue of random matrices [17]. Our work
here suggests that this eigenvalue is related to the co-
variance term of the linearized operator in our mean-field
model, Eq.(12), and is the relevant one for instabilities
of the mean-field activity in networks of spiking neurons.

We showed that the degree covariances can be related
to chain and reciprocal motifs in the network. For ex-
ample, increasing the covariance between the excitatory
in-degree and out-degree of E cells increases the num-
ber of E → E → E chains and reciprocally connected

pairs of E cells. This is a particularly relevant exam-
ple since the fraction of reciprocally connected pairs of E
cells is a statistic which has been measured several times
over the past few decades in cortical slice experiments
[9–11]. It is robustly found that the fraction of recip-
rocal motifs is somewhere between 2 and 4 times what
would be expected from an ER network. From our work
here we can immediately conclude that one way to to
achieve this is to allow for correlations between the exci-
tatory in-degree and out-degree. Furthermore, the effect
of this correlation on the mean-field is equivalent to in-
creasing recurrent excitatory synaptic weights according
to Eq. (6). On the other hand there is currently no di-
rect evidence for broad, correlated degree distributions
in cortical microcircuits given the lack of data. A re-
cent analysis of simultaneous patch-clamp recordings of
up to 12 neurons in cortical slices do reveal degree corre-
lations beyond that expected from ER [18]. Nonetheless
these correlations, as well as the form of the degree distri-
butions themselves, can be adequately accounted for by
a number of distinct classes of network models, includ-
ing clustered networks, networks with spatially decaying
kernels, and networks with broad correlated degrees. Re-
solving this issue definitively will require mapping out
the matrix of functional synaptic connections of a large
number of cells simultaneously.
The mean-field model Eqs. (9) is heuristic. It is meant

to describe the collective dynamics of large networks of
E and I spiking neurons, but it is derived by assuming
that a description of the dynamics in terms of mean firing
rates (or synaptic outputs) is the relevant one. It may
be that networks with broad, correlated degree distribu-
tions exhibit other modes of activity which cannot be
captured in this framework, such as highly synchronous
states. Indeed, it was shown in [13] that the out-degree
of neurons strongly influences pairwise cross-correlations
in synaptic inputs to neurons. It may be that this ef-
fect is enhanced if the out-degree is positively correlated
with the in-degree. Also, other work studying the role
of cortical motifs on dynamics in networks of integrate-
and-fire networks using linear response theory has shown
that both chain and divergence motifs can strongly alter
pairwise correlations [19]. When the effects of synchrony
are not significant for the population behavior, the mean-
field model of Eqs. (9) can be used to study the effect of
DDs on network dynamics with relatively little numerical
or analytical effort.

APPENDIX

Degree Distributions

The degree of a given node in a graph is just the num-
ber of edges connected to it. In directed graphs such as
neuronal networks, each node has two different degrees:
an in-degree and an out-degree. The in-degree is the
number of pre-synaptic inputs to a given neuron; the out-
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degree is the number of neurons which are post-synaptic
to a given neuron. In this manuscript we consider net-
works in which the in-degree and out-degree of neurons
are random variables drawn from a known joint-degree
distribution.

Single population degree distribution

For the network consisting of a single population of
N neurons, we denote the connectivity by the matrix W
with entries wjk that are equal to one if there is a con-
nection from neuron k onto neuron j and zero otherwise.
We denote the in-degree of neuron j by dinj and its out-

degree by doutj . The degrees are defined in terms of the

connectivity by dinj =
∑N

k=1 wjk and doutj =
∑N

k=1 wkj .
To separate the influence of variations in the degree

across the network from the effects of average connectiv-
ity, we normalize the degrees by the mean degree of the
network, 〈d〉 = 1

N

∑

j d
in
j = 1

N

∑

j d
out
j . (The mean in-

degree is identical to the mean out-degree because both
sums are equal to the total number of connections on the
network.) Throughout this manuscript, we will consider
the normalized in-degree xj = dinj /〈d〉 and out-degree

yj = doutj /〈d〉, which we will refer to simply as degrees
from now on.
For simplicity in the mathematical notation and anal-

ysis, we allow degrees to be continuous random variables
and define the degree distribution ρ(x, y) as

ρ(x, y)dx dy = Pr(xj ∈ (x, x + dx), yj ∈ (y, y + dy)).
(20)

For the network consisting of a single population of neu-
rons, we assume the network is statistically homogeneous
in the sense that Eq. (20) holds independent of neuron
index j.

Two population degree distribution

For the network consisting of Ne excitatory neurons
and Ni inhibitory neurons, each neuron will have four
degrees, as illustrated in Figure 10. Each neuron will
have two in-degrees (an E in-degree and an I in-degree),
as the in-degrees from each of the populations of neurons
could differ. Similarly, each neuron will have two out-
degrees (an E out-degree and an I out-degree), as the
out-degrees to each population could differ.
For the two population case, we denote the compo-

nents of the connectivity matrix W as wjk
ab , which equals

one if neuron k from population b ∈ {e, i} synapses onto
neuron j from population a ∈ {e, i}. Consider neuron j
in population a. We denote its (unnormalized) in-degree
from population b as

dj,inab =

Nb
∑

k=1

wjk
ab , (21)

FIG. 10. Illustration of degrees of excitatory and inhibitory
neurons. To describe the degree of a single neuron requires
four numbers: the number of connection to and from exci-
tatory and inhibitory neurons. (a) The central excitatory
neuron has three excitatory and two inhibitory incoming con-
nections, giving it an E in-degree of dinee = 3 and an I in-
degree of dinei = 2. The neuron has one connection onto an
excitatory neuron and three connections onto inhibitory con-
nections, giving it an E out-degree of doutee = 1 and an I out-
degree of doutie = 3. (b) The central inhibitory neuron has
an E in-degree of dinie = 2, an I in-degree of dinii = 3, an E
out-degree of doutei = 3, and an I out-degree of doutii = 2.

and its (unnormalized) out-degree onto population b as

dj,outba =

Nb
∑

k=1

wkj
ba , (22)

To factor out effects due to average connectivity, we will
again use degrees which are normalized by the mean de-
gree, defining

xj
ab =

dj,inab

〈dinab〉
and yjba =

dj,outba

〈doutba 〉
(23)

where 〈dinab〉 =
1
Na

Na
∑

j=1

dj,inab and 〈doutba 〉 = 1
Na

Na
∑

j=1

dj,outba .

As in the single population case, we’ll refer to the x’s
and y’s simply as degrees and allow them to be continu-
ous random variables. The four-dimensional degree dis-
tribution for neurons in population a ∈ {e, i} can be writ-
ten as ρa(xae, xai, yea, yia). Denoting the two in-degrees
as the vector xa = (xae, xai) and the two out-degrees
as ya = (yea, yia), we can more compactly represent the
degree distribution as ρa(xa,ya).

The firing rate model

To formulate equations governing the dynamics of the
firing rate in the network that are based on the degree
distribution of the neurons, we begin with the heuristic
formalism developed byWilson and Cowan [20] where the
total input to any given neuron is calculated by summing
the activity of all neurons pre-synaptic to it. We refor-
mulate the model in terms of the firing rate of neurons
parameterized by their degree. This firing rate model will
form the basis the mean-field models that are the central
focus of this paper.
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Single population firing rate model

For the single population model, if we let rj(t) be the
firing rate of neuron j and ṙj(t) denote its derivative,
then one form of the Wilson-Cowan equations for the
evolution of the firing rates is

τ ṙj(t) = −rj(t) + Φ

(

J

N
∑

k=1

wjkrk(t) + I

)

(24)

where J is a synaptic weight, I is the external current,
and Φ is a sigmoidal nonlinearity giving the steady state
firing rate of a neuron as a function of its input. The
firing rate relaxes to its steady state value with a char-
acteristic time constant τ .
In our approach, rather keeping track of the firing rate

of neurons by their index j, we keep track of firing rates
of neurons based on their in-degree x and out-degree y
(we can say by their degree pair (x, y)). If we let r(x, y, t)
be the firing rate of a neuron with degree pair (x, y), then
to form an equation for ṙ(x, y, t), we need only transform
the sum over all neuron indices to an integral over all
degree pairs (x̃, ỹ). In this sum, we must weight the firing
rate of each degree pair (x̃, ỹ) by the probability density
ρ(x̃, ỹ) of that degree pair being present in the network.

This self-averaging argument is valid if the network is
large compared to the largest degree.

The remaining task is transforming the connectivity
wjk into a representation in terms of degrees. We ignore
the detailed structure of the network and simply assume
that, given the degree distribution, all connections are
made randomly and with equal probability. In this case,
the probability of a connection from a neuron with degree
pair (x̃, ỹ) onto a neuron with degree pair (x, y) is propor-
tional to the in-degree x of the post-synaptic neuron and
the out-degree ỹ of the presynaptic neuron. This result,
illustrated in Fig. 11, can be seen intuitively since the
likelihood of making a connection increases both with the
number of out-going connections from the pre-synaptic
neuron and the number of in-coming connections to the
post-synaptic neuron. This form for the probability be-
comes exact when the degrees are small compared to the
system size N . We absorb the proportionality constant
into the coupling strength factor J and let the coupling
strength from a neuron with degree pair (x̃, ỹ) onto a
neuron with degree pair (x, y) be Jxỹ.

With these conventions, we transform Eq. (24) into a
self-consistent equation for the firing rate r(x, y, t) of a
neuron with degree pair (x, y):

τ ṙ(x, y, t) = −r(x, y, t) + Φ

(
∫∫

Jxỹr(x̃, ỹ, t)ρ(x̃, ỹ)dx̃ dỹ + I

)

. (25)

The recurrent input (the integral term) is just the fir-
ing rate of each neuron in the network, weighted by the
probability of connection, and averaged over the degree
distribution. Note that this input does not depend on
the out-degree of the post-synaptic neuron, and so we
can write

τ ṙ(x, t) = −r(x, t)+Φ

(

Jx

∫∫

ỹr(x̃, t)ρ(x̃, ỹ)dx̃ dỹ + I

)

.

(26)
The effect of the out-degree, however, does not drop out
of the equation in general. Specifically, pre-synaptic fir-
ing rates are weighted by the out-degree of the corre-
sponding neurons. As we will see, this weighting can
play an important role in the dynamics.

Two population firing rate model

The firing rate model for the EI network is analogous
to the single population model, with two important dif-
ferences. The first difference is that we now have two
sets of equations, one for the firing rates re(xe, t) of the
excitatory neurons and one for the firing rates ri(xi, t)
of the inhibitory neurons. As for the single population

?

FIG. 11. The probability of a connection is determined by
the out-degree of the pre-synaptic and the in-degree of the
post-synaptic. In this illustration, the pre-synaptic out-degree
is d̃out = 5 and the post-synaptic in-degree is din = 4, as
represented by the arrows. The probability of a connection
from the presynaptic neuron to the postsynaptic neuron is the
probability that one of the right arrows is the same as one of
left arrows, which is proportional to the product dind̃out.

case, these firing rates just depend on the in-degrees,
though for two population, each neuron has two differ-
ent in-degrees. The second difference is that each firing
rate equation has two input terms, one for the excitatory
input and one for inhibitory input.

We let Jab be the coupling strength factor for connec-
tions from population b onto population a. Given that
the probability of connection from a neuron j to a neu-
ron i is proportional to the relevant out-degree of j and
the relevant in-degree of i, the self-consistent firing rate
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equations for the EI network are

τeṙe(xe, t) = −re(xe, t) + Φe

(

Jeexee

∫

ỹeere(x̃e, t)ρe(x̃e, ỹe)dx̃edỹe

− Jeixei

∫

ỹeiri(x̃i, t)ρi(x̃i, x̃i)dx̃idỹi + Ie

)

τiṙi(xi, t) = −ri(xi, t) + Φi

(

Jiexie

∫

ỹiere(x̃e, t)ρe(x̃e, ỹe)dx̃edỹe

− Jiixii

∫

ỹiiri(x̃i, t)ρi(x̃i, ỹi)dx̃idỹi + Ii

)

. (27)

Since each neuron has both an E and an I in-degree,
xa = (xae, xai), and both an E and an I out-degree,
ya = (yea, yia), the integrals which determine the recur-
rent input in Eqs. (27) are actually quadruple integrals
and dxadya = dxaedxaidyeadyia.

The integrate-and-fire network model

We implemented an integrate-and-fire network model
using the Brian simulator [21]. The network consisted

of 4000 excitatory neurons and 1000 inhibitory neurons
with no excitatory-excitatory connections. The sub-
threshold dynamics of the voltage V j

e (V j
i ) of neuron j of

the excitatory (inhibitory) population were governed by
the equations

τe
dV j

e

dt
= −(V j

e − Er)− Jeig
j
ei(V

j
e − Ei) +RIe(t)

τi
dV j

i

dt
= −(V j

i − Er)− Jieg
j
ie(V

j
i − Ee)− Jiig

j
ii(V

j
i − Ei) +RIi

(28)

which were driven by normalized conductances that,
in the absence of input, decayed exponentially accord-

ing the equations τg
dg

j

ei

dt
= −gjei, τa

dg
j

ie

dt
= −gjie, and

τg
dg

j

ii

dt
= −gjii. When the voltage of a neuron reached

the threshold vth, it was considered to have fired a spike.
Its voltage was reset to vreset and held there for a refrac-
tory period of length τref; at the same time, conductances
of its postsynaptic neurons were incremented by 1. Note
that the network model did not include recurrent excita-
tory connections.

Network structure

To generate EI-networks with correlated degree distri-
butions, we used an extension of second order networks
(SONETs) [12] to two populations. The SONET model
is a random network model in which one can prescribe

second order statistics (i.e., correlations) among certain
edges in the network. These correlations can be viewed
as specifying the frequencies of certain second order mo-
tifs (patterns of two edges in the network). If one fixes
the average connectivity of the network, such motif fre-
quencies correspond directly to covariances in the degree
distribution [12]. Hence, we used the SONET model to
generate networks with particular covariances in the de-
gree distribution.

The SONET model is a probability distribution for

an adjacency matrix W with components wjk
ab denoting

connections from node k of population b to node j of
population b. The SONETmodel prescribes the following
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FIG. 12. Illustration of the motifs underlying the SONET
network model. (a) The first order motif (a single edge repre-
sented by the parameter pab). (b) A convergent motif (αconv

a,bc ,

(c) A reciprocal motif (αrecip

ab ), (d) A divergent motif (αdiv
ac,b)

and (e) A chain motif (αchain
abc ). The relationship between the

motif probabilities and the parameters is given in Eq. (29).
Gray shaded regions represent populations a, b, and c, some
of which must indicate the same population, as in this model,
we have two populations: a, b, c ∈ {e, i}.

statistics on the random components of W

P (wjk
ab = 1) = pab

P (wjk
ab = 1, wkj

ba = 1) = pabpba(1 + αrecip
ab )

P (wjk
ab = 1, wjl

ac = 1) = pabpac(1 + αconv
a,bc )

P (wjk
ab = 1, wlk

cb = 1) = pabpcb(1 + αdiv
ac,b)

P (wjk
ab = 1, wkl

bc = 1) = pabpbc(1 + αchain
abc )

(29)

where (j, a), (k, b), and (l, c) could be any combination
of distinct (node, population) combinations. Since the
network has only two populations, some of the popula-
tions a, b, c ∈ {e, i} must be identical. Eq. (29) defines
the 27 parameters of the two population SONET model:
pab, α

recip
ab , αconv

a,bc , α
div
ac,b, and αchain

abc . (There are only 27

parameters as αrecip
ab , αconv

c,ab , and αdiv
ab,c are symmetric in a

and b.)

An illustration of the first and second order motifs
of the SONET model is shown in Fig. 12. The code
used to generate SONET networks can be found at
github.com/dqnykamp/sonets.
The SONET parameters αconv

a,bc , αdiv
a,bc and αchain

abc de-

termine the degree distribution, as shown in [12] for a
single population. Assuming large populations and large
variance in-degrees, the convergent motif frequencies cor-
respond to the covariances of the (normalized) in-degrees
(xae, xai),

αconv
a,ee ≈ var(xae)

αconv
a,ii ≈ var(xai)

αconv
a,ei ≈ cov(xae, xai)

(30)

the divergent motif frequencies correspond to the covari-
ances of the (normalized) out-degrees (yea, yia),

αdiv
ee,a ≈ var(yea)

αdiv
ii,a ≈ var(yia)

αdiv
ei,a ≈ cov(yea, yia)

(31)

and the chain motif frequencies correspond to the covari-
ances between the (normalized) in- and out-degrees,

αchain
eae ≈ cov(yea, xae)

αchain
eai ≈ cov(yea, xai)

αchain
iae ≈ cov(yia, xae)

αchain
iai ≈ cov(yia, xai)

(32)

for a ∈ {e, i}.
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