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Abstract

Mathematical concepts often have applicability in areas that may have surprised their original

developers. This is the case with Piecewise Isometries (PWIs) which transform an object by cutting

it into pieces that are then rearranged to reconstruct the original object, and which also provide

a paradigm to study mixing via cutting and shuffling in physical sciences and engineering. Every

PWI is characterized by a geometric structure called the exceptional set, E, whose complement

comprises non-mixing regions in the domain. Varying the parameters that define the PWI changes

both the structure of E as well as the degree of mixing the PWI produces, which begs the question

of how to determine which parameters produce the best mixing. Motivated by mixing of yield

stress materials, for example granular media, in physical systems, we use numerical simulations of

PWIs on a hemispherical shell and examine how the fat fractal properties of E relate to the degree

of mixing for any particular PWI. We present numerical evidence that the fractional coverage of E

negatively correlates with the intensity of segregation, a standard measure for the degree of mixing,

which suggests that fundamental properties of E such as fractional coverage can be used to predict

the effectiveness of a particular PWI as a mixing mechanism.

∗ r-lueptow@northwestern.edu
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I. INTRODUCTION

Mixing by cutting and shuffling, described mathematically as Piecewise Isometries

(PWIs), is far less understood than other forms of mixing such as mixing generated by

stretching and folding, which is directly applicable to fluids and can be cast in the language

of nonlinear dynamics and chaos theory. Nevertheless, mixing with PWIs has potential for

application in engineering processes involving granular materials [1–3], yield stress fluids,

valved fluid flows [4, 5], or flows with shear-banding materials, as well as for understand-

ing certain notable geophysical phenomena (e.g., imbricate thrust faults [6]). PWIs follow

simple rules that generate complex dynamics [7–20]. We focus here on measuring intrinsic

features of PWIs and the mixed state of the system in order to establish a relationship

between the theoretical properties of PWIs and mixing in practice.

There are various similar definitions of a PWI [22–25] – we define a PWI mapping M on

a domain or space S as:

Definition 1. M : S → S such that the action of M on each partition element Pi of S

is a Euclidean isometry (composition of translation, rotation, reflection, etc.). Pi, a closed

region (including boundaries), is one of a finite number N partition elements of S, i.e.

∪1≤i≤NPi = S, and where Pi ∩ Pj is measure-zero for i 6= j.
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FIG. 1. Bottom view of a hemispherical shell (HS) showing (a) the initial location of the pieces to

be rearranged, Pi, and their corresponding boundaries comprising D (black and red arcs) and the

domain boundary, ∂S (blue arc) and (b) their subsequent locations after their rearrangement by

one iteration of the PWI. Reproduced from Park et al. [21] with permission from AIP Publishing.
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FIG. 2. PWI operation on the HS for (θz, θx) = (45◦, 45◦). Dashed lines indicate the two rotation

axes. (a) Initial condition. (b) Rotation and cut about the z-axis by θz. (c) Rotation and cut

about the x-axis by θx. (d) New state after one iteration. Adapted from Park et al. [21] with

permission from AIP Publishing.

A lower hemispherical shell (HS) undergoing a PWI transformation is split into four

partition elements (bottom view, Figure 1(a)), which are then rearranged into another HS

(Figure 1(b)). We let D denote the set of all such borders that partition S (black and red

arcs in Figure 1(a)):

Definition 2. D = ∪i,j (Pi ∩ Pj) for i 6= j.

Note that since each segment of D is in the shared domain of two isometries, the map M is

multi-valued on D.

In this study we focus on a particular class of PWIs that result from successive rotations

about the z and x-axes by θz and θx, with periodic boundaries at the hemispherical edge

(Figure 2). The operation is expressed mathematically by Sturman et al. [17], and is applied

here for computer simulations of PWIs. This class of PWIs is specified by the ordered pair

(θz, θx), and approximates the effect of an infinitely thin flowing layer in a spherical granular

tumbler [2, 3, 17, 26], which can be reduced to 2D dynamics on the HS. The ordered pair

(θz, θx) will be referred to as a protocol for the remainder of this paper, and it determines

the location of D (for instance, the set D in Figure 1(a) derives from the (45◦, 45◦) protocol).

We can observe mixing on the HS when a particular PWI is repeated, with the rate and

degree of mixing depending on the protocol. This is demonstrated in Figure 3(b), where

the three protocols (54◦, 54◦), (75◦, 75◦) and (30◦, 15◦) result in vastly different degrees of

mixing after m = 150 iterations for the HS initially colored half red and half light blue in

Figure 3(a) (this and all remaining figures with a HS show the bottom view of the HS).
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FIG. 3. Bottom view of (a) initial condition of seeded colors on the HS; (b) mixing on the HS for the

(54◦, 54◦), (75◦, 75◦) and (30◦, 15◦) protocols after m = 150 iterations; and (c) E for corresponding

protocols obtained by tracking the respective D for 5000 iterations.

When considering mixing under PWIs, non-mixing regions can be identified by visualizing

the exceptional set [24]:

Definition 3. E =
⋃
−∞<i<∞M

iD.

The dynamics on the closure of E has been shown to be ergodic in other systems [27–30],

and we conjecture that this is also the case here, which is why for ease of illustration, we

approximate E with its subset E+ [21]:

Definition 4. E+ =
⋃

1≤i<∞M
iD.

All images representing E hereafter are approximated with E+. We generate E+ by seeding

tracer points on an equivalent substitute of D (refer to Park et al. [21] for further details)

and recording their trajectories for a large number of interations (Figure 3(c)). The white

areas in the HS are non-mixing regions known as cells [31, 32] (we refer to the region as a

cell rather than the set of points occupying the region as in Park et al. [21]), which form

a subset of the complement of the closure of E. In Figure 3(c) it is evident that the cells
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coincide with non-mixing regions in Figure 3(b) for the (54◦, 54◦) and (75◦, 75◦) protocols.

For example, the four large circular cells in Figure 3(c) for the (75◦, 75◦) protocol correspond

to large light blue and red circular regions in Figure 3(b). For the (54◦, 54◦) protocol, there

are two adjacent circular regions in Figure 3(b) located near the center and just below that

contain both red and light blue colors with a clear divide between the two. This is because

the initial seeding of colors overlaps with two of the cells shown in Figure 3(c) and both

colors happened to be seeded in each of the cells.

Colors contained inside a cell are said to have a periodic itinerary [31, 32] because they

travel as a group from one cell to others of the same size before returning to the cell where

they originated, but with a rotation. The boundaries between the two colors in the cells

for the (54◦, 54◦) protocol are slanted rather than in the vertical orientation of the initial

condition due to this rotation. The mixing patterns of the (54◦, 54◦) and (75◦, 75◦) protocols

demonstrate that cells are non-mixing because no colors penetrate them and no mixing

occurs within them.

While a greater coverage of E seems to produce qualitatively better mixing in each

example in Figure 3, our goal is to show that such a relationship exists more generally

based on quantifying the fractional coverage of E and comparing the coverage to standard

measures for the degree of mixing. If greater coverage of E produces better mixing, this

would imply that measures of fundamental properties of E exist which can be used to

judge the general effectiveness of a particular PWI as a mixing mechanism. Quantifying

the fractional coverage of E and the degree of mixing each has its respective complications

and factors that need to be considered, which will be mentioned here and addressed more

thoroughly in the following sections.

First, we observe that the approximated E has two distinct and related features: Fine

details emerge when E is viewed at magnified scales (Figure 4), and the apparent coverage

depends on the resolution at which E is measured (described succinctly by Umberger and

Farmer as “structure on all scales” and “dependence of the apparent size on the scale of

resolution”) [33], all of which are features that characterize fractals. For most of the cases

considered here, E appears to have positive area, which suggests that they are fat fractals,

as opposed to traditional fractals which are measure-zero, i.e. they have zero area in two

dimensions [33].

Note, however, that although E in Figure 3(c) appears to fill in some regions while
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FIG. 4. Magnifying E for the (54◦, 54◦) protocol by 8× to various scales. Each magnification, from

(a) to (b), from (b) to (c), and from (c) to (d) of the red box reveals circular cells at progressively

finer scales.

leaving others empty, E is made up of arcs having length but no thickness (it is a countable

union of measure-zero sets). Thus, even regions that are dark blue in Figure 3(c) consist of

densely packed curves with zero thickness that are approximated by densely packed points

in practice. That E exhibits fractal characteristics allows us to quantify the area that

E appears to cover using a box counting method [34], but by doing so, we are in effect,

“fattening” E and measuring its closure Ē [35, 36]. For the remainder of this paper, we

use the term “fractional coverage of E,” with the understanding that the term refers to the

measure of Ē. Aside from our conjecture that E is a fat fractal, which gives us a possible

method for measuring its coverage, it is significant that the amount of mixing with PWIs

could be connected to the fractal characteristics displayed by E for a particular protocol,

given the close relationship between fractals and mixing of fluids [37–46].

Considering a range of protocol values, Figure 5 shows that a variety of intricate patterns
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are possible for E, where E is approximated at m = 5000 for values of θz and θx ranging

from 15◦ to 90◦ in 15◦ increments. Only protocols with θx ≤ θz are shown because the

global structures of E for the (θ1, θ2) and (θ2, θ1) protocols are symmetric (see Appendix A).

Further exploration of these patterns for smaller angle increments suggests a rich variety of

patterns for E (Figures 17-19 in Appendix B).

The coverage of E also varies substantially with the choice of protocol. The coverage

ranges from apparently completely filled for the (45◦, 15◦) protocol to nearly empty for the

(90◦, 90◦) protocol. The (90◦, 90◦) protocol represents a trivial case where the partition of

the HS for the next iteration overlaps perfectly with the reassembled HS after an iteration

of the protocol (the four cells have a periodic itinerary of 2 but are period-6 because each

cell has three sides that the rotation of the cell aligns to). Visible coverage is affected by the

size and number of cells. The observed cells are frequently circular, with the exception of

the (90◦, 90◦) protocol, whose 3-sided cells appear polygonal, which suggests the possibility

of other protocols that share similar features. Circles of different sizes nearly fill the HS

θz = 15° 30° 75°45° 60° 90°

θ x
 =

 1
5°

30
°

75
°

45
°

60
°

90
°

FIG. 5. Visualizing E with m = 5000 for θz and θx ∈ [15◦, 90◦] varying in 15◦ increments (bottom

view). Reproduced from Park et al. [21] with permission from AIP Publishing.
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for the (90◦, 45◦) protocol, while circles of similar size nearly fill the HS for the (90◦, 15◦)

protocol. The (90◦, 75◦) protocol has four large circles along with many small circles of

similar size that form a band on the HS. Compared to those with θz = θx or θz = 90◦, the

other protocols generally have greater coverage and smaller cells.

It is important to note that while PWIs are “non-mixing” according to mathematical

definitions [27–30], it is possible to compare the mixed states of protocols using mechanical

definitions. Measuring the degree of mixing is complicated by mechanical factors such as

the choice of initial condition of the seeded colors, the number of points used in mixing

simulations, and, for most measures of mixing such as the intensity of segregation [47] that

we used to measure mixedness, the resolution of the grid on which the measure is calculated.

In this paper, we quantify the coverage of E over the HS using the box counting method

[33, 35, 36, 48], and show that for most protocols, E is well described as a fat fractal. We

compare these characteristics to the degree of mixing achieved via numerical simulations,

quantified by an established engineering measure known as the intensity of segregation [47],

to demonstrate a general relationship between the fat fractal characteristics of E and mixing

with PWIs.

II. APPROXIMATING E

The choice of m = 5000 for approximating E in Figures 5, and 17-19 is arbitrary, and,

consequently, must be addressed to assure that we derive reliable measures of its character-

istics. This issue is highlighted in Figure 6 where the “filling” by D is shown for various

protocols after m = 1, 10, 100, and 1000 iterations. For the (15◦, 15◦) protocol, the trajec-

tory of D cuts the HS into thin slices initially at m = 10, but at m = 100 and m = 1000, the

orbit is in close proximity to past trajectories and fills the HS slowly while leaving a band

of cells on the diagonal. The (54◦, 54◦) protocol features several pentagons initially, which

fill in to become large circular cells. At m = 100 and m = 1000, the (54◦, 54◦) protocol fills

the HS more evenly, with many small cells in addition to large cells. The trajectory of D

for the (45◦, 15◦) protocol cuts the HS into thin slices like the (15◦, 15◦) protocol initially,

but fills the HS uniformly without any visible cells at m = 1000 iterations.

The issue of choosing a particular value of m to approximate E is highlighted using

Figure 6 as an example. For the (54◦, 54◦) and (45◦, 15◦) protocols, the points that are
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FIG. 6. Progression of the approximation of E as a function of the number of protocol iterations

m (bottom view). Note that E for the (15◦, 15◦) protocol at m = 1000 is not fully developed.

followed after m = 1000 fill the HS more densely with more iterations, but the qualitative

structure of E changes little. In contrast, for the (15◦, 15◦) protocol, we conclude that the

structure of E is incomplete after m = 1000 compared to the m = 5000 approximation

shown in Figure 5 (bottom left corner). At m = 5000, the structure appears complete based

on how densely the points fill the space.

Two points are evident from Figure 6. First, from a visual perspective, the structure that

emerges from the orbit of D seems to reach an “asymptotic state” for some sufficiently large

value of m. Second, the value of m at which the general structure of E is revealed varies

with the protocol. For the (45◦, 15◦) protocol, m = 1000 might suffice, whereas m ≥ 5000

may be necessary for other protocols such as (15◦, 15◦).

If numerous protocols are to be studied, this leads to the question of how to automate

the process of determining m such that enough information is obtained from the orbit of D

to generate a reasonable approximation of the coverage of E. We determine whether the

coverage of E is close to an asymptotic state based on the ability of points to visit new

regions of the HS. To achieve this, we use the bottom half of an isocube as shown in Figure 7

to discretize the HS in a near-uniform manner (each box in the grid is the same size, and

its shape is distorted only slightly when mapped on the HS) [49]. We conclude that an

asymptotic state has been reached when the points that are seeded to generate E fail to
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visit a new box in the chosen grid for a specified number of consecutive iterations. After

each iteration, all boxes containing a point are marked as occupied, and if all seeded points

fail to visit a new box for a set number of consecutive iterations, then, for the purpose of this

study, we conclude that there is no more information to be gained regarding the coverage

of E at that grid resolution.

Before applying this approach, we briefly describe the grid of the isocube half. Figure 7(a)

shows an unfolded isocube half. The blue, orange, purple, and yellow colors have two edges,

and when “glued” together with their respective colors, the unfolded isocube half forms

the bottom half of a cube. The bold black lines on the outside form the outer edge of the

assembled half cube, and the inner bold black lines discretize the domain into 12 quarter

faces (we refer to them as quarter faces because the bottom face would be divided into 4

squares). Each quarter face is further discretized with a 2n× 2n grid (fine black lines), such

that the total number of boxes on the isocube is N = 12 × 2n × 2n. The resolution of the

grid will be denoted by the exponent n. This isocube half can then be mapped to the HS

(a) (b)

n 
=

 3
n 

=
 1

FIG. 7. (a) An unfolded isocube half whose resolution for a quarter of one face is 2× 2 (top) and

23 × 23 (bottom). The total number of boxes is N = 12× 2n × 2n, since there are 12 quarter faces

(each quarter face is outlined with bold lines); (b) Isocube half in (a) mapped to the HS as viewed

from the bottom.
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to form an area-preserving grid as shown in Figure 7(b). All boxes have equal area, and the

individual box area goes to 0 in the limit of N →∞. See Wan et al. [49] for details of the

isocube transformation.

The grid and its resolution are critical to several aspects of the numerical simulations,

such as choosing the number of points to seed for D, determining whether enough points are

available for obtaining a reliable measure for the coverage of E, and, in Section IV, seeding

points for mixing simulations and measuring the degree of mixing. The role of the grid will

be described in detail as we discuss each method.

For determining whether a numerical simulation reaches the asymptotic state for the

structure E, the grid resolution is set to a maximum value of n = 10. At n = 10, there are

approximately 1.25 × 107 boxes that can be visited by points on the HS. We approximate

D as described in Park et al. [21], with two sets of points near the edge of the HS – one

set of points is seeded before the z-axis rotation (blue curve in Figures 1(a) and 2(a)), and

the other set of points is seeded before the x-axis rotation (red curve in Figure 2(c)). The

points for each set are seeded in the center of boxes at the very edge of the HS (one point

per box), which is approximately 8000 points (there are 8 quarter faces on the edge of the

isocube half, and each quarter face has 210 = 1024 boxes on one edge). Thus, we follow the

orbits of 16000 points across a grid of 1.25 × 107 boxes. The structure of E is considered

to be close to an asymptotic state when none of the 16000 points visit a new box for 1000

consecutive iterations.

III. APPROXIMATING THE FRACTIONAL COVERAGE OF E WITH BOX

COUNTING

The approximation of E is closely tied to measuring its fractional coverage – the number

of boxes visited by the end of the simulation divided by the total number of boxes is an

approximation of the fractional coverage at a given resolution. Also, if the approximation

of E is judged to have reached an asymptotic state on a high resolution grid (n = 10),

then there must be enough points on the HS that the coverage of E can be measured for

lower resolutions, i.e. n < 10, which is additional information that can be used for further

analysis. Let Φn denote the fraction of boxes occupied by E for a grid discretizing the HS

with resolution n. This is illustrated for the (90◦, 45◦) protocol in Figure 8, which shows
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FIG. 8. Measuring the fraction of coverage of E for the (90◦, 45◦) protocol at resolutions of

n ∈ {3, 4, 5, 6}. Boxes that contain portions of E are black (bottom view).

how Φn changes for different values of n. A finer grid yields a more “accurate” measure, and

this naturally leads to the question of what the appropriate resolution should be to measure

E. If possible, taking n→∞ to determine Φ∞ would be ideal.

Considering the fractional coverage Φn for six sample protocols and 2 ≤ n ≤ 10, Figure 9

shows that Φn generally decays toward an asymptotic value. We fit the points in Figure 9 to

a curve to approximate a value for Φ∞. The choice for the curve is based on the observation

that E typically resembles a fat fractal. Thus, the following equation is used to fit Φn for

each protocol [33, 36]:

Φn = Φ∞ + Ae−Bn, (1)

where limn→∞Φn = Φ∞ is the asymptotic fractional coverage.

The exterior dimension can be calculated for each E from the coefficient of n in Equation 1

[33, 35, 48]:

dext = 2− B

ln 2
. (2)

We calculate the exterior dimension rather than the traditional Hausdorff dimension, which

yields a value of 2 for fat fractals and does not provide information about the multi-scale

structure observed for E.

The built-in trust-region-reflective algorithm [50, 51] in Matlab is used to fit the data to

Equation 1 (starting from n = 5, because low resolutions give poor approximations to Φ∞),

which gives the fractional coverage Φ∞ and exterior dimension dext for each case (Table I).

The quality of the fit is measured by the R2 value (goodness-of-fit) which ranges from 0
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FIG. 9. Fitting the measured values of Φn for various protocols. Corresponding E shown on the

right.

to 1, where 1 indicates that there is no difference between the data and fitted values. A

constraint that Φ∞ ≥ 0 and B ≤ ln 2 is also applied to the curve fit based on heuristics

(we expect Φn ≥ 0 for all n and dext ≥ 1 for a fat fractal). Given the nature of the fit and

these constraints, 0 ≤ Φ∞ ≤ 1 and 1 ≤ dext ≤ 2. As anticipated from visual inspection, the

fractional coverage of the exceptional sets on the right of Figure 9 decreases monotonically

from close to 1 for the (30◦, 15◦) protocol (top) to 0 for the (90◦, 90◦) protocol (bottom).

In contrast, the connection between the values of dext and E is not obvious. Note that as

expected, for the (90◦, 90◦) protocol, Φ∞ is approximately zero and dext ∼ 1 because E for

this protocol is composed of just two arcs.

For the (45◦, 15◦) protocol (not shown in Figure 9) E appears to cover the entire HS

(Figures 5 and 6), and Φ∞ is close to 1, but the R2 value is relatively low (Table I). This

occurs because the (45◦, 15◦) protocol generates cells that are nearly all smaller than the box

size for a grid of n ≤ 5, which means Φn = 1 for n < 5. Consequently, a scaling behavior

is only observed starting from n = 5 in this case, and higher resolutions (n > 10) would be

necessary for a better fit to Equation 1. In other cases, the data may not scale as Equation 1

14



TABLE I. Fitted fat fractal coefficients and goodness-of-fit.

Protocol Φ∞ dext R2

(45◦, 15◦) 0.996 1.674 0.868

(30◦, 15◦) 0.955 1.201 0.999

(75◦, 15◦) 0.854 1.223 1.000

(75◦, 75◦) 0.535 1.563 0.998

(89◦, 52◦) 0.319 1.077 1.000

(54◦, 54◦) 0.250 1.660 0.993

(90◦, 45◦) 0.240 1.322 0.999

(90◦, 90◦) 0.000 1.014 1.000

(72◦, 1◦) 0.000 1.921 0.872

immediately, as is illustrated by the dashed lines connecting the data points of n < 5 for

(75◦, 15◦), and (54◦, 54◦) in Figure 9. The values of Φn are decreasing for the (75◦, 15◦)

and (54◦, 54◦) protocols, but an inflection point exists at n∗ = 3 and n∗ = 4 respectively

(uncharacteristic of Equation 1), which can lead to lower R2 values. In this study, θz was

varied from 1◦ to 90◦ in 1◦ increments, and θx was varied from 1◦ to θz in 1◦ increments for

a given θz (reasons stated in Section I), for a total of 4095 protocols. Approximately 80%

of the protocols had R2 ≥ 0.9. For ones with R2 < 0.9, most, if not all, had Φ∞ ≥ 0.95,

indicating a very high coverage of the HS by E.

A key question is the relation between the fractional coverage and fractal dimension.

Figure 10 shows the fitted values for Φ∞ and dext. More than 90% of the Φ∞ values are

greater than 0.6, and 60% of the Φ∞ values are greater than 0.9. The values of dext are

spread relatively uniformly, and there is no obvious relationship between Φ∞ and dext.

IV. COMPARING Φ∞ TO THE DEGREE OF MIXING

In this section, Φ∞ is compared to the degree of mixing to determine whether the re-

lationship observed based on visual comparison in Section I, i.e. that a greater fractional

coverage of E results in better mixing, is also reflected in standard metrics. To simulate

mixing on the HS, the left half of the HS is seeded with points associated with species 1

15
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FIG. 10. No obvious correlation between the asymptotic coverage Φ∞ and exterior dimension dext

exists for the 4095 protocols examined.

(red), and the right half with species 2 (light blue), as in Figure 3(a). Points were seeded in

the center of each box for a grid resolution of n = 8, which is approximately 8× 105 points.

Let c̄ denote the average concentration of species 1. While concentration is calculated based

on the frequency of points divided by the total number, it is meant to represent a fraction

of an area of the surface. Here, mixing at each iteration m is measured on a grid of N boxes

using the intensity of segregation I(m) [47]:

I(m) =
1

c̄(1− c̄)

(
1

N

N∑
i=1

(ci(m)− c̄)2
)
∈ [0, 1], (3)

where ci(m) is the local concentration of species 1 in box i of the grid at iteration m, and I

represents the normalized variance in the local concentration of species 1 across all N boxes.

If the domain is uniformly mixed for a given resolution, then ci(m) = c̄ for all i, and there is

no variance, i.e. I = 0. If the domain is completely unmixed (segregated), then ci(m) = 1

or 0 in each bin, and the variance is at its maximum value of c̄(1− c̄), so I = 1. Note that for

cells with distinct discontinuities, e.g., as shown in Figure 3(b) for the (54◦, 54◦) protocol,
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if the grid resolution is high enough that the boxes are smaller than the cells, boxes that

do not contain the discontinuity will only be occupied by one species. This implies that the

local concentration will be 0 or 1, and boxes along the discontinuity will contain a mix of

species. We use a grid resolution of n = 3, which corresponds to N = 768 boxes in the grid.

Simulations were run for the same set of 4095 protocols described in Section III.

Note that I depends on the resolution of the grid on which it is measured and the

total number of points seeded on the HS. For a set number of points, if the grid resolution

increases, then the measured segregation will increase as well. If the resolution is such that

the number of boxes equals the number of points (i.e. given that each point maintains its

distance from neighboring points due to the isometry, only one point should occupy a box),

then I = 1 because the concentration of species 1 in each box will be 0 or 1. On the other

hand, if the grid resolution decreases, then the measured segregation will decrease until it

reaches 0 when the grid consists of one box. In both extremes, I is not a meaningful measure

of the mixed state of the system.

A grid resolution of n = 3 and 8 × 105 points were chosen in consideration of the issues

mentioned above while being mindful of computational limitations. There is a sufficient

number of points in each box (approximately 1000 points per box) to assure statistically

reasonable results, while there is also a sufficient number of boxes to yield a measurement

that reflects the mixed state of the entire HS.

For six sample protocols, I decreases over 1000 iterations (Figure 11). After approxi-

mately 500 iterations, I reaches a “steady” state for the (89◦, 52◦), (54◦, 54◦), (75◦, 75◦),

and (30◦, 15◦) protocols, characterized by an asymptotic trend as m increases. A steady

state also appears likely for the (75◦, 15◦) protocol for more than 1000 iterations, but it is

unclear if there is a steady state for the (72◦, 1◦) protocol. Perhaps what is more interesting

is the ordering of I for different protocols when compared to the asymptotic fractional cov-

erage Φ∞ for E. With the exception of the (72◦, 1◦) and (89◦, 52◦) protocols, the apparent

coverage of E is in ascending order from top to bottom. Because materials in cells do not

mix, this suggests that the measure Φ∞ for E could indicate the ultimate degree of mixing,

i.e. a protocol with a higher Φ∞ should lead to better mixing and less segregation than a

protocol with a lower Φ∞.

The (72◦, 1◦) protocol is one of possibly several exceptions that behaves unlike the other

protocols shown in Figure 11. Its zero Φ∞ value (Table I) suggests that mixing is unlikely

17



m
0 200 400 600 800 1000

I

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(75°, 15°)

(54°, 54°)

(30°, 15°)

(89°, 52°)

(72°, 1°)

(75°, 75°)

FIG. 11. Intensity of segregation I vs. iteration number for six sample protocols, corresponding

E are shown on the right.

for this particular protocol, but its I, while oscillating, is steadily decreasing, indicating

that mixing is occurring, albeit slowly. It would seem to continue if the simulation were run

for longer than 1000 iterations. Thus, the measures Φ∞ and I are evidently at odds in this

case.

We speculate that this discrepancy comes about because the cells of the (72◦, 1◦) protocol

are miniscule. The cells appear consistent in size, and each cell is approximately 10 times

smaller than a single box of the grid. While it is understood that no mixing occurs within

a cell, the cells of the (72◦, 1◦) protocol are small enough that they can each be considered

an individual particle, in contrast to that for protocols with large cells such as the (90◦, 90◦)

protocol. The mixing that is measured by I results from the rearranging of the miniscule

cells of different colors in each box.

The (89◦, 52◦) protocol appears to be another exception, compared to the (54◦, 54◦) pro-

tocol, possibly again relating to cell sizes. While its fractional coverage of E may be greater

(Φ∞ = 0.319 compared to 0.250 from Table I), the prominent cells of the (89◦, 52◦) protocol

are much larger and more numerous than that of the (54◦, 54◦) protocol, whose remaining

cells other than the several large cells happen to be fairly small. The (89◦, 52◦) proto-

col underperforms compared to what its Φ∞ value would suggest because of its particular
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distribution of cell sizes.

While I does not reach an asymptotic state by m = 1000 for some protocols, our goal is

to determine whether most of the protocols tested indeed reach their respective asymptotes.

We take a simple approach to examining this by considering the standard deviation of I,

denoted σ(I), over a set span of iterations. For a given protocol, if I reaches an asymptotic

state, the set of preceding iterations should have similar values of I, leading to σ(I) ∼ 0. If
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FIG. 12. Distribution of σ(I) for all 4095 protocols over a range of s = 50 iterations at different

m. There is some overlap between distributions for different ranges of iterations – the distribution

of later iterations are plotted over earlier ones.
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this is the case for most protocols, then the distribution of σ(I) will be narrow and close to

0 for later iterations.

The distributions of σ(I) over a span of 50 iterations (s = 50) are shown in Figure 12

for the 4095 protocols at various ranges of iterations. Figure 12(a) shows the distribution

of σ(I) on a linear scale. For m ∈ [51, 100], the distribution is wide and centered around

0.045. At higher iterations, the distribution of σ(I) shifts closer to 0, indicating that I

is essentially constant for most protocols by the end of the simulation consistent with an

asymptotic state. Figure 12(b) shows the distribution of σ(I) on a log scale, where most

values are in the range of 10−4 ≤ σ(I) ≤ 10−2 for m ∈ [951, 1000]. There is also a small

group of protocols whose values of σ(I) are orders of magnitude smaller than that of the

rest of the population. The protocols in this group all have θz = 90◦, i.e. the rotation about

the z-axis only flips the colors from one side to the other, producing no mixing. In theory,

I = 1 for all iterations in this case, which is why σ(I) ∼ 0 for all protocols with θz = 90◦.

Thus, this group of protocols has values of σ(I) orders of magnitude smaller than that for

the rest. This highlights the challenge of accounting for the impact of initial conditions in

the study of mixing; however, this topic is beyond the scope of this paper.

Distributions of σ(I) for other spans s ∈ {5, 10, 25, 100} were also calculated. These

distributions also became narrower and tended towards zero for increased numbers of iter-

ations, which reinforces the notion that in general, I reaches a steady state by m = 1000

iterations. Distributions of the average change in I, denoted ∆I, for s = 50 at various

ranges of iterations were examined to see if I trends in any direction. It was found that ∆I

has a wide distribution with a negative mean initially, since I decreases for most protocols

when mixing occurs, but at different rates. At higher iterations, the distribution of ∆I is

narrower and shifts toward 0, indicating that I does not trend in a particular direction after

its initial decrease. Again, this indicates that I at m = 1000 reaches steady state for most

protocols and can be used to compare to Φ∞, which is an intrinsic value of E.

Returning now to the relationship between the asymptotic fractional coverage Φ∞ of E

and the traditional measure of mixing, the segregation index I, Figure 13 shows a scatter

plot of I versus Φ∞ at different numbers of iterations. Initially, all protocols start from

I = 1, but after each iteration, I decreases as mixing occurs. The points are broadly

scattered for smaller m, but as m is increased, they appear to collapse toward a diagonal

line. The negative linear correlation between I and Φ∞ at m = 1000 confirms the hypothesis
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FIG. 13. Comparing I to Φ∞ for all 4095 protocols at iterations m = 25, 102, and 103. At high

m, I and Φ∞ appear to be negatively, linearly correlated.

that the structure of E, specifically the asymptotic fractional coverage Φ∞, can be a useful

indicator of the degree of mixing. This is significant given the many factors involved with

mixing and measuring the degree of mixing (e.g., species number, concentration, and initial

distribution as well as the number of tracer points and the grid geometry and resolution

for measuring I). Materials in cells do not mix, and this is reflected in mixing simulations

as well. Larger Φ∞ corresponds to a smaller overall size of the non-mixing regions (cells).

Thus, a negative correlation between I(m = 1000) and Φ∞ results. Therefore, fractional

coverage Φ∞ of E can be a useful indicator for judging a particular protocol’s effectiveness

at mixing.

There are a few exceptions to the negative linear correlation between Φ∞ and I, one of

which is the protocols with Φ∞ ∼ 1 that maintain values of I > 0 even after 1000 iterations

along the right edge of Figure 13. In comparing the points at the three different numbers of

iterations as in Figure 13, it is clear that the values of I are decreasing, which suggests the

rate of mixing may be very slow for these protocols despite the high Φ∞ value. While the

fractional coverage of E predicts the long-term mixing achieved, it cannot predict the rate

of mixing. Another exception is when the initial condition and protocol are such that no

mixing will occur, e.g. when θz = 90◦ and one species initially occupies the left half of the
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HS and the other species occupies the right half of the HS as was pointed out earlier. This is

the set of points at I ∼ 1 along the top edge in Figure 13 that do not collapse independent

of m or Φ∞. Finally, there is also a group of protocols near the left edge with Φ∞ ∼ 0,

but with decreasing values of I. These are protocols whose behavior may be similar to the

(72◦, 1◦) protocol, which has Φ∞ ∼ 0 and a steadily decreasing I for increasing m. These

special cases point to the subtleties of studying mixing with PWIs, but also highlight the

fact, that as a general rule, Φ∞ can be used as a first-order type approximation for predicting

the degree of mixing for PWIs.

V. CONCLUSION

When mixing with PWIs, the exceptional set, E, is an inherent structure on the domain

that can be used to predict the overall degree of mixing that will be produced. Specifically,

the fractional coverage of E, Φ∞, shows a negative linear correlation with the intensity of

segregation I, a standard measure for mixedness. Because the complement of E consists

of cells (non-mixing regions), the fractional coverage Φ∞ of the fat fractal geometry of E

represents a fundamental measure that can be used to judge the general mixing effectiveness

of a given PWI. The methods employed in this study to obtain this result naturally motivates

the question of whether Φ∞ can be predicted purely from protocol values. While the majority

of the calculated values of the exterior dimension dext are not equal to 1 or 2, confirming

that E on the HS is usually fractal, dext does not appear to be immediately related to mixing

in any practical sense, though this requires further study.

Moving forward, it is important to note that selecting protocols with small non-mixing

regions based on Φ∞ is necessary but not sufficient for efficient mixing with PWIs. This

is the case because E is a static feature of PWIs, and only represents the possible degree

of mixing as m → ∞. It cannot account for all initial conditions, and it does not yield

information about the rate of mixing or the rate at which the structure of the dynamics is

achieved [52]. Thus, further work is necessary to determine how initial conditions impact

mixing and how characteristics of PWIs are related to the rate of mixing, which may require

the development of different methods of analysis.
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Appendix A: Reversing Symmetry of E for (θ1, θ2) and (θ2, θ1)

In Section I we noted that there is a symmetry between the structures of E for protocols

(θ1, θ2) and (θ2, θ1). Here we show why this is the case. Consider rotation angles of θ1 = 90◦,

θ2 = 45◦, and θ1 = 75◦, θ2 = 15◦ shown in Figure 14. The exceptional set is approximated for

protocols (θ1, θ2) and (θ2, θ1) for both sets of angles in the left and right columns. An image

transpose corresponds to reflecting points across the z = −x diagonal in the coordinate

space. By transposing the images of E for the (θ1, θ2) protocol on the left, we visually

confirm that the transpose is the same as the images of E for the (θ2, θ1) protocol.

We now investigate whether the progression towards E is the same for protocols (θ1, θ2)

and (θ2, θ1) once the reflection across z = −x is employed, as shown in Figure 15 for rotation

angles θ1 = 75◦, θ2 = 45◦. The progressions of (θ1, θ2) and (θ2, θ1) protocols are not the

same in this case, but what is remarkable is that the global features of E for both protocols

become the same for large m.

The reason the structures for the (75◦, 45◦) and (45◦, 75◦) protocols are symmetric for

large m becomes easier to comprehend if the (θ1, θ2) protocol is applied backwards in time,

θ1 = 75°
θ2 = 15°

Image Transpose(θ1, θ2) (θ2, θ1)

θ1 = 90°
θ2 = 45°

z = !x

z = !x

FIG. 14. Comparing E for (θ1, θ2) and (θ2, θ1) for two different pairs of θ1 and θ2 (bottom view).

Middle column shows the image transpose of E for (θ1, θ2), which is a reflection across z = −x in

the coordinate space. The image transpose of E for (θ1, θ2) appears identical to E for (θ2, θ1).
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(45°, 75°)Image Transpose(75°, 45°)

m
 =

 1
m

 =
 2

FIG. 15. Comparing the progression towards E for θ1 = 75◦ and θ2 = 45◦ (bottom view). (Left

column) progression for (θ1, θ2), (middle column) image transpose of the left column, and (right

column) progression for (θ2, θ1). It is not apparent that the resulting E from both will be the same.

(45°, 75°)Image Transpose(75°, 45°)!1

FIG. 16. Comparing D (top) and D ∪M−1(D) (bottom) for the (75◦, 45◦) protocol (left column),

their image transpose (middle column), and the progression towards E for the (45◦, 75◦) protocol

at m = 1 and 2 (bottom view).

denoted as (θ1, θ2)
−1, in which case, the rotation by θ2 comes before the rotation by θ1, like

(θ2, θ1) – the only difference being that the rotation by θ2 happens on different axes for the

two protocols. We compare D (top) and D ∪M−1(D) (bottom) for the (75◦, 45◦) protocol

in the left column, its image transpose in the middle column, and the progression for the

(45◦, 75◦) protocol in the right column in Figure 16 and observe that the two structures are
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the same after one is reflected across z = −x. That the set of inverse iterates of D is also

dense in E has been proven for some systems [27–30]. We conjecture that this is also the case

here, which is why the structures of E for (θ1, θ2) and (θ2, θ1) protocols appear symmetric.

Appendix B: Taxonomy of E

As noted in Section I, different patterns of E were studied at smaller angular resolutions

as shown in Figures 17-19. While the continuous (θz, θx) parameter space cannot be fully

explored, it is useful to understand the sensitivity of E to the protocol at least in some select

areas of the parameter space.

Compared to Figure 5, Figure 17 with rotation angles ranging from 45◦ to 60◦ in 3◦

increments shows less variety in patterns, but patterns along the diagonal remain quite

distinct from one another. With rotation angles ranging from 45◦ to 50◦ in 1◦ increments

(Figure 18), there appear to be two general features – arrowheads such as those shown for

the (45◦, 45◦) protocol, and five large circular cells across the diagonal with an additional

large cell in the upper left corner of the HS, as shown for the (50◦, 50◦) protocol. A transition

θz = 45° 48° 57°51° 54° 60°

θ x
 =

 4
5°

48
°

57
°

51
°

54
°

60
°

FIG. 17. E for θz and θx ∈ [45◦, 60◦] varying in 3◦ increments.
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FIG. 18. E for θz and θx ∈ [45◦, 50◦] varying in 1◦ increments.

occurs from the arrowhead feature to the five-cell feature in the parameter space between

these two protocols as the cell in the center of the arrowhead pattern becomes larger and

dwarfs the cells around it, so that the five arrowheads are replaced by five large circular

cells.

For rotation angles ranging from 45◦ to 46◦, the arrowhead feature is the most prominent

(Figure 19). Changes in the structure of E are minimal with 0.2◦ increments in the 45◦ to

46◦ range. For protocols on the diagonal, however, their structures of E appear to have finer

details (smaller cells) than adjacent protocols.
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FIG. 19. E for θz and θx ∈ [45◦, 46◦] varying in 0.2◦ increments.
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