
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Explosive spreading on complex networks: The role of
synergy

Quan-Hui Liu, Wei Wang, Ming Tang, Tao Zhou, and Ying-Cheng Lai
Phys. Rev. E 95, 042320 — Published 26 April 2017

DOI: 10.1103/PhysRevE.95.042320

http://dx.doi.org/10.1103/PhysRevE.95.042320


Explosive spreading on complex networks: the role of synergy

Quan-Hui Liu,1, 2 Wei Wang,1, 2, ∗ Ming Tang,1, 2, † Tao Zhou,1, 2 and Ying-Cheng Lai3

1Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 611731, China
2Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China

3School of Electrical, Computer and Energy Engineering,

Arizona State University, Tempe, Arizona 85287, USA

(Dated: April 7, 2017)

In spite of the vast literature on spreading dynamics on complex networks, the role of local synergy, i.e.,

the interaction of elements that when combined produce a total effect greater than the sum of the individual

elements, has been studied but only for irreversible spreading dynamics. Reversible spreading dynamics are

ubiquitous but their interplay with synergy has remained unknown. To fill this knowledge gap, we articulate a

model to incorporate local synergistic effect into the classical susceptible-infected-susceptible process, in which

the probability for a susceptible node to become infected through an infected neighbor is enhanced when the

neighborhood of the latter contains a number of infected nodes. We derive master equations incorporating the

synergistic effect, with predictions that agree well with the numerical results. A striking finding is that, when

a parameter characterizing the strength of the synergy reinforcement effect is above a critical value, the steady

state density of the infected nodes versus the basic transmission rate exhibits an explosively increasing behavior

and a hysteresis loop emerges. In fact, increasing the synergy strength can promote the spreading and reduce the

invasion and persistence thresholds of the hysteresis loop. A physical understanding of the synergy promoting

explosive spreading and the associated hysteresis behavior can be obtained through a mean-field analysis.

PACS numbers: 89.75.Hc, 87.19.X-, 87.23.Ge

I. INTRODUCTION

Disease or information spreading, a fundamental class of

dynamical processes on complex networks [1–4], has been

studied extensively in the past fifteen years [5–24]. Spread-

ing dynamics can be classified into two types: irreversible and

reversible. In an irreversible process, once an individual be-

comes infected, it cannot recover or return to the susceptible

state. Or, once an infected node recovers, it is immune to

the same virus. Mathematically, irreversible spreading pro-

cesses can be described by the susceptible-infected (SI), the

susceptible-infected-recovered (SIR) [6], or the susceptible-

exposed-infected-recovered (SEIR) model [10]. In contrast,

in a reversible process, any node can be infected repeat-

edly in time, going through a cycle of susceptible and in-

fected states. For example, in the infection process of

tuberculosis and gonorrhea, an individual recovering from

such a disease can be infected again with the same dis-

ease anytime. Mathematically, reversible spreading processes

can be described by the susceptible-infected-susceptible

(SIS) [5], the susceptible-infected-recovered-susceptible

(SIRS) [25], or the susceptible-exposed-recovered-susceptible

(SEIS) model [26]. One obvious result for both irreversible

and reversible processes described by the classical SIR and

SIS models, respectively, the fraction of infected nodes in-

creases with the transmission rate continuously [4].

Recently, the reversible spreading dynamics attracts much

attention, especially, in predicting the accurate theoretical epi-

demic thresholds. For the classical SIS model, a pioneer-

ing result was obtained through the heterogeneous mean-field
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(HMF) theory, which predicts a vanishing epidemic threshold

in scale-free networks with the power-law exponent γ ≤ 3
in the thermodynamic limit [5]. An improvement over HMF

was given by the quenched mean-field (QMF) theory [27] con-

sidering the full network structure information, which gives

the same result as the HMF theory for γ < 5/2 and pre-

dicts a vanishing threshold when γ > 5/2 in the thermody-

namic limit. The threshold prediction of the QMF method is

less convinced as the endemic state is caused by the local hub

activation [28, 29]. To elaborate the origin of this vanishing

threshold, an analytical approach which captures the interplay

between the lifetime of an infected hub and the time needed

to infect a susceptible hub in the network was developed in

Ref [30]. It provides strong analytical and numerical argu-

ments that the threshold will vanish in any network with a

degree distribution decaying slower than exponentially. Both

the classical SIS model and the SIRS model were shown to

have the same epidemic threshold predicted by the standard

mean-field theories [25]. However, as the effect of warning

immunity exists in the SIRS model which leads to collective

activation with a finite threshold in scale free networks for

power-law exponent γ > 3, at odds with the QMF and quali-

tatively described by the HMF theory [31].

In this paper, we investigate the effect of synergy on the

reversible spreading dynamics on complex networks. Syn-

ergy describes the situation where the interaction of elements

that produce a total effect greater than the sum of individual

elements when combined, i.e., the phenomenon commonly

known as “one plus one is greater than two.” Intuitively, syn-

ergy should have a significant effect on the spreading dynam-

ics. For example, in rumor or information spreading over a so-

cial network, a number of connected individuals possessing a

piece of information make it more believable than just a single

individual. Indeed, concrete evidence existed in both biolog-
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ical and social systems where the number of infected neigh-

bors of a pair of infected-susceptible nodes would enhance the

transmission rate between them [32–35], such as fungal infec-

tion in soil-borne plant pathogens [34, 35] where the proba-

bility for an infected node to affect its susceptible neighbors

depends upon the number of other infected nodes connected

to the infected node. In social systems, the synergistic effect

was deemed important in phenomena such as the spread of

adoption of healthy behavior [36, 37], microblogging retweet-

ing [38], opinion spreading and propagation [2, 39], and ani-

mal invasion [40, 41].

While the classic SIR and SIS models ignore the synergis-

tic effect by assuming that the transmission of infection be-

tween a pair of infected-susceptible nodes is independent of

the states of their neighbors, there were previous efforts to

study the impact of synergy on irreversible spreading dynam-

ics and its interplay with the network topology. In particular,

threshold models [32, 33, 42] were developed, which take into

account neighbors’ synergistic effects on behavior spreading

by assuming that a node adopts a behavior only when the num-

ber of its adopted neighbors is equal to or exceeds a certain

adoption threshold. One result was that, for each node in the

network with a fixed adoption threshold, the final adoption

size tends to grow continuously and then decreases discon-

tinuously when the mean degree of the network is increased.

The SIR model was also generalized to modify the transmis-

sion rate between a pair of infected and susceptible nodes ac-

cording to the synergistic effect [43–45], with the finding that

it can affect the fraction of the epidemic outbreak, duration

and foraging strategy of spreaders. These existing works were

exclusively for irreversible spreading dynamics. A systematic

study to understand the impact of the synergistic effects on re-

versible spreading dynamics on complex networks is needed.

The goal of this paper is to investigate, analytically and nu-

merically, the impacts of synergy on reversible spreading dy-

namics on complex networks. We first generalize the classic

SIS model to quantify the effect of the number of infected

neighbors connected to an infected node on the transmission

rate between it and its susceptible neighbors. To characterize

the impact on the steady state of the spreading dynamics, we

consider the local nodal environment and derive the master

equations (MEs) [46, 47]. To gain a physical understanding,

we assume that, statistically, nodes with the same degree have

the same dynamical characteristics, so the mean-field approx-

imation can be applied. Let α be a parameter characterizing

the strength of the synergistic effect. For random regular net-

works (RRNs), we find that for α ≥ αc, where αc is a critical

value, a hysteresis loop [14, 48] appears in which the steady

state infected density, denoted by ρ(∞), increases with the

transmission rate β but typically exhibits an explosively in-

creasing behavior, in contrast to the typical continuous transi-

tion observed in the classic SIS models [5]. For α < αc, the

hysteresis loop disappears and ρ(∞) increases with β contin-

uously. The phenomena of explosive spreading and hysteresis

loop are general in that they also occur for complex networks

of different topologies. Such as for synergistic irreversible

spreading on SF networks, the hysteresis loop survives on net-

works of different power-law exponents in the thermodynam-

ical limit.

Our paper is organized as follows. We describe the network

model and the reversible spreading model in Sec. II, and the

master equations and the mean-field approximation are used

to analyze the spreading dynamics in Sec. III. The numeri-

cal verifications including the theory and the simulations are

shown in Sec. IV. We briefly summarize our conclusions and

prospects in Sec. V.

II. MODEL

Network model. The networks in our study are generated

from the uncorrelated configuration model [6] with degree

distribution P (k), where the degree-degree correlations can

be neglected for large and sparse networks. Nodes in the

network correspond to individuals or hosts responsible for

spreading, with edges representing the interactions between

nodal pairs.

Model of reversible spreading dynamics. We generalize

the classic SIS model to incorporate the synergistic effect into

the reversible spreading dynamics — we name it the syner-

gistic SIS spreading model. At any time, each node can only

be in one of two states: susceptible (S) or infected (I). An in-

fected node can transmit the disease to its susceptible neigh-

bors. The synergistic mechanism models the role of infected

neighbors connected to a transmitter (i.e., an infected node) in

enhancing the transmission probability. The synergistic SIS

spreading process is illustrated schematically in Fig. 1. The

synergistic reversible spread process is different form the core

contact process in Ref. [49], which a susceptible node is in-

fected when at least k different infected neighbors of the node

select the node for the infection, since the transmission rate

between an infected node and a susceptible neighbor in syn-

ergistic reversible spreading process changes with the num-

ber of infected neighbors connected to this infected node con-

tinuously. Besides, our model differs from the recent one in

Ref. [50], which treated the synergistic effect of ignorant in-

dividuals attached to a receiver (in ignorant state).

Initially, a fraction ρ0 of nodes are chosen as seeds (infected

nodes) at random, while the remaining nodes are in the sus-

ceptible state. At time step t, each infected node transmits the

disease to its susceptible neighbors with rate

p(m,α) = 1− (1 − β)1+αm, (1)

where m and α, respectively, represent the number of the

infected neighbors connected to the infected node and the

strength of the synergistic effect, and β is the basic transmis-

sion rate in this paper. We use synchronous updating method

to simulate the spreading processes [27]. Thus, a susceptible

node is infected by one of its infected neighbor with trans-

mission probability p(m,α)∆t in each time step. In the same

time step, all infected nodes recover to susceptible state with

recovery probability µ∆t, where µ represents the recovery

rate. Time is increases by ∆t = 1, and the dynamical pro-

cess terminates when the system enters into the steady state

(i.e., there is no infected node in the network or the number
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of infected nodes changes little with time). Equation (1) in-

dicates that, the larger value of α or m, the higher the rate

p(m,α) that an infected node will transmit the disease to its

susceptible neighbor. Our model reduces to the classic SIS

model for α = 0. For α > 0 (α < 0), the synergistic effects

are constructive (destructive) where the infected neighbors fa-

vor (hampers) transmission of the disease to the receivers. In

our study, we consider only the constructive synergistic effect,

where the infected neighbors of an infected node cooperate

with it to spread the disease. In addition, we set α ≤ 1 so that

the synergistic ability of any infected neighbor of the infected

node is less than that of itself. This assumption is based on

consideration of real situations such as fungal infection in soil-

borne plant pathogens where the probability for a susceptible

node infected by a direct infected neighbor is always greater

than that from an indirect infected neighbor [34, 35].

FIG. 1. (Color online) Illustration of synergistic SIS spreading pro-

cess on complex networks. (a) Initially (at t = 0), node 2 is the seed

and the remaining nodes are susceptible. Since there are no infected

neighbors connected to node 2, it transmits the disease to one of its

susceptible neighbors with probability p(0, α) = β. (b) Node 3 is

infected by node 2 which has not recovered. In this case, both nodes

2 and 3 have an infected neighbor and, at the next time step, they

will infect one of their susceptible neighbors with a larger probabil-

ity p(1, α) ≃ (1 + α)β due to the synergistic effect.

III. THEORY

We consider large and sparse networks with negligible

degree-degree correlation. To develop the theory method and

for the analysis, we assume the fraction of S(I) state nodes is

changed continuously with time. We first establish the mas-

ter equations to describe the synergistic SIS spreading process

quantitatively. We then provide an intuitive understanding of

the role of synergy in the spreading dynamics through a mean-

filed analysis.

A. Master equations

In general, the transmission rate p(m,α) between a pair

of infected-susceptible nodes in the synergistic SIS spreading

process is determined by the following three factors: (1) the

basic transmission rate β between the pair of nodes, i.e., the

rate in the absence of any synergistic effect, (2) the number

of infected neighbors connected to the infected node, and (3)

the strength α of the synergistic effect. As there exists the

strong dynamical correlation among the states of the neigh-

boring nodes leading to the synergistic effect, the approach of

master equations [46, 47] can be applied. For convenience,

we denote Sk,m (Ik,m) as the k-degree susceptible (infected)

node with m infected neighbors and use sk,m(t) and ik,m(t)
to express the fractions of Sk,m and Ik,m nodes at time t, re-

spectively. The degree distribution and the average degree of

the network are Pk and 〈k〉 =
∑

k′ k′Pk′ , respectively. The

fraction of infected nodes with degree k at time t is given by

ρk(t) =

k
∑

m=0

ik,m(t) = 1−

k
∑

m=0

sk,m(t),

and the total fraction of the infected nodes is ρ(t) = 〈ρk(t)〉 ≡
∑

k Pkρk(t).
To derive the master equations, it is necessary to obtain the

probability for Sk,m to be infected. Initially, Sk,m has m
infected neighbors so the probability for one of its infected

neighbors to have degree k′ is k′Pk′/〈k〉. This degree k′ in-

fected neighbor of Sk,m may have zero, one, two, or up to

k′ − 1 infected neighbors. The chance for the degree k′ in-

fected node to have n infected neighbors is ik′,n(t)/ik′(t), let

ϑk′(t)dt be the probability that this degree k′ infected neigh-

bor of Sk,m transmits the disease to Sk,m, therein, dt is an

infinitesimally small time interval. Then the rate ϑk′(t) can

be written as

ϑk′(t) =
k′−1
∑

n=0

ik′,n(t)

ik′(t)
p(n, α).

Let πk,m(t)dt be the probability that the Sk,m node is being

infected during the time interval [t, t + dt]. Since the Sk,m

node has m infected neighbors, the rate πk,m(t) can be written

as

πk,m(t) = m
∑

k′

k′Pk′

〈k〉
ϑk′(t). (2)

There are three scenarios that can lead to an increase in

sk,m(t): (1) recovery of Ik,m with rate µ, (2) infection of a

susceptible neighbor of Sk,m−1, and (3) recovery of an in-

fected neighbor of Sk,m+1. The second (third) scenario cor-

responds to the situation where an S-S (S-I) edge changes

into an S-I (S-S) edge, where an S-S edge connects two sus-

ceptible nodes, an S-I edge links a susceptible and an in-

fected nodes, and so on. Denote βs(t) as the rate that an S-S

edge changes to S-I at time t. Then βs(t)dt is the proba-

bility that an S-S edge changes into S-I in the time interval

[t, t + dt]. To calculate βs(t), we can count the number of



4

S-S edges [i.e.,
∑

Pk

∑k
m=0(k −m)sk,m(t)] in the network

at time t , and then count the number of edges which switches

from being S-S edges to S-I edges [i.e.,
∑

Pk

∑k
m=0(k −

m)sk,m(t)πk,m(t)dt] in this time interval . We can approxi-

mate the probability βs(t)dt as the ratio of edges that switches

from being S − S to S − I in the time interval [t, t+ dt]. The

rate βs can thus be approximated as

βs(t) =

∑

Pk

∑k
m=0(k −m)πk,m(t)sk,m(t)

∑

Pk

∑k
m=0(k −m)sk,m(t)

. (3)

Since the probability for the recovery of an infected node does

not depend on its neighbors, the probability which an S-I edge

changes to S-S is µdt. Similarly, there are three cases leading

to a decrease in sk,m(t): Sk,m being infected with probability

πk,m(t)dt , infection of a susceptible neighbor of Sk,m with

probability βs(t)dt, and recovery of an infected neighbor of

Sk,m with probability µdt. We then obtain the time evolution

equation of sk,m(t) as

d

dt
sk,m(t) = µik,m(t) + βs(t)(k −m+ 1)sk,m−1(t)

+ µ(m+ 1)sk,m+1(t)

− [πk,m(t) + βs(t)(k −m) + µm]sk,m(t). (4)

Analogously, we can derive the time evolution equation of

ik,m(t):

d

dt
ik,m(t) = πk,m(t)sk,m(t) + βi(t)(k −m+ 1)ik,m−1(t)

+ µ(m+ 1)ik,m+1(t)

− [µ+ βi(t)(k −m) + µm]ik,m(t), (5)

where βi(t) is the rate at which the edge S-I switches to

I-I in the network at time t. The calculation method of

βi(t) is the same as the computation of βs(t). Firstly, we

count the number of S-I edges in the network at time t, i.e.,
∑

Pk

∑k
m=0 msk,m(t), then we count the number of edges

which switches from being S-I edges to I-I edges in the

time interval [t, t+dt], i.e.,
∑

Pk

∑k
m=0 msk,m(t)πk,m(t)dt.

Then the ratio between the latter and the former is the proba-

bility that an S-I edge changes into I-I edge. And βi(t) can be

approximately calculated as

βi(t) =

∑

Pk

∑k
m=0 mπk,m(t)sk,m(t)

∑

Pk

∑k
m=0 msk,m(t)

. (6)

If the initially infected nodes are distributed uniformly on the

network, the initial conditions of Eqs. (2)-(6) are

sk,m(0) = [1− ρ(0)]Bk,m[ρ(0)] and

ik,m(0) = ρ(0)Bk,m[ρ(0)],

where Bk,m(p) =
(

k
m

)

pm(1− p)k−m
. Numerically solving

Eqs. (2)-(6), we obtain the quantities ik,m and sk,m at any

time t. The quantity ρ(∞) can be calculated as ρ(∞) =
∑

k Pk

∑m=k
m=0 ik,m(∞), and we have s(∞) = 1−ρ(∞). For

simplicity, we denote ρ(∞) = ρ.

B. Mean-field approximation

To gain physical insights into the role of synergistic effects

in spreading dynamics, we develop a mean-field analysis. In

particular, we assume that nodes with the same degree exhibit

approximately identical dynamical behaviors. The time evo-

lution of the fraction of the degree k infected nodes is then

given by

d

dt
ρk(t) = [1− ρk(t)]k

×
∑

k′

k′Pk′ρk′

〈k〉

k′−1
∑

m=0

Bk′−1,m(w)p(m,α)

− µρk(t), (7)

where w =
∑

kPkρk/〈k〉 is the probability that one end of a

randomly chosen edge is infected, ρ(t) =
∑

Pkρk(t), and the

fraction of susceptible nodes at time t is s(t) = 1− ρ(t). The

steady state of synergistic SIS process in Eq. (7) corresponds

to the condition d
dtρk(t) = 0. For degree k we have

ρk(∞) =
[1− ρk(∞)]k

µ

×
∑

k′

k′Pk′ρk′(∞)

〈k〉

k′−1
∑

m=0

Bk′−1,m(w)p(m,α), (8)

which can be solved analytically for RRNs by approximating

1− (1− β)(1+αm)
as β(1 + αm) for small β. We get

ρ(∞) = −
αβk(k − 1)

µ
ρ(∞)

3
+

[αβk(k − 1)− βk]

µ
ρ(∞)

2

+
βk

µ
ρ(∞), (9)

for t → ∞. Solving Eq. (9), we get the infected density ρ(∞).
The epidemic threshold is a critical parameter value above

which a global epidemic occurs but below which there is no

epidemic. Similar to the analysis of the classic SIS spread-

ing dynamics, we can obtain the critical condition from the

nontrivial solution of Eq. (9). In particular, the function

g[ρ(∞), β, µ, α] = −
αβk(k − 1)

u
ρ(∞)

3

+
[αβk(k − 1)− βk]

µ
ρ(∞)

2

+
βk

µ
ρ(∞)− ρ(∞), (10)

becomes tangent to the horizontal axis at ρc(∞), which is the

critical infected density in the limit t → ∞. The critical con-

dition is given by

dg[ρ(∞), β, µ, α]

dρ(∞)
|ρc(∞) = 0. (11)

Furthermore, the basic critical transmission rate can be calcu-

lated as:

βc =
µ

Γ
, (12)
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where

Γ = k[1− 2(1− (k − 1)α)ρc(∞)− 3(k − 1)αρc(∞)2].

Numerically solving Eqs. (9) and (12), we get the critical

transmission rate βc. For α = 0, our synergistic SIS spreading

model reduces to the classic SIS spreading model, and Eq. (9)

has a trivial solution ρ(∞) = 0. For α = 0, Eq. (9) has

only one nontrivial solution. We thus see that ρ(∞) increases

with β continuously. As shown in Fig. 2(a), the function

g[ρ(∞), β, µ, α] is tangent to the horizontal axis at ρ(∞) = 0.

Combining Eqs. (9) and (12), we obtain the continuous critical

transmission rate βc = µ/k for α = 0.

For α > 0 so synergistic effects exist, ρ(∞) = 0 is a triv-

ial solution since Eq. (9) is a cubic equation for the variable

ρ(∞) without any constant term. As shown in Fig. 2(b), for

a fixed α > 0 (e.g., α = 0.9), the number of solutions of

Eq. (9) is dependent upon β, and there exists a critical value

of β at which Eq. (9) has three roots (fixed points), indicat-

ing the occurrence of a saddle-node bifurcation [51, 52]. The

bifurcation analysis of Eq. (9) reveals the physically mean-

ingful stable solution of θ(∞) will suddenly increase to an

alternate outcome. In this case, an explosive growth pattern

of ρ(∞) with β emerges. And whether the unstable state sta-

bilizes to an outbreak state [ρ(∞) > 0] or an extinct state

[ρ(∞) = 0] depends on the initial fraction of the infected

seeds. As a result, a hysteresis loop emerges [14, 48]. To

distinguish the two thresholds of the hysteresis loop, we de-

note βinv as the invasion threshold corresponding to the triv-

ial solution [ρ(∞) = 0] of Eq. (9), associated with which

the disease starts with a small initial fraction of the infected

seeds, and let βper be the persistence threshold corresponding

to the nontrivial solution [ρc(∞) > 0] of Eq. (9), at which

the disease starts with a higher initial fraction of the infected

seeds [14, 48]. Substituting the trivial solution [ρ(∞) = 0]

into Eq. (12), we obtain the invasion threshold as

βinv =
µ

k
. (13)

Note that the classic SIS spreading process has the same inva-

sion threshold. We can also solve Eqs. (9) and (12) simultane-

ously to get the persistence threshold βper with ρc(∞) > 0.

We now present an explicit example to understand the re-

lationship between ρ(∞) and β. As shown in Fig. 2(b) for

α = 0.9, numerically solving Eqs. (9) and (12) gives the func-

tion g[ρ(∞), β, γ, α], which becomes tangent to the horizon-

tal axis for βinv = 0.01 or βper ≈ 0.0039. From Fig. 2(b),

we see that Eq. (9) has 3 fixed points when β is in the range

of (βinv, βper). As a result, the steady state infection density

depends on ρ0. If the disease starts with a small initial fraction

of infected seeds, the root with the smallest value [ρ(∞) = 0]

of Eq. (9) corresponds to the steady state. However, if the dis-

ease starts with a large initial fraction of infected seeds, the

root with the largest value is the infected density in the steady

state. When β is smaller than βper or larger than βinv , the

initial fraction of infected seeds has no effect on the steady

state.

Next, to determine the critical value of infected neighbors’

synergy effects αc, across which the dependence of ρ(∞) on

β changes from being continuous (discontinuous) to discon-

tinuous (continuous), we can numerically solve Eqs. (9) and

(11) together with the condition [53]

d2g[ρ(∞), β, µ, α]

dρ2(∞)
|ρc(∞) = 0, (14)

we obtain

αc =
1

k − 1− 3(k − 1)ρc(∞)
. (15)

Combining Eqs. (9), (11) and (15), we get αc = 1/(k − 1),
which is dependent only on the degree of the RRNs.

0.0 0.1 0.2 0.3 0.4 0.5
-0.01

0.00

0.01

g
(ρ
(∞

),
β
,µ

,α
)

0.0 0.2 0.4 0.6 0.8 1.0
-0.04

0.00

0.04

0.08

ρ(∞)

g
(ρ
(∞

),
β
,µ

,α
) (b) α=0.9

β = 0.01

β = 0.005

β = 0.002

β = 0.0039

β = 0.007

β = 0.01

β = 0.013

β = 0.004

(a) α=0

FIG. 2. (Color online) Illustration of graphical solution of Eq. (10).

For random regular networks with k = 10, (a) continuously increas-

ing behavior of ρ(∞) with β for α = 0, (b) explosive change in

ρ(∞) for α = 0.9. The blue dashed line is tangent to the horizontal

axis at ρ(∞) = 0 (i.e., the blue circle) in (a). The red circle and

green square respectively represent the points of tangency for the red

dotted line and green solid line in (b). The recovery rate is µ = 0.1.

IV. NUMERICAL VERIFICATION

We perform extensive simulations of synergistic SIS

spreading processes on RRNs of size N = 104 and de-

gree k = 10. The synchronous updating spreading process

is carried out as follows. At the beginning, ρ0 fraction of

nodes are randomly selected as the initial infected nodes (i.e.,

seeds), and all other nodes are susceptible. In each time step,

each susceptible node i becomes infected with probability
∑

j∈N(i) p(mj , α), where N(i) is the set of infected neigh-

bors of node i and mj is the number of infected neighbors set

of infected node j. In the same time, all infected nodes re-

cover with probability µ. Time increases by ∆t = 1. To avoid
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the finite-size systems to enter into the absorbing state, we set

tmax = 104, where the dynamical process terminates when

there is no infected node in the network or the dynamical pro-

cess iterates 104 steps. And finally, we average the number

of infected nodes in the time step [9900, 10000] as the steady

density of infected nodes in this realization.

To calculate the pertinent statistical averages we use 30 net-

work realizations and at least 103 independent dynamical real-

izations for each parameter setting. To be concrete, we set the

recovery rate as µ = 0.1 in all simulations, since more sim-

ulations results show that the results of synchronous updating

method are very close to the asynchronous updating method

when the recover rate and the time step of the synchronous

updating method are set as µ = 0.1 and ∆t = 1 [54, 55]

(also see the comparison in the Appendix). To obtain the nu-

merical thresholds βinv and βper, we adopt the susceptibility

measure [56]:

χ = N
〈ρ(∞)2〉 − 〈ρ(∞)〉

2

〈ρ(∞)〉
, (16)

where ρ(∞) is the steady-state density of infected nodes. In

general, χ exhibits a maximum value at βinv and βper when

the initial fraction of the infected seeds is relatively small and

large, respectively. We define βs
inv (βs

per) as the numerical

predictions of invasive (persist) threshold.

Figure 3(a) shows ρ(∞) versus β for α = 0.9, where the

surprising phenomenon of explosive spreading, i.e., ρ(∞) ex-

hibits an explosive increase as β passes through a critical

point, can be seen, as predicted [Eqs. (2)-(6), and Eq. (9)].

In fact, there exists a range in β: [βinv , βper], in which the

steady state depends on the value of ρ0. In particular, the two

different steady states correspond to the spreader-free state

[ρ(∞) = 0] for initially small fraction of infected seeds and

the endemic state [ρ(∞) > 0] with initially larger fraction of

infected nodes, respectively. The coexistence of endemic and

spreader-free states, in the form of a hysteresis loop with ex-

plosive transitions between the states, is predicted by both the-

oretical approaches (i.e., the master equations and the mean-

field theory), and is observed numerically. Figure 3(b) shows

the susceptibility measure χ versus β for the two cases of

ρ0 = 0.01 and ρ0 = 0.9. We see that the numerical thresholds

βs
inv and βs

per determined through χ match well with the pre-

dictions from the master equations, but the mean-field approx-

imation gives only the value of βs
per correctly. Letting △β be

the difference between βs
inv and βs

per (the width of the hys-

teresis loop), we find that △β increases with α, as shown in

the inset of Fig. 3(a), indicating that βs
inv decreases faster than

βs
per as α is increased. From the inset of Fig. 3 (b), we know,

with the increase of network size N , βper keeps unchanged

and βinv increases. The hysteresis loop becomes more visible

and the simulation results are more close to the predictions re-

sults of the master equations. Thus, the hysteresis loop will

survive in the thermodynamical limit.

To explain why the mean-field approximation can’t ac-

curately predict βs
inv , and to give a qualitative explanation

for the explosively increasing behavior of ρ(∞) with β, we

consider the case where the spreading process starts from a

small fraction of infected seeds. Initially, for an infected

seed [e.g., node 2 in Fig. 1(a)], all its neighbors are in the

susceptible state. Thus, there is no synergistic effect when

this infected node attempts to infect its susceptible neigh-

bors. And the mean number of susceptible neighbors being

infected by this infected node (without infected neighbors’

synergy effect) before it recovers is R0 = k
∑∞

t=1[(1−µ)(1−
p(0, α))]t−1p(0, α) [54]. Therein, [(1 − µ)(1 − p(0, α))]t−1

is the probability that this infected node hadn’t infected one of

its susceptible neighbors and it hadn’t recovered in t− 1 time

steps, and p(0, α) is the probability that this infected node in-

fects one of its susceptible neighbor in the time step t.
Once the infected node (Ik,0) has infected one of its sus-

ceptible neighbors [e.g., node 3 in Fig. 1(a)] successfully, the

originally infected node becomes Ik,1, leading to a synergis-

tic effect. In this case, compared with the case that the in-

fected node is without infected neighbors’ synergy effect, the

mean number of susceptible neighbors being infected by this

infected node before it recovers is increased by

∆1 = (k − 1)

∞
∑

t=2

[(1 − µ)(1− p(0, α))]t−2

× p(0, α)(1 − µ)[p(1, α)− p(0, α)], (17)

where the part
∑∞

t=2[(1 − µ)(1 − p(0, α))]t−2 means up to

time step t − 2, the original infected node hadn’t infected a

susceptible neighbor and hadn’t recovered, and p(0, α)(1−µ)
means at the (t − 1)-th time step, this infected node infects a

susceptible neighbor and doesn’t recover. The increased trans-

mission probability per edge is [p(1, α)−p(0, α)] and (k−1)
means there are k−1 susceptible neighbors left to be infected.

Actually, once this infected node becomes Ik,2 (with two in-

fected neighbors), compared the Ik,1 node, the mean number

of susceptible neighbors being infected by this infected node

before it recovers will be increased by ∆2. As we assume

in the initial stage of the process, ∆n (n > 1) is very tiny.

If the average number of nodes infected by an infected node

R≈R0 +∆1 is larger than 1, an epidemic may occur [4]. The

average number of susceptible neighbors being infected by an

infected node can be approximately calculated as R0 + ∆1.

And let R0 + ∆1 = 1, we can obtain the critical invasion

threshold as

β′
inv =

µ

k + (k − 1)(1− µ)α+ µ− 1
. (18)

As shown in Fig. 4(a), the value of β′
inv agrees well with

the simulation invasion threshold βs
inv . For the case of small

initial infected density, the mean-field approximation fails to

capture the dynamical correlation between the infected node

and its infected neighbors, which ignores the synergy effect

and leading to the derived invasion threshold is the same as

the threshold in the classical SIS model.

To gain further insights into the cascading phenomenon and

the explosive increase of ρ(∞) with β for α > αc, we calcu-

late the fraction im of infected nodes with m (m = 0, 1, ..., k)

infected neighbors versus time for β slightly larger than βinv

(for α = 0.9) and βc (for α = 0). For α < αc (e.g., α = 0),

the synergistic SIS spreading is reduced to the classic SIS dy-

namics. As shown in the inset of Fig. 4(b), for β & βc (e.g.,
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FIG. 3. (Color online) Steady state infected density ρ(∞) and sus-

ceptibility measure χ on random regular networks. (a) The density

ρ(∞) versus β for α = 0.9, where the red squares and black cir-

cles are simulation results with initial infected density ρ0 = 0.9 and

ρ0 = 0.01, respectively. The red solid and black dashed lines are the

results of master equations Eqs. (3)-(6) with the same respective ini-

tial seed fractions. The red dotted and black dotted dashed lines are

results from the mean-field approximation [Eq. (11)] with the same

respective initial seed fractions. The quantities βs
inv and βs

per are,

respectively, the simulated invasion and persistence thresholds deter-

mined via the susceptibility measure. (b) Susceptibility measure χ
versus β with the same parameters as in (a). To discern the extremely

small value of χ for ρ0 = 0.9, we plot the dotted line in (b) ten times

larger than the original values. The inset in (a) shows the width of

the hysteresis loop versus α. The inset in (b) shows the thresholds

(i.e., βs
inv and βs

per) versus size N of random regular network when

α = 0.9. Other parameters are µ = 0.1 and k = 10.

β = 0.0114 and βc = 0.0112), im increases with t slowly and

tends to a constant for large time. However, for α = 0.9, if

β & βs
inv (e.g., β = 0.0064 and βs

inv = 0.0062), im increases

fast initially, reaches a peak at some small value of m (e.g.,

m = 0, 1), and then decreases rapidly [See Fig. 4(b)]. Due to

the synergistic effect, even only one end of the I-I edge trans-

mits the disease to its susceptible neighbors, the Ik,1 node be-

comes Ik,2, which has a larger transmission rate than that from

the original Ik,1 node. As the spreading process continues,

more susceptible nodes in the neighborhood of the infected

node are infected so the Ik,2 nodes become Ik,3, Ik,3 becomes

Ik,4, and so on. For larger m values (e.g., m = 3, 5), im in-

creases later and faster in reaching the peak, leading to a cas-

cading process that results in explosive spreading. These pro-

vide an explanation for the continuously and relatively slowly

increasing behavior of ρ(∞) for α < αc and, more impor-

tantly, the explosively increasing behavior of ρ(∞) with β for

α > αc.
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FIG. 4. (Color online) Illustration the regime of explosive spreading.

(a) Circles indicate the numerical predictions of invasive threshold

βs
inv in α. The solid line shows the transmission rate β in Eq. (18).

(b) The fraction im of infected nodes for different numbers of in-

fected neighbors (m = 0, 1, 3, 5) versus time t when the transmis-

sion rate is slightly larger than βs
inv . Panel (b) shows im versus t for

α = 0.9 and β = 0.0064 (βs
inv = 0.0062), where the inset shows

the same plot for the classic SIS spreading dynamics for β = 0.0114
(βc = 0.0112). Other parameters are ρ0 = 0.01, µ = 0.1 and

k = 10.

From the above analysis, it can be obtained that both β and

α markedly affect ρ(∞) and phase transition. Thus, ρ(∞)
and the phase transition on parameter plane (β,α) are fur-

ther investigated in Fig. 5. Obviously, ρ(∞) increases with

β and α, and the thresholds (i.e., βinv and βper ) decreases

with α [See Figs. 5(a) and (b)]. A heuristic explanation for

these results is that, due to the synergistic effect, there is an

increase in the infection probability p(m,α) between the in-

fected nodes and their susceptible neighbors, thereby reducing

the epidemic threshold (e.g., βinv and βper). Since the initial

fraction of infected seeds impacts only the steady state associ-

ated with the region of the hysteresis loop, we can determine

this region by computing the difference between the values of

every point (β,α) in Figs. 5(b) and 5(a). As shown in Fig. 5(c),

there are four regions. Only when α is larger than a critical

value αc [obtained from Eqs. (9), (11) and (15)] will the final

density ρ(∞) increase with β explosively (regions II, III, and

IV) and a hysteresis loop appears (region III). Otherwise there

is no hysteresis (region I). In region II, the disease becomes

extinct, but there is an outbreak in region IV.

While we focus our study on RRNs for the reason that

an understanding of explosive spreading can be obtained,

the phenomenon can arise in general complex networks. To

demonstrate this, we simulate synergistic spreading dynamics

on Erdös-Rényi (ER) random and scale-free (SF) networks
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FIG. 5. (Color online) Steady state infected density ρ(∞) and region

of hysteresis in the parameter plane (β, α). (a,b) For synergistic SIS

spreading dynamics on random regular networks, color-coded values

of ρ(∞) in the parameter plane (β,α) for ρ0 = 0.01 and ρ0 = 0.9,

respectively. The numerically obtained invasion threshold βs
inv and

persistence threshold βs
per (white circles) in (a) and (b), respectively,

are determined by the susceptible measure χ, and the corresponding

theoretical values (red sold line) are from Eqs. (9) and (12). The per-

sistence threshold predicted by the mean-filed theory matches well

with that from simulations, but there is disagreement for the invasion

threshold, as shown in (a,b), where I and II denote the parameter

regions where the disease becomes extinct and an outbreak occurs,

respectively. In (c), the color-coded values represent the difference

between the values of ρ(∞) in (b) and (a). There are four regions: in

region I there is no hysteresis loop (α < αc), in region III there is a

hysteresis behavior, and regines II and IV specify the borders of the

hysteresis loop. Other parameters are µ = 0.1 and k = 10.
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FIG. 6. (Color online) Synergistic SIS spreading processes on ran-

dom and scale-free networks. Steady state density of infected nodes

versus β, where symbols are results from simulation and the corre-

sponding lines are predictions of the master equations Eqs. (3)-(6).

The network parameters are N = 104 and 〈k〉 = 10.

of size N = 104 firstly. Figure 6 shows, for ER networks,

an explosive increase in the steady state infection density and

a hysteresis loop with the parameter β. We also investigate

the spreading dynamics on scale-free (SF) networks [6] con-

structed according to the standard configuration model [57].

The degree distribution is P (k) = Γk−γ , where γ is de-

gree exponent and the coefficient is Γ = 1/
∑kmax

kmin
k−γ

with the minimum degree kmin = 3, maximum degree

kmax∼N1/(γ−1) and γ = 3.0. The phenomena of explo-

sive spreading and hysteresis loop are presented, as shown

in Fig. 6. The theoretical predictions by master equations

method match well with simulations.

We also implement the spreading processes on SF networks

with different network sizes and different degree exponents,

shown in Fig. 7. We find both the size of network and the

power-law exponent will alter the invasion threshold and the

persistence threshold. But both of them won’t impact the

emergence of hysteresis loop, which means there exists a re-

gion of β, the steady state infected density ρ(∞) depends on

the initial fraction of infected nodes. Further analysis also

shows that the hysteresis loop will survive on the SF net-

works of different power-law exponents in the thermodynam-

ical limit. The effects of degree heterogeneity on the syn-

ergistic spreading dynamics and a more accurate theoretical

analysis method need to be further investigated.

V. DISCUSSION

Synergy is a ubiquitous phenomenon in biological and so-

cial systems, and one is naturally curious about its effect on

spreading dynamics on networks. There were previous works

on synergistic irreversible spreading dynamics, and the goals

of this paper are to construct and analyze a generic model for

synergistic reversible spreading, where the effect of synergy is

taken into account through enhancement in the transmission

rate between an infected node and its susceptible neighbors.

There are two factors determining the synergistic effect: the

number of infected neighbors connected to the infected node

that is to transmit the disease to one of its susceptible neigh-

bors and the strength of the synergistic reinforcement effect.

For RRNs, the synergistic reversible spreading dynamics can

be treated analytically by using the approach of master equa-

tions, as well as a mean field approximation. Qualitatively, we

find that synergy promotes spreading. The manner by which

spreading is enhanced is, however, quite striking. In particu-

lar, if the strength is above a critical value that is solely de-

termined by the degree of the network, there is an explosive

outbreak of the disease in that the steady state infection den-

sity increases abruptly and drastically as the basic transmis-

sion rate passes through a critical value. Associated with the

explosive behavior is a hysteresis loop whereas, if the trans-

mission rate is reduced through a different threshold, the final

infected population collapses to zero. All these results have

been obtained both analytically and numerically. While the

analysis is feasible for RRNs, numerically we find that a sim-

ilar explosive behavior occurs for general complex networks

with a random or a scale-free topology. Especially, for syner-
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FIG. 7. (Color online) The effects of degree heterogeneity and network size on the steady infected density ρ(∞). (a) ρ(∞) versus β for

ρ0 = 0.01 and (b) for ρ0 = 0.9 on the scale-free networks with degree exponent γ = −2.1 of different network sizes. (c) ρ(∞) versus β for

ρ0 = 0.01 and (d) for ρ0 = 0.9 on the scale-free networks with degree exponent γ = −3.0 of different network sizes. The average degree is

fixed as 〈k〉 = 10. The strength of synergy is α = 0.9, and the recovery rate is µ = 0.1.

gistic irreversible spreading on SF networks, it finds that both

the network size and the power-law exponent will alter the in-

vasion threshold and persistence threshold, but it won’t impact

the emergence of hysteresis loop.

The main contributions of our work are thus the discovery

of synergy induced explosive outbreak for reversible spread-

ing dynamics, and a qualitative and quantitative understand-

ing of the phenomenon. A number of questions still remain.

For example, the effects of network structural characteristics

such as degree heterogeneity [3], clustering [58–60], com-

munity [61–63], and core-periphery [64–67] on synergistic

spreading dynamics need to be studied. Both an accurate the-

ory method and the comparison of simulation results between

the synchronous updating method and the asynchronous up-

dating method are required. Finally, the study needs to be

extended to more realistic networks such as multiplex net-

works [20, 22, 23, 68], or temporal networks [69–71].
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APPENDIX

We compare the simulation results of the asynchronous up-

dating method and synchronous updating method [55]. And

for the synchronous updating method, we use different recov-

ery rates µ = 0.01, 0.1 and 0.2. As shown in Fig. 8, we

find the simulation results with recovery rate µ = 0.1, which

we adopted in this paper, are very close to the simulations

results of the asynchronous updating method. Both the explo-

sive spreading phenomenon and the hysteresis loop also exist

in the simulations results of asynchronous updating method,

which means the updating method doesn’t affect the conclu-

sion of the paper qualitatively.

The finite-size analysis for random regular networks is also

shown in Fig. 9, and some results are also presented in the

inset of subfigure (b) in Fig. 3. It finds that the explosive

spreading phenomenon and the hysteresis loop will survive

in the thermodynamical limit.

The asynchronous updating method: At any time t,
we calculate each node’s transition rate ηi(t). The rate

for any susceptible node becoming infected is ηi(t) =
∑

j∈N(i) p(mj , α), where N(i) is the set of infected neigh-

bors of node i and mj is the number of infected neighbors

of infected node j. The rate for any infected node getting

recovered is ηi(t) = µ. Summing up all of them, we ob-

tain the total transition rate a(t) =
∑

i ηi(t). And the time
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FIG. 8. (Color online) The comparison between the simulation re-

sults of asynchronous updating method and synchronous updating

with different recovery rates. The infected density ρ(∞) in the

steady state versus β/µ for ρ0 = 0.01 (a) and ρ0 = 0.9 (b) on

random regular networks with network size N = 104 and average

degree 〈k〉 = 10. The strength of synergy is α = 0.9. Therein,

async means asynchronous updating and sync means synchronous

updating.

at which the next transition event occurs is t′ = t + dt,
where dt = 1/a(t). The node chosen to change its state at

time t′ is sampled with a probability proportional to ηi(t).
That is, we generate a uniform number r ∈ [0, 1) and if
∑k−1

j=1 ηj(t)/a(t) < r <
∑k

j=1 ηj(t)/a(t), then node k is

chosen to change state. The whole process is iterated until the

system reach to a stationary state, where either an absorbing

state of all susceptible nodes arises or an endemic equilibrium

is arrived (i.e., the number of infected nodes fluctuates stably

in the long time limit).
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12

[1] A. Barrat, M. Barthelemy, and A. Vespignani, Dynamical

processes on complex networks (Cambridge University Press,

Cambridge, UK, 2008).

[2] C. Castellano, S. Fortunato, and V. Loreto, Rev. Mod. Phys. 81,

591 (2009).

[3] M. E. J. Newman, Networks: An Introduction (Oxford Univer-

sity Press, Oxford, UK, 2010).

[4] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and

A. Vespignani, Rev. Mod. Phys. 87, 925 (2015).

[5] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86, 3200

(2001).

[6] M. E. J. Newman, Phys. Rev. E 66, 016128 (2002).

[7] D. H. Zanette, Phys. Rev. E 65, 041908 (2002).

[8] Z. Liu, Y.-C. Lai, and N. Ye, Phys. Rev. E 67, 031911 (2003).
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[68] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno,

and M. A. Porter, J. Comp. Net. 2, 203 (2014).
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