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The generation of rogue waves is investigated in a class of nonlocal nonlinear Schrödinger (NLS)
equations. In this system, modulation instability is suppressed as the effect of nonlocality increases.
Despite this fact, there is a parameter regime where the number and amplitude of the rogue events
increase as compared to the standard NLS equation, which is a limit of the system when nonlocality
vanishes. Furthermore, the nature of these waves is investigated; while no analytical solutions are
known to model these events, numerically it is shown that these rogue events differ significantly
from either the rational soliton (Peregrine) solution of the limiting NLS equation. The universal
structure of the associated rogue waves is discussed and a local description is presented. These
results can help in the experimental realization of rogue waves.
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I. INTRODUCTION

Abnormally large waves have been observed in the
ocean; such “rogue” waves can be extremely dangerous
even to large ships. This has motivated wide ranging
research on rogue and extreme phenomena that spans
across sciences [1–9]. Understanding of these phenomena
has often been motivated by studies of the well-known
integrable nonlinear Schrödinger equation (NLS) with
cubic/Kerr nonlinearity and small perturbations of this
equation [10].

The NLS system provides a unique balance between
the critical effects that govern propagation in dispersive
media, namely dispersion/diffraction and nonlinearity.
This balance leads to the formation of solitons, which
are characterized by their stability and robustness as they
maintain their shape and velocity even when they inter-
act. Rogue waves, on the other hand, and for the pur-
pose of this article, can appear anywhere and then disap-
pear. They are often described by the so-called Peregrine
soliton [11, 12], which is a special type of solitary wave
formed on top of a continuous wave (cw) background; in
contrast to other well-known soliton solutions of the NLS
equation it is written in terms of rational functions with
the property of having relatively large amplitude and be-
ing localized in both time and space. These properties
make these solutions useful to describe such events [13].
Notably, in the context of oceanic waves criteria for a
wave to be called “rogue” are summarized in Ref. [14].
Here, our criteria for rogue waves, much like nonlinear op-
tics and related nonlocal media is that these rogue waves
grow to a factor of 3 or more compared to the maximum
of the initial conditions. As is common in nonlinear op-
tics, cf. [1], we take initial conditions to be a wide unit
gaussian.

The specific conditions that cause their formation is
still a subject of enormous interest; it is generally recog-
nized that modulation instability (MI) is among the im-
portant mechanisms which lead to rogue wave excitation
[15–19]. MI is the nonlinear mechanism of the self-wave

interactions, called the Benjamin-Feir instability [20] in
water wave physics. In nonlinear optics, it is considered
a basic process that classifies the qualitative behavior of
modulated waves [21]. Rogue waves, as a result of an MI
process, can be identified as high-contrast peaks of ran-
dom intensity and are the result of the unstable growth
of weak wave modulations. Mathematically, MI is a fun-
damental property of many nonlinear dispersive systems
and is a well documented and understood phenomenon
[22].

Studies of the integrable NLS and weakly perturbed
NLS equations have provided important information
about rogue phenomena. However, this NLS equation
does not model a range of phenomena; e.g. interacting
water waves [23], or gain and loss which are inevitable in
any physical system [24]. Hence, in order to model dif-
ferent classes of physical systems often it is necessary to
go beyond the standard NLS description. There are, for
example, important systems that display nonlocal non-
linear mechanisms. Such media include, nematic liquid
crystals [25, 26], thermal nonlinear optical media [27, 28]
and plasmas [29, 30]. Here we will study a specific class
of nonlocal equations which has been shown to describe
liquid crystals [25, 26, 31]. In this system the nonlocality
yields important differences from the integrable focusing
NLS equation.

The effect of the nonlocality, of the type we are con-
sidering is significant; here the nonlocal term replaces
the previously local cubic nonlinearity. The integrable
nature of the equation is likely lost and while soliton
solutions may also be found they can lack the freedom
of various parameters describing the soliton’s properties
(amplitude, velocity, etc). In terms of rational (rogue
type) solutions, none are known, to our knowledge. In
terms of the MI properties in the model we investigate,
the cw solutions are always unstable with the nonlocality
suppressing the instability (although it does not elimi-
nate the effect) [32] as compared to the standard NLS
equation. It has also been shown that some types of
nonlocality eliminates collapse in all physical dimensions
[33]. These observations suggest that certain types of
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nonlocality may have a stabilizing effect. We find, here,
that the particular type of nonlocality we examine in this
article does not always suppress the number and size of
the rogue events.
It is important to understand the nature of the rogue

wave and its origins; some work in this direction has been
done [22, 34, 35]. Here, we find that rogue waves of the
nonlocal system we investigate have some properties that
are similar to those in the integrable NLS equation. Some
details are different: e.g. the Peregrine rational solution
of the integrable NLS system has no direct analogue in
our (likely nonintegrable) system. Nevertheless there are
certain local universal features and solution structure as-
sociated with the rogue events of the nonlocal system we
investigate that are similar.

II. BASIC EQUATIONS AND MI ANALYSIS

The normalized system that governs propagation in
nonlocal media reads [26, 36]

i
∂u

∂z
+ d

∂2u

∂x2
+ 2gθu = 0 (1a)

ν
∂2θ

∂x2
− 2qθ = −2|u|2 (1b)

Depending on the physical situation the system and its
coefficients correspond to different physical quantities.
For example, in the context of nematic liquid crystals,
u is the complex valued, slowly varying envelope of the
optical electric field and θ is the optically induced devi-
ation of the director angle. Diffraction is represented by
d and nonlinear coupling by g. The effect of nonlocality
ν measures the strength of the response of the nematic
in space, with a highly nonlocal response when ν(> 0) is
large. The parameter q > 0 is related to the square of
the applied static field which pre-tilts the nematic dielec-
tric [31]. In this context, d, g, q are O(1) while ν is large
(ν ∼ 102) [26, 31].
In order to investigate the stability properties of sys-

tem (1) consider its cw wave solution

u(z) = u0e
2igθ0z, θ0 =

1

q
u2
0

where u0 is a real constant. Adding a small perturbation
to this cw solution

u(x, z) = [u0 + u1(x, z)]e
2igθ0z

which is assumed to behave as exp[i(kx − ωz)] leads to
the dispersion relation:

ω2 =
dk2

(

dνk4 + 2dqk2 − 8gu2
0

)

νk2 + 2q
(2)

It is clear that when dg > 0 the system is unstable (and
is termed focusing) whereas when dg < 0 the system is

spectrally stable (and is termed defocusing). Also, when
ν = 0 the equation reduces to the dispersion relation of
the relative NLS equation, which has the same stabil-
ity criteria. From this dispersion relation we can iden-
tify three critical values that characterize the instability,
namely the maximum growth rate, Im{ωmax} its loca-
tion kmax, and the width of the instability region, kc.
The value Im{ωmax} is a measure of the propagation dis-
tance needed for the instability to occur (the larger its
value the faster the instability occurs) and kc, defines the
range of possible wavenumbers that can yield instability;
the larger the value of kc is the more unstable the system
is, as more wave numbers can lead to unstable propaga-
tion. By differentiating Eq. (2), with respect to k, we
find that kmax is the solution of the algebraic equation

d
(

νk3 + 2qk
)2

− 8gqu2
0 = 0

while kc satisfies

dνk4 + 2dqk2 − 8gu2
0 = 0.

Both equations can be solved in closed form (they are bi-
quadratics) to give the relative dependance of Im{ωmax}
and kc with the nonlocality ν. Hereafter we fix d = 1/2
and g = q = u0 = 1. We illustrate the situation in Fig.
1.

Figure 1: (Color Online) Top: Growth rates for different val-
ues of the nonlocal parameter ν. The far right curve corre-
sponds to ν = 0 and the curves become smaller in amplitude
and width until the value ν = 200, the far left curve. Bot-
tom: The change of critical values Im{ωmax} and kc with the
nonlocality ν.

This figure agrees with the findings of Ref. [32] that
nonlocality has an increasingly stabilizing effect on the
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system. Indeed, both critical values that characterize
the instability, Im{ωmax} and kc, decrease as ν increases.
This means that the effect of MI will need more distance
to be exhibited; and if ν is large enough this distance
can be larger than the experimental scales. Further, a
smaller range of wave numbers will cause an instability.
While both values decrease, the effect, in the focusing
case, is always present, just more suppressed as ν in-
creases. The limiting NLS system is, by these values,
significantly more unstable.

III. ROGUE WAVE FORMATION

A. Rogue wave numbers vs. growth rates

To see how these observations affect the generation of
rogue waves, we integrate Eqs. (1) numerically using a
pseudospectral method in space and exponential Runge-
Kutta for the evolution [37] we use the computational
domain x ∈ [−100, 100], z ∈ [0, 20]. An appropriate ini-
tial condition, often used in nonlinear optics, is a wide
unit gaussian of the form

u(x, 0) = e−x2/2σ2

, σ = 30

perturbed with additional 10% random noise. A wide
gaussian with randomness added is a prototype of a set of
broad/randomly generated states which can potentially
excite more than one wave number; i.e. it can be re-
garded as a Fourier series of different cw’s of different
k’s. This is particularly important here as a single cw
initial condition may not cause any growth due to the
decrease of kc with ν. For each value of the parameter
ν we perform 105 trials. In each trial we measure the
largest wave amplitude of u over x, z; we introduce the
quantity

ũ(x, z) =
u(x, z)

max{u(x, 0)}

which measures the relative growth in amplitude from
an initial state. Here we consider a rogue event as one in
which ũ(x, z) at some value of z is at least three times
its maximum initial value. In Fig. 2 we depict PDFs of
rogue events for various values of ν.
These PDFs indicate that there is a complex relation-

ship between the occurrence of rogue events and nonlo-
cality. Indeed, starting with ν = 10 the mean of the
PDF is approximately comparable to that of the stan-
dard NLS Eq. (ν = 0). With ν = 50 there is a definite
shift towards the right indicating that rogue events have
increased in both numbers and severity (amplitude). Fi-
nally, for ν = 200 there is a sharp decrease of events and
their amplitudes. This indicates that there is a nontrivial
dependence between the nonlocality and the occurrence
of rogue events. The expectation that nonlocality stabi-
lizes the system and thus suppresses extreme phenomena
does not hold.
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Figure 2: (Color Online) Probability density functions of the
maximum value or max{ũ} for different values of the nonlocal
parameter ν.

To further investigate the dependence of rogue events
with ν, we perform the same analysis for a wider range
of the parameter. In Fig. 3 we depict the change of
the mean value in the PDFs for the maximum values of
ũ with ν as well as the change of the top 10% of the
highest valued events.

Figure 3: (Color Online) Top: The mean value of the PDFs
and the mean value of the max 10% events with the nonlocal
parameter ν. The horizontal dashed lines indicate the relative
values for ν = 0 and the vertical dashed lines the values of ν
for which these values surpass the NLS system. Bottom: A
zoom in around ν = 0.

Based on this figure, there are three different regions
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of interest. In the region 0 ≤ ν . 10, there is an initial
sharp drop from the NLS case (ν = 0) to about ν = 0.1
and then both curves increase with ν, but still remain
below the NLS limit. Near ν = 0 there is a sharp drop,
a boundary layer type change, to a local minimum after
which both the mean and max curves increase. In the re-
gion 10 . ν . 110, the curves remain well above the NLS
limits which translates into the system producing more
numerous and more extreme events. Recall, again that
for these values the system exhibits very weak growth
rates and has a very narrow instability band. Finally,
for ν > 110 both curves slowly decay as the nonlocal
parameter increases.

B. Universal features of the rogue wave

In the region where rogue waves are large, we turn our
attention to the nature of these waves and the mecha-
nism that causes them. In Fig. 4 we show a part of the
evolution that contains a rogue wave for different values
of the nonlocal parameter ν.
It is clear from these figures that the evolution as ν

increases becomes more regular (thus attesting to its sta-
bilizing effect) but the essence of the rogue wave is the
same: they appear from nowhere and are relatively short
lived.
To our knowledge, there is no analytical description

of these waves in this type of nonlocal media. In fact,
for the limiting NLS case they are frequently modeled by
the so-called Peregrine soliton, a rational solution which
reads for Eqs. (1) (with ν = 0)

uP (x, z) = u0

[

1−
4dq2 + i(16dgqu2

0)z

dq2 + (4gqu2
0)x

2 + (16dg2u4
0)z

2

]

e2igu
2

0
z/q

while the single NLS soliton solution is

us(x, z) = u0sech(u0

√

g/dqx)eiu
2

0
gz/q

It is counter intuitive (and verified below) to believe that
either would be a good candidate to approximate rogue
waves in this context as they lack the dependence on the
nonlocal parameter ν. Furthermore, the soliton solution
of Eqs. (1) is [38]

u(x, z) =
3q

2

√

d

gν
sech2(

√

q/2νx)e2idq/νz

which while it obviously depends on ν, it has fixed am-
plitude (much like χ(2) materials [39, 40]) which decays
with ν. As such, this solution is again not an appropriate
candidate to model extreme events (higher nonlocality
results in smaller soliton amplitudes). In fact, solutions
with a free parameter for this system have been found
but only in the defocusing case and under a small am-
plitude approximation technique [41]. To illustrate we
compare all these solutions to an arbitrary rogue event
in Fig. 5.

Figure 4: (Color Online) Snapshots of typical evolutions
around the rogue event for different values of the nonlocal
parameter. The white circle depicts the rogue event.

As seen in the figures the two solutions of the regular
NLS system (ν = 0) are too narrow to fit the event when
ν is well away from zero, while the decaying soliton of
the nonlocal system is of small amplitude and wide in
width for large ν and appears as a straight (black) line.
To further investigate the matter, in Fig. 6, we zoom in
around a rogue event for different values of the parameter
ν and fit a rational solution around it.

The best amplitude fit is given by the ratio of two
fourth order polynomials in x. We notice that the fits
become increasingly better as ν increases indicating the
profound difference with the integrable NLS system. This
is also consistent with the different soliton solutions. In-
deed, the sech-type soliton of the NLS is replaced by the
sech2-solution of the nonlocal system. This is not the
first time that more general (and commonly not known
to be integrable) systems give rogue events whose nature
differs from that of the typical rational Peregrine soliton.
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Figure 5: (Color Online) Comparisons of a (randomly chosen)
rogue event of the nonlocal equation with the known soliton
and rational solutions.

A similar situation was recently observed in deep water
waves [23]. We see that in all cases this rational approxi-
mation of the rogue event captures the central core with
its maximum, the decay to minima and its increase again.
This aspect is similar in all cases.

Next, consider a random/typical event corresponding
to different values of the nonlocality as depicted in Fig. 7.
We see that that there are important common/universal
features to these rogue events. In their central core they
have a large peak with a relatively flat spatial phase.
At the edge of the core they decrease to relatively small
values and then increase again to a local maximum on
each side of the central core. Remarkably, even in the
water wave problem [23] these properties are also found
at the corresponding rogue events.

The rational fitting, Fig. 6, indicates that for ν suf-
ficiently large the amplitude of the rogue events can be
described as rational functions of degree 4; this is con-

Figure 6: (Color Online) A zoom in around a rogue event for
the different values of the nonlocal parameter ν. A fourth
order rational solution has been fitted (red line) in all cases.

trasted with the Peregrine solution whose amplitude at
any value of z is described by a rational function of degree
2.

Figure 7: (Color Online) Left: Amplitude of rogue events for
the different values of the nonlocal parameter ν, and, right:
their corresponding phases.

As can be seen from Figs. 7-8 key aspects regarding the
structure of these rogue waves have common/universal
features. They are short lived; have a π-phase difference
between the main core and the accompanying dips; have
a spatially flat central phase and smaller maxima on the
wings.
We can put the information gleaned from Fig. 7- 8 to-

gether in the neighborhood of the maximum of the rogue
wave. Using u(z, x) = ρ(z, x) exp(iφ(z, x)) in Eqs. (1)
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Figure 8: (Color Online) Left: Amplitude of rogue events for
the different values of the nonlocal parameter ν, and, right:
their corresponding phases.

and separating real and imaginary parts yields

ρz + 2ρxφx + ρφxx = 0 (3a)

ρxx − ρφ2
x − ρφz + 2gθρ = 0 (3b)

νθxx − 2qθ = −2ρ2 (3c)

Fig. 7 implies that the x-profile of the phase constant:
φx = φxx = 0; Fig. 8 indicates that the z-profile is linear
and as such φz = µ. Then the first of Eqs. (3) is an
identity as around the maximum ρz = 0 and finally the
system is reduced to

ρxx − µρ+ 2gθρ = 0 (4a)

νθxx − 2qθ = −2ρ2 (4b)

If we assume that the event appears at the location xmax

and has amplitude ρ(xmax) = ρ0 (and θ(xmax) = θ0), the
above system of differential equations is supplemented by
the initial data and value of µ.

ρ(xmax) = ρ0, ρx(xmax) = 0 (5)

θ(xmax) = θ0, θ(xmax) = 0 (6)

To test this description, we measure (numerically) the
maximum amplitude of the rogue waves for different val-
ues of the nonlocal parameter ν (as well as µ) and solve
the system to approximate these events. The results are
shown in Fig. 9. It is clear that the local description
works well.

Figure 9: (Color Online) The local description of rogue waves
for different values of the nonlocal parameter ν.

IV. CONCLUSIONS

To conclude, we have studied rogue wave formation in
certain physically significant media described by a non-
local NLS system. Here the nonlocal term replaces the
local cubic nonlinear term in the previously integrable
NLS equation. For these systems, as the nonlocality pa-
rameter increases MI is suppressed in both the strength
of growth rates and size of instability band. The results
of MI alone might suggest the appearance of fewer and
smaller, in amplitude, rogue events. Contrary to that
we found that for a wide range of values of the nonlo-
cal parameter, the system can produce significantly more
events in both size and numbers. To our knowledge this
system has not been found to be integrable. The only
known solution of the system, a decaying soliton, does
not describe these rogue events.
There are universal features that the rogue events

found it in our nonlocal system exhibit. They appear
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with relatively large amplitude and then disappear. The
amplitude has a main maximum with a spatially flat cen-
tral phase and two smaller maxima on the wings. The
amplitude is well described by rational functions; for
ν = 0 we have a ratio of second order polynomials, i.e.
the Peregrine solution of the NLS equation; for ν larger
than unity the amplitude is described by a rational func-
tion of fourth order polynomials.
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