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Abstract

When controlling a complex networked system it is not feasible to control the full network

because many networks, including biological, technological, and social systems, are massive in size

and complexity. But neither is it necessary to control the full network. In complex networks, the

giant connected components provide the essential information about the entire system. How to

control these giant connected components of a network remains an open question. We derive the

mathematical expression of the degree distributions for four types of giant connected component,

and develop an analytic tool for studying the controllability of these giant connected components.

We find that for both Erdős-Rényi (ER) networks and Scale-free (SF) networks with p fraction of

remaining nodes, the minimum driver node density to control the giant component first increases

and then decreases as p increases from zero to one, showing a peak at a critical point p = pm. We

find that, for ER networks, the peak value of the driver node density remains the same regardless

of its average degree 〈k〉, and that it is determined by pm〈k〉. In addition, we find that for SF

networks the minimum driver node densities needed to control the giant components of networks

decrease as the degree distribution exponents increase. Comparing the controllability of the giant

components of ER networks and SF networks, we find that when the fraction of remaining nodes

p is low, the giant in-connected, out-connected and strong-connected components in ER networks

have lower controllability than those in SF networks.
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I. INTRODUCTION

Many real-world complex systems, including social systems [1], biological systems [2],

and the Internet [3] can be modeled as complex networks [4]. In recent decades, studies of

the structure and dynamics of complex networked systems [1–6] have enabled us to under-

stand both natural and technological systems, but the ultimate proof that we understand

these systems is indicated by how well we are able to control them [7]. According to con-

trol theory [8], a dynamic system is controllable if, using appropriate external inputs, the

state of the system state can be driven from any initial state to any desired state within a

finite time period. An analytic framework has been developed for studying the structural

controllability of complex networks, which is denoted by the minimum driver node density

[7], via a combination of tools from network science [9], control theory [10], and statistical

physics [11], and this has triggered a hotspot of research activity [12–19]. These studies of

the controllability of complex networks can help us understand complex systems in science

and engineering, and have the potential of generating technological breakthroughs in our

ability to control them. [20].

Most of the studies cited above have focused on complete control. Complete control

is essential in some engineered systems, such as the fly-by-wire system for controlling the

surfaces of an airplane and cruise control systems in automobiles [21], but because many

biological, technological, and social systems are massive in size and complexity, it is not

feasible to attempt complete control of the network [22]. But neither is it necessary. Gao

et al. recently developed a approach for studying the targeted control of complex networks

[22], and focused on two ways of choosing which subset of nodes to control, (i) a random

scheme in which a fraction f of nodes are chosen uniformly at random and (ii) a local scheme

in which the chosen nodes form a connected component that constitute a well-defined local

neighborhood. Gao et al. [22] developed an alternative k-walk theory and a greedy algorithm

for studying the target control of networks, and found that the structural controllability

approach used for full control overestimates the minimum number of driver nodes required

for targeted control, and that many real-world networks are suitable for efficient targeted

control.

We can also select the target node set to be the functional nodes belonging to the giant

connected component of the network [23]. When researchers study the robustness of a
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networked system, only the nodes in giant connected components are considered functional

[24–26]. The functioning of networked systems is crucially dependent on the connectivity

between nodes that enables them to function cooperatively as a network, e.g., airline routes,

electric power grids, and the Internet [25]. Here we choose the nodes of the giant connected

components to be the target node sets. There are four types of giant connected component

[23, 27, 28] in a directed network: (i) giant weakly-connected components (GWCC) in which

each pair of nodes can connect via a path irrespective of the directionality of the link, (ii)

giant strongly connected components (GSCC), in which each pair of nodes can connect by

directed paths, (iii) giant in-components (GIN), the set of nodes from which the GSCC

are approachable by directed paths; and (iv) the giant out-component (GOUT), the set of

nodes approachable from the GSCC by directed paths. A theoretical tool for analyzing the

controllability of the giant components of an arbitrary complex network remains an open

problem.

Here we develop an analytic tool to study the controllability of the four giant components

in a directed network with an arbitrary joint degree distribution. We first present a new

method to calculate the in-degree and out-degree distributions of the giant components. The

mathematical expressions of the degree distributions of the giant components are interesting

and fundamental in network science. If we knew the degree distributions of a network

or a sub-network, we can study the properties of the network or the sub-network, such

as controllability [7], robustness [26], synchronization [29], resilience [30] and many more.

Though the degree distribution of the giant component of an undirected network [31] is

known, we lack the analytical tools for degree distributions of the giant components of

directed networks. We derived the in-degree and out-degree distributions of the four types

giant component of a network with arbitrary degree distributions. With our new results of

the giant components090005 degree distributions, one can use them to study the network

robustness, synchronization, and resilience.

Then we use the structural controllability theory to compute the minimum driver node

densities gD required to control the giant components. We also study how the minimum

driver node densities gD change when a randomly chosen 1−p fraction of nodes are removed

from the full network. When the fraction of the remaining nodes p increases from zero to

one, the minimum driver node density first increases and then decreases, showing a peak at

a critical point p = pm for both Erdős-Rényi (ER) networks and Scale-free (SF) networks.
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In particular, for each type of giant component in a ER network, the peak value gDm is

determined by the product of the fraction of the remaining nodes and the average degree p〈k〉,

indicating that for each giant component pm〈k〉 is a constant value. Thus, the critical point

pm has a reciprocal relation with the average degree 〈k〉. For the SF networks, the in-degree

and the out-degree follow power law distributions with P (kin) ∝ k−λin
in and P (kout) ∝ k−λout

out .

The minimum driver node densities required to control the giant components in SF networks

decrease as the degree distribution exponents λin and λout increase. We find that the GWCC

in ER networks are easier for control than that in SF networks with the same average degree.

For the GIN and GSCC, ER networks are not always easier for control than SF networks,

which is similar to the findings in Ref [22]. When the fraction of remaining nodes p is low,

ER networks have lower controllability than SF networks.

II. THE DEGREE DISTRIBUTIONS OF THE GIANT COMPONENTS

Given a directed network with every node assigned with an in-degree kin and an out-degree

kout from a joint probability distribution P (kin, kout), we define the generating function of

the degree distribution

Φ(x, y) =
∞∑

kin,kout

P (kin, kout)x
kinykout, (1)

where x, y are arbitrary complex variables [27]. The Z-transform of the out-degree distri-

bution of the node, arrived by following a randomly chosen link when one moves along the

link direction (called a branching process [23]) is Φ1(1, y) = ∂xΦ(x, y)|x=1/∂xΦ(1, 1), where

∂xΦ(1, 1) = 〈k〉
2

with 〈k〉 being the average degree. Accordingly, the Z-transform of the

in-degree of the node can be found by considered motion in the direction opposite to that

of the directed link (also called a branching process) is Φ1(x, 1) = ∂yΦ(x, y)|y=1/∂yΦ(1, 1).

Once a fraction 1−p of nodes is randomly removed from a network, the generating functions

of the degree distributions of the remaining network and the branching processes remain the

same but must be computed from two new arguments zin = px+1− p and zout = py+1− p

[32, 33].

For the four types of giant components, we use superscripts to the variables that represent

the properties of the giant components: ‘(w)’ for GWCC, ‘(i)’ for GIN, ‘(o)’ for GOUT and

‘(s)’ for GSCC. For example, P (w)(kin, kout) represents the degree distribution of the GWCC.
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We also use the superscript ‘(g)’ to generalize all the superscripts: ‘(w)’ for GWCC, ‘(i)’

for GIN, ‘(o)’ for GOUT and ‘(s)’ for GSCC. For any of the giant component, the degree

distribution is P (g)(kin, kout)and the generating function of the degree distribution of a giant

component is Φ(g)(x, y) =
∑∞

kin,kout
P (g)(kin, kout)x

kinykout. The in-degree and out-degree

distributions of the full network are assumed to be independent from each other, thus the

in-degree and out-degree distributions of the giant component are also independent from

each other P (g)(kin, kout) = P (g)(kin)P
(g)(kout). The generating functions of the in-degree

and out-degree distributions of a giant component are Φ(g)(x, 1) =
∑∞

kin
P (g)(kin)x

kin and

Φ(g)(1, y) =
∑∞

kout
P (g)(kout)y

kout respectively. In addition, the average degree of any giant

component is denoted as 〈k〉G and 〈k〉G = 2∂xΦ
(g)(x, 1)|x=1 = 2∂yΦ

(g)(1, y)|y=1.

The directionality of a network is ignored in GWCC, and the generating function can be

reduced to be G0(x) = Φ(x, x). Here the distribution of the degree minus one of nodes that

are arrived at by following a randomly chosen link is generated by G1(x) = G′
0(x)/G

′
0(1)

[27]. The GWCC exists if G′
1(x) > 1 and the size of the GWCC W can be obtained by

W = 1−G0(uw), uw = G1(uw), (2)

where uw is the probability that one side of a randomly chosen link is connected to a

finite weakly-connected component. It follows that u2
w is the probability that a random

link belongs to a finite weakly-connected component, and 1 − u2
w is the probability that a

random link belongs to the GWCC [31]. We define hw = G0(uw) to be the probability that a

randomly chosen node belongs to a finite connected component and 1−hw is the probability

that it belongs to the GWCC.

The degree distribution of the GWCC is examined in Ref. [31]. They find that P (k) =

(1− hw)P
(w)(k) + hwP

(f)(k), where P (k), P (w)(k), and P (f)(k) are the degree distributions

of the full network, the GWCC, and the finite components, respectively. The computation

of the in-degree and out-degree distributions of the GWCC is similar to the computation of

its degree distribution, i.e., P (kin) = (1−hw)P
(w)(kin)+hwP

(f)(kin) where P (kin), P
(w)(kin)

and P (f)(kin) are the in-degree distributions of the full network, the GWCC, and the finite

components, respectively. The in-degree distribution of the finite components P (f)(kin) is

equivalent to the in-degree distribution of a randomly chosen part consisting of hw fraction
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of nodes [34], and it follows that

P (f)(kin) =

∞∑

i≥kin

P (kin)

(
i

k

)
hkin
w (1− hw)

i−kin, (3)

where
(
i

k

)
= i!

k!(i−k)!
is a combination, and the generating function of P (f)(kin) is Φ

(f)(x, 1) =

Φ(1− hw(1− x), 1). We obtain the in-degree distribution of the GWCC

P (w)(kin) =
P (kin)− hwP

(f)(kin)

1− hw
. (4)

Substituting Eqs. (3) and (4) to Eq. (1), the generating function of the in-degree distribution

of the GWCC is

Φ(w)(x, 1) =
Φ(x, 1)− hwΦ(1 − hw(1− x), 1)

1− hw
. (5)

Accordingly, we can get the out-degree distribution of the GWCC

P (w)(kout) =
P (kout)− hwP

(f)(kout)

1− hw

, (6)

where P (f)(kout) satisfies Eq. (3) by replacing kin as kout. The generating function of the

out-degree distribution of the GWCC is

Φ(w)(1, y) =
Φ(1, y)− hwΦ(1, 1− hw(1− y))

1− hw

. (7)

Figures 1(a) and 1(b) show the analytic results (solid lines) of the in-degree distribution

[Eq. (4)] and out-degree distribution [Eq. (6)] of the GWCC in a network whose in-degrees

are Possion-distributed and out-degrees are power-law distributed, respectively. They agree

well with the corresponding quantities calculated from large synthetic random networks

(symbols).

In a directed network with an arbitrary in-degree distribution P (kin) and an arbitrary

out-degree distribution P (kout), we find the following four important properties for the in-

degree and out-degree distributions of the GIN, GOUT, and GSCC (shown in Table I): (i)

the in-degree distribution of the GIN is the same as that of the full network P (in)(kin) =

P (kin); (ii) the out-degree distribution of the GOUT is the same as that of the full network

P (out)(kout) = P (kout); (iii) the in-degree distribution of the GSCC is the same as the in-

degree distribution of the GOUT P (s)(kin) = P (out)(kin); (iv) the out-degree distribution of

GSCC is the same as the out-degree distribution of the GIN P (s)(kout) = P (in)(kout). Thus

computing the in-degree distribution of the GOUT and the out-degree distribution of the

GIN gives us all of the in-degree and out-degree distributions of the GIN, GOUT, and GSCC.
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TABLE I. The in-degree and out-degree distribution of the GIN, GOUT and GSCC

In-degree Distribution Out-degree Distribution

Full Network P (kin) P (kout)

GIN P (in)(kin) = P (kin) P (in)(kout)

GOUT P (out)(kin) P (out)(kout) = P (kout)

GSCC P (s)(kin) = P (out)(kin) P (s)(kout) = P (in)(kout)

The GIN is present when Φ′
1(x, 1)|x=1 > 1 and its size is I = 1 − Φ(uin, 1), where

uin = Φ1(uin, 1) is the probability that one side of a randomly chosen link connects to a

finite in-component [23]. It follows that u2
in is the probability that a randomly chosen link

belongs to a finite in-component. The GOUT is present when Φ′
1(1, y)|y=1 > 1 and its size

is O = 1−Φ(1, uout), where uout = Φ1(1, uout) is the probability that one side of a randomly

chosen link connects to a finite out-component. It follows that u2
out is the probability that

a randomly chosen link belongs to a finite out-component. We define hin = Φ(uin, 1) and

hout = Φ(1, uout) as the fraction of nodes that do not belong to the GIN and that do not

belong to the GOUT, respectively, and 1− hin, 1− hout the fraction of nodes that belong to

the GIN and GOUT, respectively. The derivation of the out-degree distribution of the GIN

is similar to that of the above in-degree distribution of the GOUT. We next compute the

in-degree distribution of the GOUT.

Between the GOUT and the rest of the nodes that do not belong to the GOUT (non-

GOUT), no link points from the GOUT to the non-GOUT, but there are links that point

from the non-GOUT to the GOUT, which are ignored when computing the in-degree dis-

tribution of the GOUT. If we take these links connecting the GOUT and the non-GOUT

into consideration, the formula of the in-degree distribution of the GOUT is analogous to

the degree distribution of the GWCC [31], which is not the real in-degree distribution of the

GOUT, but it will help us find the real in-degree distribution. We use P
(out)
0 (kin) to denote

such in-degree distribution, that is

P
(out)
0 (kin) =

P (kin)(1− ukin
out)

(1− hout)
. (8)

In addition, the number of links in the GOUT and in the non-GOUT can be computed

explicitly, and they are 1−hout and u2
out, respectively. Because the out-degree distribution of

the GOUT is the same as the full network, so the fraction of links belonging to the GOUT is
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the same as the fraction of nodes belonging to the GOUT, which is 1− hout. A link belongs

to the non-GOUT meaning that this link belongs to a finite out-component. The probability

that a randomly chosen link belongs to a finite out-component is u2
out. Thus the fraction of

links pointing from the non-GOUT to the GOUT is fout = hout − u2
out.

To determine the in-degree distribution of the GOUT, we must eliminate the influence

of the links pointing from the Non-GOUT to the GOUT. Before removing the links point-

ing from the Non-GOUT to the GOUT, the probability that a node with in-degree kin is

P
(out)
0 (kin), as Eq. (8) shown. The probability that one link pointing from the Non-GOUT

to this node being removed is pr(kin) = kinfout/hout. In the GOUT, the probability that

the degree of a node decrease from k to k − 1 is P
(out)
0 (kin)pr(kin). After removing the links

pointing from the Non-GOUT to the GOUT, the probability that a node with in-degree

kin is P (out)(kin) = P
(out)
0 (kin) − P

(out)
0 (kin)pr(kin) + P

(out)
0 (kin + 1)pr(kin + 1). In fact, there

may be case that two or more than two links of a node being removed. However, in a large

network, the fraction of links pointing from the Non-GOUT to the GOUT is too small, and

the probability that two or more than two such links pointing to a same node is even smaller,

such cases can be ignored. Thus we obtain the probability of a node with in-degree kin in

the GOUT

P (out)(kin) =





P
(out)
0 (kin) + P

(out)
0 (kin + 1)pr(kin + 1) kin = 1,

P
(out)
0 (kin)(1− pr(kin)) + P

(out)
0 (kin + 1)pr(kin + 1) 1 < kin < k

(out)
max ,

P
(out)
0 (kin)(1− pr(kin)) kin = k

(out)
max ,

(9)

where k
(out)
max is the maximum in-degree of the GOUT. Accordingly, we get the out-degree

distribution of the GIN P (in)(kout)

P (in)(kout) =





P
(in)
0 (kout) + P

(in)
0 (kout + 1)pr(kout + 1) kout = 1,

P
(in)
0 (kout)(1− pr(kout)) + P

(in)
0 (kout + 1)pr(kout + 1) 1 < kout < k

(in)
max,

P
(in)
0 (kout)(1− pr(kout)) kout = k

(in)
max,

(10)

where k
(in)
max is the maximum out-degree of the GIN, P

(in)
0 (kout) = P (kout)(1 − uk

in)/(1− hin)

with P (kout) being the out-degree distribution of the full network, and pr(kout) = kout(hin −

u2
in)/hin.

The GSCC appears at the intersection of the GIN and GOUT, and its relative size
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takes the form S = 1 − Φ(s)(uin, uout) = 1 − Φ(uin, 1)− Φ(1, uout) + Φ(uin, uout) [23], where

uin = Φ1(uin, 1) and uout = Φ1(1, uout). The in-degree and out-degree distributions of the

GSCC are P (s)(kin) = P (out)(kin) and P (s)(kout) = P (in)(kout) respectively. Figures 1(c) and

1(d) show the analytic solutions of the in-degree and out-degree distribution of the GSCC

(solid lines) agree well with the simulation results (symbols).

III. CONTROLLABILITY OF THE GIANT COMPONENTS

The controllability of nonlinear systems is structurally similar to that of linear systems

[7, 8]. We study a system with canonical linear, time-invariant dynamics formulated by [35]

dx(t)

dt
= Ax(t) +Bu(t), (11)

where the vector x(t) = (x1(t), x2(t), . . . , xN(t))
T describes the states of the N nodes of

the networked system at time t. The N ×N matrix A is the transposition of the adjacency

matrix and captures the wiring diagram of the system and the interaction strengths between

nodes. The N × M matrix B is the input matrix (N ≥ M) that identifies the nodes

into which the input signals are injected, M is the number of input signals, and u(t) =

(u1(t), u2(t), . . . , um(t))
T is the input vector.

In control theory, a system is controllable if it can be driven from any initial state to any

desired final state during a finite time period [10]. According to Kalman’s controllability

rank condition [10], the system represented by Eq. (11) is controllable if and only if the

N ×NM controllability matrix C has full rank, i.e.,

rank(C) = rank[B,AB,A2B, . . . , AN−1B] = N. (12)

This controllability rank condition indicates that to control the full network we must identify

the number of signals and the nodes into which the signals are injected, called driver nodes.

Liu et al. [7] recently showed that a full system can be structurally controlled by inputting

signals into a minimum set of driver nodes. A system is structurally controllable if it is

possible to choose non-zero weights in A and B such that Eq. (12) holds [7]. The minimum

number of driver nodes for controlling a full network is denoted ND and the minimum driver

node density is nD = ND/N . The minimum driver node density required to control the full

complex network quantifies its structural controllability [7].
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To study the controllability of the giant components of a network, we define the minimum

number of driver node density to control a giant component as GD, and the corresponding

minimum driver node density as gD = GD/N , where N is the number of nodes in the full

network. The minimum driver node density required to control the GWCC is g
(w)
D , and

the minimum driver node density to control the GIN, GOUT and GSCC are denoted as

g
(in)
D , g

(out)
D and g

(s)
D respectively. The minimum driver node density gD is determined by

the in-degree and out-degree distributions of a giant component and the size of the giant

component. We next compute the minimum driver node densities of the giant components

in a directed network.

We compute the minimum driver node density required to control a giant component

by substituting its degree distributions (see Sec. II) for the degree distributions of the full

networks into the equation for computing the minimum driver node density for controlling

the full network [7], which is

gD = (1− hg)
1

2
{[Φ(g)(ω̂2, 1) + Φ(g)(1− ω̂1, 1)− 1]

+ [Φ(g)(1, ω2) + Φ(g)(1, 1− ω1)− 1] +
〈k〉G
2

[ω̂1(1− ω2) + ω1(1− ω̂2)]}, (13)

where the variables ω1, ω2, ω̂1 and ω̂2 satisfy




ω1 = Φ

(g)
1 (ω̂2, 1) ω2 = 1− Φ

(g)
1 (1− ω̂1, 1),

ω̂1 = Φ
(g)
1 (1, ω2) ω̂2 = 1− Φ

(g)
1 (1, 1− ω1),

(14)

with Φ
(g)
1 (x, 1) = ∂xΦ

(g)(x, 1)|x=1/
〈k〉G
2

and Φ
(g)
1 (1, y) = ∂yΦ

(g)(1, y)|y=1/
〈k〉G
2

.

To study the controllability of the giant components when there are node or link failures,

we randomly remove a fraction 1 − p of nodes and all the links connecting to these nodes.

Given a directed network with a degree distribution P (kin, kout), whose generating function

is Φ(x, y) =
∑∞

kin,kout
P (kin, kout)x

kinykout. After the nodes removal, the in-degree and out-

degree distributions of the network [34] are




P (p)(kin) =

∑∞
i≥kin

P (kin)
(
i

k

)
pkin(1− p)i−kin,

P (p)(kout) =
∑∞

i≥kout
P (kout)

(
i

k

)
pkout(1− p)i−kout.

(15)

The generating function of the degree distribution of the remaining part is Φ(zin, zout) with

zin = px + 1 − p and zout = py + 1 − p [32, 33]. Substituting Φ(zin, zout) to Eqs. (5)
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and (7), we get the generating functions of the in-degree distribution and the out-degree

distribution of the GWCC of a network after 1− p fraction of nodes removal. Similarly, the

in-degree distributions and out-degree distributions of the GIN(GOUT) and the GSCC can

be computed by substituting Φ(zin, zout) into Eqs. (9) and (10). With the in-degree and

out-degree distributions of a giant component and its relative size among the full network,

the minimum driver node density gD of the giant component can be obtained by substituting

them to Eq. (13). We next compute the driver node density gD for controlling the four giant

connected components (GWCC, GIN, GOUT and GSCC) in ER networks and SF networks.

IV. CONTROLLABILITY OF THE GIANT COMPONENTS OF ER NETWORKS

In a directed ER network with an average degree 〈k〉, the in-degree and out-degree follow

a Poisson distribution and there is no correlation between the in-degree distribution and

the out-degree distribution. After removing a fraction 1− p of nodes from the ER network,

the remaining subnetwork continues to follow a Poisson distribution with an average degree

〈k〉p. The joint degree distribution of the ER network is

P (kin, kout) = P (kin)P (kout) =
e−

〈k〉
2 ( 〈k〉

2
)kin

kin!

e
〈k〉
2 ( 〈k〉

2
)kout

kout!
, (16)

and its generating function is

Φ(x, y) = e
〈k〉p
2

(x+y−2). (17)

A. Controllability of the GWCC of ER networks

When we compute the size of the GWCC we ignore the directionality of the links and

thus the generating functions of the degree distribution and the branching process of the

full network after removing 1− p nodes is

G0(x) = G1(x) = e〈k〉p(x−1). (18)

Because the generating functions of the degree distribution and the branching process are

the same, thus hw = uw. The size of the GWCC is 1− hw, where hw ∈ [0, 1] is a solution of

the equation hw = e〈k〉p(hw−1). If the equation hw = e〈k〉p(hw−1) has multiple solutions, then

hw is the one that is closest to 1 [23]. Substituting Eq. (18) and hw to Eqs. (5) and (7), the
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generating functions of the in-degree and out-degree distributions of the GWCC are



Φ(w)(x, 1) = Φ(w)(1, x) = 1

1−hw
(e

〈k〉p
2

(x−1) − hwe
hw

〈k〉p
2

(x−1)),

Φ
(w)
1 (x, 1) = Φ

(w)
1 (1, x) = Φ(w)′ (x,1)

Φ(w)′ (1,1)
= 1

1−h2
w
(e

〈k〉p
2

(x−1) − h2
we

hw
〈k〉p
2

(x−1)).
(19)

The average degree in the GWCC is 〈k〉p(1 + hw). Substituting Eq. (19) to Eq. (13), the

minimum density of driver nodes of the GWCC after removing a fraction 1− p of nodes is

g
(w)
D = [(1+hw)(ω1+1−ω2)+

〈k〉

2
p(1+hw)ω1(1−ω2)−hw(e

−
〈k〉
2

pω1+e
〈k〉
2

phw(1−ω2))−1](1−hw),

(20)

where ω1 and ω2 are determined by




ω1 =
1

1− h2
w

(e−
〈k〉
2

p(1−ω2) − h2
we

− 〈k〉
2

phw(1−ω2)),

1− ω2 =
1

1− h2
w

(e−
〈k〉
2

pω1 − h2
we

−
〈k〉
2

phwω1).
(21)

B. Controllability of the GIN and GOUT of ER networks

Because of the symmetries between component sizes and degree distributions between

GIN and GOUT, the driver node densities of the GIN and GOUT are also the same, i.e.,

g
(in)
D = g

(out)
D . We next we show the analysis of the driver node density g

(out)
D for controlling

the GOUT among the full network after remove a fraction 1− p nodes.

After randomly removing 1−p fraction nodes from a ER network with the average degree

〈k〉, its in-degree and out-degree distributions are P (kin) = e−
〈k〉p
2 ( 〈k〉p

2
)kin/kin! and P (kout) =

e−
〈k〉p
2 ( 〈k〉p

2
)kout/kout!. The generating functions of the out-degree distribution Φ(1, y) and

the branching process Φ1(1, y) in the full network after remove 1 − p fraction of nodes are

Φ(1, y) = Φ1(1, y) = e
〈k〉p
2

(y−1). The GOUT emerges when there are nontrivial solutions of

the equation uout = Φ1(1, uout) = e
〈k〉p
2

(uout−1), and the size of GOUT is I = 1 − hout where

hout = e
〈k〉
2

(hout−1). Thus for the GOUT of a ER network, hout = uout. In addition, the

generating functions of the out-degree distribution and the branching process of the GOUT

are

Φ(out)(1, y) = Φ
(out)
1 (1, y) = e

〈k〉p
2

(y−1). (22)

The average degree of the GOUT is the same as the full network, i.e., 〈k〉I = 〈k〉p. Between

the GOUT and the part of nodes that do not belong to the GOUT (Non-GOUT), there is

a fraction fout = hout − h2
out of links that point from the Non-GOUT to the GOUT. If we

12



take the links pointing from the non-GOUT to the nodes in GOUT into consideration, the

in-degree distribution of the GOUT is P
(out)
0 (kin) = P (kin)(1− hkin

out)/(1− hout). We remove

the links connecting the GOUT and the non-GOUT to eliminate their influence on the in-

degree distribution of the GOUT. Among all the links pointing into the nodes of the GOUT,

the probability that a link has been removed is fout/hout = 1 − hout, and the probability of

a link of a node with in-degree kin has been removed is pr(kin) = kin(1 − hout). Thus the

in-degree distribution of the GOUT is

P (out)(kin) =





e−
〈k〉p
2 ( 〈k〉p

2
)(1 + 〈k〉p

2
(1− h2

out)) kin = 1,

e−
〈k〉p
2 ( 〈k〉p

2
)kin

kin!
(
(1−hk

out)(1−kin(1−hout))

1−hout
+ 〈k〉p

2
(1− hkin+1

out )) 1 < kin < k
(out)
max ,

e−
〈k〉p
2 ( 〈k〉p

2
)kin

kin!
(
(1−hk

out)(1−kin(1−hout))

1−hout
) kin = k

(out)
max ,

(23)

where k
(out)
max is the maximum in-degree of the GOUT of a ER network. Thus the generating

functions of the in-degree distribution of the GOUT and the branching process in GOUT

are

Φ(out)(x, 1) =

k
(out)
max∑

kin=1

P (out)(kin)x
kin , Φ

(out)
1 (x, 1) =

Φ(I)′(x, 1)

Φ(I)′(x, 1)|x=1

. (24)

Substituting Eq. (24) to Eqs. (13) and (14), we can get the minimum fraction driver nodes

for controlling the GOUT among the full network g
(out)
D .

C. Controllability of the GSCC of ER networks

For the GSCC of a ER network with the average degree being 〈k〉, its in-degree distri-

bution and the out-degree distribution are the same with each other, and they all equal

to the out-degree distribution of the GIN P (in)(kout). Thus the generating functions of the

in-degree and out-degree distributions and the branching processes of the GSCC are




Φ(s)(x, 1) = Φ(s)(1, x) =

∑k
(in)
max

kout=1 P
(in)(kout)x

kout,

Φ
(s)
1 (x, 1) = Φ

(s)
1 (1, x) = Φ(I)′ (1,x)

Φ(I)′(1,x)|x=1
.

(25)

In addition, the average degree of the GSCC is the same as the full network after removing

1 − p fraction of nodes 〈k〉s = 〈k〉p, and the size of the GSCC is 1 − hs = (1 − hin)
2.

The minimum driver node density of the GSCC g
(s)
D can be computed by substituting the
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generating functions of the in-degree and out-degree distributions of the GSCC to Eqs. (13)

and (14).

In any of the four giant components (GWCC, GIN, GOUT and GSCC), the driver node

density gD first increases and then decreases as the fraction of the remaining nodes p or the

average degree 〈k〉 increasing and shows a peak. Figure 2 shows the analytic results of the

minimum driver node densities of the GWCC, GIN (GOUT) and GSCC (solid lines), and

they agree with the simulation results (symbols).

V. THE MAXIMAL DRIVER NODE DENSITY

The minimum driver node density gD required to control the giant component first in-

creases and then decreases as the fraction of the remaining nodes p increases, and it shows a

peak at a critical point p = pm (see Fig. 3). As 1−p increases, the number of nodes and links

in the giant component decrease simultaneously. When p = 1, there is no node removal.

As we remove nodes, the network fragments into smaller components, the sparseness level

increases, and the result is that the sparseness level of the giant component increases and its

size decreases. As the sparseness level of the giant component increases, the number of driver

nodes required to maintain control increases, but as the size the giant component decreases,

the number of driver nodes required to maintain control decreases. At the beginning of the

node removal process, the size of the giant component decreases slowly but quickly becomes

more sparse. Thus the minimum driver node density gD required to control the giant com-

ponent at first increases. After the critical point, the size of the giant component decreases

rapidly and the sparseness level slowly increases, so the minimum driver node density gD

decreases and continues to decrease until there is no giant component in which gD = 0.

An ER network with an average degree 〈k〉 continues to be a ER network after a 1 − p

fraction of nodes is randomly removed, and the average degree becomes p〈k〉 [32]. The peak

value of the minimum driver node density is denoted gDm. The value of gDm is determined

by the average degree p〈k〉, rather than by p or 〈k〉 separately. Thus for different p and 〈k〉,

gDm remains the same [see Figs. 3(a), 3(b) and 3(c)]. At the point where the peak appears,

pm〈k〉 = C where C is a constant. Thus the critical point pm has a reciprocal relation with

〈k〉.

We next calculate the maximum value of the minimum driver node density for each giant
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component. By solving Eqs. (20) and (21) where p〈k〉 is the variable, we find that the

minimum driver node density of the GWCC reaches its maximum value of g
(w)
Dm = 0.2888.

Thus the critical point p
(w)
m is

p(w)
m =

2.2567

〈k〉
. (26)

Accordingly, for the GIN(GOUT), by substituting the generating functions of their in-degree

distribution, out-degree distribution and the corresponding branching processes, Eqs. (22)

and (24), into Eqs. (13) and (14), we can calculate the minimum driver node density for

controlling the GIN(GOUT). By doing the numerical computing with p〈k〉 changes, we find

the minimum driver node density for controlling the GIN(GOUT) reaches its maximal value

of g
(in)
Dm = g

(out)
Dm = 0.1648. Thus the critical points p

(in)
m and p

(out)
m are

p(in)m = p(out)m =
3.2385

〈k〉
. (27)

Similarly, the minimum driver node density for controlling the GSCC can be calculated by

substituting the Eq. (25) into Eqs. (13) and (14). The minimum driver node density for

controlling the GSCC reaches its maximal value of g
(s)
Dm = 0.0726. Thus the critical point

p
(s)
m is

p(s)m =
4.1234

〈k〉
. (28)

In each giant component, the critical point pm shows a reciprocal relation with 〈k〉. As

shown in Fig. 3(d), pm decreases gradually as the average degree 〈k〉 increases.

The fact that the critical fraction of remaining nodes pm can be regarded as a reciprocal

function of 〈k〉 reminds us the critical threshold pc = 1/〈k〉 after which the size of the

giant connected component of a undirected ER network changes from zero to nonzero in

a percolation attacking process (as the remaining fraction of nodes p increasing from zero

to one) [36]. In addition, in a system of two interdependent ER networks with the average

degree 〈k〉 [24], there is also a critical threshold pc = 2.4554/〈k〉 where the size of the mutual

giant component jumps from a nonzero to zero as p decreasing in a percolation process. The

critical threshold pc characterizing the system robustness has captured plenty of attentions

from scientists [23, 27, 33, 37, 38]. The critical fraction pm at which the minimum driver node

density requried to control the giant component reaches its maximum value also characterizes

the robustness of the controllability of the giant component. There are additional interesting

properties yet to be uncovered.
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VI. CONTROLLABILITY OF THE GIANT COMPONENTS IN SF NETWORKS

SF networks approximate real networks such as protein-protein interaction network [39],

Internet [40] and social networks [41]. The degrees of the nodes of SF networks follow power

law distribution, and there are different models of SF networks, such as the Barabáse-

Albert model [1], the static model [7] and SF networks with a structural cutoff [26, 33].

We study a directed SF network [26] which are characterized by a power law in-degree

distribution, P (kin) ∼ k−λin with min ≤ k ≤ Min, and a power law out-degree distribution,

P (kout) ∼ k−λout with mout ≤ k ≤ Mout, where min and mout are the minimum in-degree

and out-degree respectively, and Min and Mout are the maximum in-degree and out-degree

respectively. The average degree of a SF network 〈k〉 changes when the minimum in-degree

min and minimum out-degree mout changes. Even two networks have the same parameter

λ, their average degrees are different with different minimum degree, so in this case λ and

〈k〉 are relatively independent [42]. In addition, the analytical framework in our paper is

general for all networks with arbitrary degree distributions. Here we use ER networks and

SF networks [26] as examples to show the results of the framework. Like many previous work

[25, 26, 43], this kind of SF network works well for our theory framework. Our analytical

framework can also be applied to other models, for example static model, by substituting the

degree distribution of our SF network (Eq. (29)) with the equation of the degree distribution

of static model.

The in-degree and out-degree distributions of a SF network [33] are

P (kin) =
(kin + 1)1−λin − k1−λin

in

(Min + 1)1−λin −m1−λin
in ]

, P (kout) =
(kout + 1)1−λout − k1−λout

out

(Mout + 1)1−λout −m1−λout
out ]

. (29)

For a directed SF network where no correlation between the in- and out-degree of a given

node exists, the degree distribution is defined by the generating function

Φ(x, y) =

∑Min

min
[(kin + 1)1−λin − k1−λin

in ]xkin

[(Min + 1)1−λin −m1−λin
in ]

∑Mout

mout
[(kout + 1)1−λout − k1−λout

out ]ykout

[(Mout + 1)1−λout −m1−λout
out ]

, (30)

After randomly removing a fraction 1 − p nodes from the SF network, the in-degree

distribution of the remaining network [34] is

P (p)(kin) =

∞∑

i≥kin

P (kin)

(
i

k

)
pkin(1− p)i−kin, (31)
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and the out-degree distribution is

P (p)(kout) =
∞∑

i≥kout

P (kout)

(
i

k

)
pkout(1− p)i−kout. (32)

The generating function of the degree distribution of the remaining network is

Φ(zin, zout) =

∑Min

min
[(kin + 1)1−λin − k1−λin

in ]zkinin

[(Min + 1)1−λin −m1−λin
in ]

∑Mout

mout
[(kout + 1)1−λout − k1−λout

out ]zkoutout

[(Mout + 1)1−λout −m1−λout
out ]

, (33)

where zin = px + 1 − p and zout = py + 1 − p [32]. For simplicity and without lose of

generalisation, we assume that the SF network has the same in-degree distribution and

out-degree distribution, i.e., min = mout = m, Min = Mout = M and λin = λout = λ.

The procedure for calculating the minimum driver node densities required to control the

giant connected components in SF networks is similar to that used in ER networks. The

generating functions for computing the size of GWCC are

Φ(w)(x) = [

∑M

m [(k + 1)1−λ − k1−λ](px+ 1− p)k

[(M + 1)1−λ −m1−λ]
]2, (34)

and the generating function of the branching process is

Φ
(w)
1 (x) = Φ(w)′(x)/Φ(w)′(1). (35)

Substituting Eqs. (34) and (35) into Eq. (2) gives us the size of the GWCC 1 − hw. Then

substituting the in-degree and out-degree distribution of the remaining part of network

after an initial failure, Eqs. (31) and (32), respectively into Eq. (4) and Eq. (6) gives us

the in-degree and out-degree distributions of the GWCC, which are P (w)(kin) and P (w)(kout).

Substituting P (w)(kin) and P (w)(kout) into Eqs. (5) and (7) produces the generating functions

of the in-degree and out-degree distributions of the GWCC of the SF network. Then the

Eqs. (13) and (14) gives us the minimum driver node density for control the GWCC of a

SF network g
(w)
D .

Substituting the in-degree and out-degree distributions of the remaining SF network,

Eqs. (31) and (32), into Eq. (9) gives us the in-degree distribution of the GOUT P out(kin),

and substituting them into Eq. (10) gives us the out-degree distribution of the GIN P in(kout).

Using the properties of the in-degree and out-degree distributions of the GIN, GOUT and

GSCC (as shown in Table I), with P out(kin), P
in(kout), and Eqs. (31) and (32), we obtain all

the in-degree and out-degree distributions of the GIN, GOUT and GSCC of a SF network.
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Using Eq. (1) and these in-degree and out-degree distributions, we can get their generating

functions. Substituting their generating functions into Eqs. (13) and (14) gives us all the

minimum driver node densities required to control the GIN, GOUT and GSCC.

As the fraction of remaining nodes p after initial node failure increases, all the minimum

driver node densities required to control the GWCC, GIN, GOUT and GSCC of a SF network

first increase and then decrease, showing a peak [see Fig. 4(a)]. The mechanism that forms

these peaks is the same as that found in ER networks. It is produced by the competition

between the decrease of the minimum driver node density caused by the decrease of the

giant component size, and the increase of the minimum driver nodes number caused by the

increase in giant component sparseness. We also find that the minimum driver node density

of the giant component gD decreases as the degree distribution exponent λ increases [see Fig.

4(b) and Fig. 5]. Comparing the controllability of the giant components in ER networks and

SF networks, the giant components in ER networks are not always easier for control than

the giant components of SF networks. For the GIN, GOUT and GSCC, when the fraction of

remaining nodes p is low, ER networks have lower controllability than SF networks, which

is similar to the findings in Ref. [22].

VII. CONTROLLABILITY OF GIANT COMPONENTS UNDER NODE CLASSI-

FICATION BASED ATTACK

In a network, nodes are different based on their role in maintaining controllability [7],

and nodes can be classified into three different groups: critical, ordinary and redundant. A

critical, ordinary and redundant node respectively acts as a driver node in all, some or none

of the control configurations [14]. We study how the minimum driver node density gD for

controlling the giant components behave if a fraction of only critical, ordinary or redundant

nodes being removed.

We first use the random sampling method in Ref. [44] to classify the nodes into critical,

ordinary and redundant nodes. Then in the set of critical nodes, we randomly remove 1−pcr

fraction of nodes and compute the minimum driver node density gD that needs to control

the giant components in the remaining network. As shown in Fig. 6, as the fraction of

remaining critical nodes pcr increase, gD shows different behavior for different networks: (1)

when 〈k〉 is small (for example, ER network with 〈k〉 = 3), continuously increases; (2) when
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〈k〉 is high (for example, ER network with 〈k〉 = 6), continuously decreases. The behavior

of gD is related to the density of the critical nodes among the whole network. When the

density of critical nodes is high where 〈k〉 is small, the network is relatively sparse and the

removal of critical nodes could cause a giant component being even sparser, which requires

more driver node density to control a giant component. When the density of critical nodes

is low where 〈k〉 is high, the removal of the critical nodes has little impact of the density of

a giant component. While more critical nodes in a giant component it requires more driver

nodes, so the removal of critical nodes could result in the decrease of the driver node density.

When we remove 1 − pre fraction of redundant nodes, gD also shows different behavior

when pre changes: (1) when the giant component is sparse (for example, ER network with

〈k〉 = 3), continuously increases; (2) when the giant component is dense (for example, ER

networks with 〈k〉 = 6 and SF networks with λ = 2.6 whose 〈k〉 is nearly 10), first increases

and then decreases; (3) when the giant component is even dense (for example, the GWCC

in SF network with λ = 2.2 whose 〈k〉 is 17), continuously decreases. When the density

is relatively low as the cases of the GIN and GSCC of ER network with 〈k〉 = 3, the

whole network is relatively sparse and the giant components are also sparse. The removal of

redundant nodes could cause the giant components being ever sparser, which results in the

increasing in the gD. When the density of the redundant nodes is relatively high as the case

of ER network with 〈k〉 = 6. As the remaining fraction of redundant nodes pre increases, the

remaining network becomes denser, and the giant components appear and become larger,

so that gD increases. As pre becomes larger than a critical value pm, the giant components

becomes denser, so that gD decreases. For some highly dense networks as the cases of SF

networks with λ = 2.2 and λ = 2.6, their GWCC is always exist and also dense. More

redundant nodes remains, the GWCC is even denser, so that less gD is needed. That is,

gD continuously decreases. For the case of removing 1 − por ordinary nodes, gD also shows

different behaviors that are similar to the case of redundant nodes removal, and different

behaviors are also related to the density of the ordinary nodes.

For the critical, redundant and ordinary nodes base attack, the minimum driver node

density gD shows different behaviors in different networks. The appearances of different

behaviors are related to different densities of critical, redundant and ordinary nodes among

networks. In future, our work can be extended to other kinds of attack, for example, different

centralities (degree, betweeness, closeness etc) based attack.
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VIII. CONCLUSION

We have studied the controllability of four types of giant component in directed networks

with arbitrary joint degree distributions. We first present our method for deriving the in-

degree and the out-degree distributions of the four giant components: GWCC, GIN, GOUT,

and GSCC, and we then use structural controllability theory to calculate the minimum driver

node density gD required to control these giant components.

We find that for both ER networks and SF networks with p fraction of remaining nodes,

the minimum driver node density to control the giant component first increases and then

decreases as p increases from zero to one, showing a peak at a critical point p = pm.

Especially, for ER networks, the peak values of the driver node density remains the same

regardless of its average degree 〈k〉, and the products of the critical point and average

degrees are the newly found constant values: p
(w)
m 〈k〉 = 2.2567 for the GWCC, p

(in)
m 〈k〉 =

p
(out)
m 〈k〉 = 3.2385 for the GIN and GOUT, and p

(s)
m 〈k〉 = 4.1234 for the GSCC. These

newly found constant values are very important for understanding the controllability of

the giant components under nodes fail. Similar to two important constant values in the

percolation of complex networks: (1) in a single ER network, the critical fraction of remaining

nodes pc satisfies that 〈k〉pc = 1 [27]; (2) in two fully interdependent networks, it satisfies

〈k〉pc = 2.4554 [24]. These two constant values are very important in understanding the

robustness of complex networks. In addition, we find that the giant components of ER

networks are not always easier for control than the giant components of SF networks. For

the GIN and GSCC, when the fraction of remaining nodes p is low, ER networks have lower

controllability than SF networks.

Our results suggest questions for further study: (i) How can we interpret the physical

properties of the critical point pm at which the minimum driver node density requried to

control the giant component reaches its maximum value? (ii) What properties do the driver

nodes for controlling giant components have in such real-world systems as gene regulatory

networks and social networks? (iii) How can we quantify the controllability of a giant

component with non-linear dynamics? Understanding these questions would significantly

improve our understanding of the control principles in complex systems.
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FIG. 1. The in-degree and out-degree distributions of the full network, and the four giant com-

ponents of a network with the in-degrees Poisson distributed and the out-degrees power law dis-

tributed, after removing p = 0.5 fraction nodes from the original network. (a), The in-degree

distribution and (b) the out-degree distribution the remaining part after nodes removal (Full) and

the GWCC of a network with the average degree 〈k〉 = 4. The average degree of the original

network of (c), (d) is 〈k〉 = 4. From (c) and (d), we find that (i) the in-degree distribution of the

GIN is the same as that of the full network P (in)(kin) = P (kin); (ii) the out-degree distribution of

the GOUT is the same as that of the full network P (out)(kout) = P (kout); (iii) the in-degree distri-

bution of the GSCC is the same as the in-degree distribution of the GOUT P (s)(kin) = P (out)(kin);

(iv) the out-degree distribution of GSCC is the same as the out-degree distribution of the GIN

P (s)(kout) = P (in)(kout). The out-degree distribution exponent of the network in (b) and (d) is

λ = 2.5. The lines represent theoretic results and they agree with the simulation results (denoted

by symbols and the size of each network is N = 106).
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FIG. 2. The driver node densities of the GWCC, GIN(GOUT) and GSCC of ER networks. The

driver node density gD for each giant component first increases ans then decreases, as (a) the

fraction of the remaining nodes p increasing and (b) the average degree 〈k〉 increasing, showing a

peak. The solid lines represent the theoretic results, when 〈k〉 = 6 in (a) and p = 0.6 in (b), and

the symbols are simulation results where each network with the number of nodes N = 106. They

agree well with each other.
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FIG. 3. Analyse of the peak value of driver node density for controlling the giant components of

ER networks. The peak value gDm remains the same under different fraction of remaining nodes

p and different average 〈k〉 for (a) the GWCC, (b) the GIN/GOUT, and (c) the GSCC. (d)The

critical point pm in a ER network with average degree 〈k〉 where the driver node densities of the

GWCC, GIN(GOUT) and GSCC reach their maximums: for the GWCC (solid line), the minimum

driver node density reaches its maximal value n
(w)
pD = 0.2888 when pm = 2.2567

〈k〉 ; for the GIN(GOUT)

(dot dash line), the minimum driver node density reaches its maximal value n
(in)
pD = 0.1648 when

pm = 3.2385
〈k〉 ; for the GSCC (dash line), the minimum driver node density reaches its maximal value

n
(s)
pD = 0.0726 when pm = 4.1234

〈k〉 .
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FIG. 4. The minimum driver node densities of the giant components of SF networks. (a) As

the fraction of remaining nodes p changes from zero to one, for each giant component, the driver

node density gD increases and then decreases, displaying a peak. (b) The driver node density

gD decreases constantly as the degree distribution exponent λ increases. The solid lines are the

theoretic results when λ = 2.6 for (a) and p = 0.6 for (b). and the symbols are simulation results

where each network with the number of nodes N = 106, They agree well with each other.
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FIG. 5. The minimum driver node densities of the (a) GWCC, (b) GIN and (c) GSCC of SF

networks with different values of λ and ER networks. For each giant component, the driver node

densities first increase and then decrease as the remaining node fraction p increases, showing a

peak value at the critical point pm. The peak values are different for different values of λ. For SF

networks with different λ, the driver node densities gD for decrease as λ increases. The average

degrees of SF networks with λ = 2.6, λ = 2.8 and λ = 3.2 are respectively equal to the average

degrees of ER network with 〈k〉 = 9.6, 〈k〉 = 8.1 and 〈k〉 = 6.5. The GWCC in ER networks is

easier for control than that in SF networks with the same average degree. For the GIN and GSCC,

ER networks are not always easier for control than SF networks. When the fraction of remaining

nodes p is low, ER networks have lower controllability than SF networks.
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FIG. 6. Critical, redundant and ordinary nodes based attack. (a), (b) and (c) respectively show

how the minimum driver node density g
(w)
D required to control the GWCC changes when 1 − pcr

fraction of critical nodes, 1−por fraction of ordinary nodes, and 1−pre redundant nodes are removed

from the network. (d), (e) and (f) show the behavior of the minimum driver node density g
(in)
D or

g
(out)
D required to control the GIN or GOUT. (g), (h) and (i) show the behavior of the minimum

driver node density g
(s)
D required to control the GSCC. When we only remove critical nodes, gD

may continuously increase, or continuously decrease for different densities of critical nodes among

the network. When only redundant or ordinary nodes removed, gD may continuously increase,

continuously decrease, or first increase and then decrease for different densities of redundant and

ordinary nodes among the whole network.
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