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Canards are special solutions to ordinary differential equations that follow invariant repelling slow
manifolds for long time intervals. In realistic biophysical single cell models, canards are responsi-
ble for several complex neural rhythms observed experimentally, but their existence and role in
spatially-extended systems is largely unexplored. We describe a novel type of coherent structure
in which a spatial pattern displays temporal canard behavior. Using interfacial dynamics and ge-
ometric singular perturbation theory, we classify spatio-temporal canards and give conditions for
the existence of folded-saddle and folded-node canards. We find that spatio-temporal canards are
robust to changes in the synaptic connectivity and firing rate. The theory correctly predicts the
existence of spatio-temporal canards with octahedral symmetry in a neural field model posed on the
unit sphere.

I. INTRODUCTION

Spatially extended, continuum, deterministic neural
field models take the form [1–3]

∂tu(x, t) = −u(x, t) +

∫
R
W (x, y)f(u(y, t)− h) dy, (1)

where u denotes the coarse-grained activity of a neural
population at position x ∈ R and time t ∈ R+, W is
a synaptic kernel modelling the strength of connections
from neurons at positions y to those at position x, f
is a firing rate function converting neural activity into
synaptic inputs and h is a firing rate threshold. Nonlocal
equations of this type, originally proposed by Wilson and
Cowan [4] and Amari [5], provide a coarse-grained model
of macroscopic brain activity [6], and have been used
to explain experimental observations of cortical waves in
vitro [7] and in vivo [8, 9], as well as electroencephalo-
gram recordings [10] and feature selectivity in the pri-
mary visual cortex [11].

In this article we demonstrate that neural fields de-
scribed by Eq. (1) support generically a novel type of
coherent structure, in which a spatial pattern displays
temporal canard behavior [12]. We refer to these solu-
tions as spatio-temporal canards. Canards are considered
to be a footprint of time scale separation in ordinary dif-
ferential equations (ODEs): these special solutions follow
(locally) invariant repelling slow manifolds for long time
intervals, and manifest themselves via O(1) amplitude
changes that take place within an exponentially small
range of parameter values. In planar systems, this bru-
tal growth of solutions is referred to as a canard explo-
sion [12, 13].

It is widely accepted that canards have a functional
role in biophysical single-neuron models of Hodgkin–
Huxley-type, where they approximate excitability thresh-
olds [14, 15] and organise abrupt transitions from rest-
ing to spiking states [16], or from spiking to bursting

regimes [17, 18]. In addition, canards underpin complex
neural rhythms such as mixed-mode oscillations [19] or
spike-adding phenomena [20] in bursters.

An intriguing open question concerns the existence and
role of temporal canards in spatially extended dynami-
cal systems with time scale separation. Numerical sim-
ulations indicate that canards do indeed exist in such
systems [21], but the absence of a rigorous geometric sin-
gular perturbation theory near non-hyperbolic slow man-
ifolds for infinite-dimensional dynamical systems requires
that the interpretation of such computations be treated
with caution. The reduction procedure described in the
first part of this paper overcomes this difficulty in a key
example.

In this article we identify canards in neural field mod-
els of the type shown in Eq. (1). When the threshold h
is constant, the neural field admits an h-dependent fam-
ily of coexisting stationary localized solutions organised
along a branch with one or more folds [28, 29]. When
h varies slowly with respect to the macroscopic charac-
teristic time t of Eq. (1) the system may drift along this
branch of equilibria but abrupt transitions, excitable dy-
namics on the faster time scale t, may occur in the vicin-
ity of the folds where the state of the system ‘jumps’
to a different state. We remark that the time scales of
interest in our study are different from those used in pre-
vious work on canards: these structures have thus far
only been found when there exists a time scale separa-
tion at the level of a single cell, between the membrane
potential (fast) and gating variables (slow); in the present
study we find canards in neural fields, which are coarse-
grained models of neural networks, and the time scale
separation is between the threshold crossing dynamics
(slow) and the activity variable u (fast). Our findings
can be summarized as follows: (i) If the firing threshold
h varies slowly, complex spatio-temporal patterns con-
taining canard segments exist for steep firing rates f and
for generic choices of the synaptic kernel W ; (ii) A the-
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FIG. 1. Time simulations of the system (4) for ε = 3.62·10−3, β=γ=0 and (a) α= 0.49, (b) 0.50, (c) 0.51; W is as in Eq. (9)
with a = Λ = 1 and b = 0.3; Θ(u) = 1/(1 + exp(−50u)). In (b) we superimpose the threshold crossings x = ±ξ(t) on the
pattern, shown for t ∈ [12.5, 25] on a lighter background for better contrast. (d) Examples of the functions ψi corresponding to
kernels Wi, i = 1, 2, 3, commonly used in neural field models: W1(x, y) = (1 + 0.5|x− y|) exp(−|x− y|) is a purely excitatory,
translation-invariant kernel used, for instance, in Ref. [22]; W2(x, y) = exp(−0.25|x − y|)(0.25 sin |x − y| + cos |x − y|) is an
excitatory-inhibitory, oscillatory, translation-invariant kernel used in Refs. [23, 24]; W3 is the oscillatory heterogeneous kernel
(9) used in (a)–(c) and in all other calculations of this paper [25–27]. We plot ξ on the vertical axis, so that the figure can
be read as a bifurcation diagram of the full neural field system (1). Solid (dashed) lines indicate stable (unstable) stationary
patterns.

ory for the classification of such spatio-temporal canards
can be derived using interfacial dynamics; (iii) Spatio-
temporal canards of folded-node or folded-saddle types
are present, depending on the coupling between h and u;
(iv) The behavior described above is robust to changes in
the synaptic kernel W and to perturbations in the firing
rate function f .

II. INTERFACE DYNAMICS

The interfacial description [30] applies in the case
f(u) = Θ(u), where Θ(u) is the Heaviside step function.
As customary, we consider localized regions of activity
−ξ(t) ≤ x ≤ ξ(t), where the interfaces (or threshold
crossings) x = ±ξ(t) are defined by the level set condi-
tions u(±ξ(t), t) = h(t) with ∂xu(±ξ(t), t) ≶ 0, for all
t ∈ R+, and take their width 2ξ(t) as a measure of the
spatial extent of the solution (see for instance Fig. 1(b)).
Integrating (1), we find that solutions u(x, t) can be ex-
pressed in terms of the interfacial functions ξ(t) and the
initial datum u(x, 0),

u(x, t) = e−tu(x, 0) +

∫ t

0

∫ ξ(s)

−ξ(s)
es−tW (x, y) dy ds. (2)

The approach of Refs. [26, 30] can be extended to the
case of time-dependent h. In this case differentiation of
the level set condition for ξ with respect to time leads to
a closed scalar evolution equation for the half-width of
the pattern. Using (1) we obtain

ϕ(ξ, t)ξ̇ = h+ ḣ− ψ(ξ), (3)

where ϕ(ξ, t) = ∂xu(ξ, t) and ψ(ξ) =
∫ ξ
−ξW (ξ, y) dy. By

hypothesis ϕ is strictly negative at all times. The func-
tion ψ encodes the neural connectivity of the model, as it
depends solely on the synaptic kernel W , which models
arbitrary heterogeneous synaptic circuits. Figure 1(d)
shows ψ(ξ) for several commonly used kernels W (ξ, y)
and highlights that ψ generically possesses folds. These
are marked by circles in Fig. 1(d) and correspond to lo-
cations where ψ′ = 0. Equation (3) represents an exact
reduction of the field equation (1) for u with a time-
dependent threshold and Heaviside firing rate, and con-
stitutes a key tool for the study of spatio-temporal ca-
nards.

If h is a constant control parameter, Eq. (3) admits
equilibria for all h and ξ such that h = ψ(ξ). In other
words, the curves in Fig. 1(d) can be interpreted as
branches of steady (patterned) states of the full sys-
tem (1) with the parameter h identified with ψ(ξ) in
Fig. 1(d). This strategy for constructing patterns, con-
tained in the original work of Amari [31], can be extended
also to study stability: to each fold of ψ corresponds a
saddle-node bifurcation of the full system. In Ref. [27]
it was shown that sinusoidal modulation of the kernel in
space generates an infinite number of saddle-nodes orga-
nized in a snakes-and-ladders bifurcation structure [32].

The firing rate threshold parameter, h, is therefore a
common continuation parameter in neural field studies:
as h is varied, we obtain branches of patterned station-
ary states and, depending on the choice of the kernel,
secondary symmetry-breaking bifurcations may occur. It
is therefore natural to search for canards in cases where
h is slowly varying. Variations of h have been consid-
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ered before in the literature: in Ref. [33, 34], the firing
threshold was subject to fluctuations induced by noise,
decoupled from the network activity; in Refs. [35, 36] the
threshold h was coupled directly to the local value of u,
in order to mimic spike-frequency adaptation, observed
experimentally in in vitro experiments of rat pyramidal
neurons [37].

In the following we study spatio-temporal canards by
combining a spatially-extended neural field with a slowly-
varying oscillatory threshold h(t) which may arise, for
instance, from the competition between adaptation and
facilitation processes, coupled to the neural field via the
macroscopic width of the pattern, and describe a simple
example of the dynamics that result when h evolves on
a slow time scale. Depending on the choice of control
parameters, we consider limits where h influences u (but
not vice-versa), as well as cases where the dynamics of h
and u are fully coupled, as previously done in Refs. [33,
34] and [35, 36], respectively. Specifically, we study the
extended neural field model

∂tu(x, t) = −u(x, t) +

∫
R
W (x, y)Θ

[
u(y, t)−h(t)

]
dy,

ḧ(t) + ε2h(t) = ε2(α+ βξ(t)) + εγξ̇(t),

ξ(t) =
1

2

∫
R

Θ
[
u(y, t)− h(t)

]
dy.

(4)

Thus h obeys a weakly forced oscillator equation with
a low natural frequency ε that is coupled to the neural
field via both ξ and ξ̇. In Figs. 1(a)–(c) we show direct
simulations of the model (4), displaying strong sensitiv-
ity to changes in the parameter α. We will show below
that spatio-temporal canards organise abrupt transitions
between branches patterned states, and are therefore re-
sponsible for the behavior shown in Figs. 1(a)–(c).

Interactions between excitable systems and slow oscil-
lations are known to produce canard-type dynamics in
ODEs with folded saddles [15, 38]. This type of interac-
tion motivated our choice of the coupling in model (4),
which indeed produces canards in a spatially-extended
system. In terms of the slow time τ = εt, system (4) is
equivalent to

ε|ϕε(ξ, τ)|ξ̇ = ψ(ξ)− h− ε(q + γξ),

ḣ = q + γξ,

q̇ = α+ βξ − h,
(5)

where ϕε is a rescaled version of ϕ and we used the fact
that ϕ and ϕε are both strictly negative at all times. Cru-
cially, we passed from model (4), which involves an evo-
lution equation for the scalar field u(x, t), to model (5),
whose state variables are the scalars (ξ(t), h(t)). Since
limε→0+ ε|ϕε(ξ, τ)| = 0 for all τ ∈ R+, Eqs. (5) take
the form of a singularly perturbed system, with one fast
variable ξ and two slow variables h and q. An important
object for understanding the dynamics of such systems is
the critical manifold S0, defined as the ε = 0 limit of the
fast nullsurface [13]. In the present case, this manifold is

the folded surface {(h, q, ξ) ∈ R3 : h = ψ(ξ)}. The limit
yields the differential-algebraic system

0 = ψ(ξ)− h,
ḣ = q + γξ,

q̇ = α+ βξ − h,
(6)

or equivalently the reduced system (or slow subsystem)

−ψ′(ξ)ξ̇ = −q − γξ,
q̇ = α+ βξ − ψ(ξ).

(7)

This system is singular when ψ′(ξ) = 0, that is, at the
folds of the critical manifold separating attracting sheets
from repelling ones. For the problem under consider-
ation, the singularity occurs at fold lines {(h, q, ξ∗) ∈
R3 : h = ψ(ξ∗), ψ

′(ξ∗) = 0}; in passing we note that ξ∗
can be any of the folds marked by circles in Fig. 1(d). It
is possible to remove this singularity by rescaling time by
the factor −ψ′(ξ), leading to the desingularised reduced
system (DRS)

ξ̇ = −q − γξ,
q̇ = ψ′(ξ)

[
ψ(ξ)− α− βξ

]
.

(8)

We carry out this rescaling because it is helpful in deci-
phering the flow of system (7) near the fold lines. Indeed,
the rescaling has two major consequences: (i) Orbits of
system (7) are extended in system (8) to the fold lines,
where (7) is undefined; (ii) System (7) may possess equi-
libria on the fold lines. As we shall see below, these
equilibria are related to canards in system (8).

III. FOLDED SINGULARITIES AND CANARDS
IN THE EXTENDED SYSTEM

System (8) has an equilibrium at (ξ∗,−γξ∗), where ξ∗
satisfies ψ′(ξ∗) = 0, i.e., on a fold line of the surface S0.
This is not an equilibrium of the reduced system (7) be-
cause of the time rescaling by −ψ′(ξ), which reverses the
orientation of trajectories on the repelling sheets of S0.
Therefore solutions to the reduced system (7) approach
the point (ξ∗,−γξ∗) along an attracting sheet of S0, cross
it in finite time, and continue to flow along a repelling
sheet of S0: these solutions of system (7) are called sin-
gular canards and persist for small ε > 0 as canard solu-
tions of system (5), and hence as spatio-temporal canards
of system (4).

Equilibria (ξ∗,−γξ∗) of the DRS (8) are called folded
singularities (of node, saddle or focus type) and are there-
fore important in the classification of canards. Other
equilibria of the DRS may exist as true equilibria of the
reduced system (7): these states are not generically re-
lated to canards and are not considered here. The Jaco-
bian at (ξ∗,−γξ∗) is given by(

−γ −1
π(ξ∗) 0

)
, π(ξ∗) = ψ′′(ξ∗)

[
ψ(ξ∗)− α− βξ∗

]
,
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FIG. 2. Examples of solutions containing spatio-temporal canards of folded-saddle type. (a): Time simulation of the folded-
saddle case for α = 0.5, β = γ = 0, and remaining parameters as in Fig. 1(b). (b): Solution to the full spatio-temporal
model (4), also shown in (a) and in Fig. 1(b), projected on the (h, q, ξ) phase space (blue), where we also plot the critical
manifold S0 (grey) and singular canards of (7) on S0 (red). (c): Projection on the (q, ξ) plane, showing the attracting (A) and
repelling (R) sheets of S0, revealing a spatio-temporal canard.

and hence (ξ∗,−γξ∗) is either (i) a folded saddle (if
π(ξ∗) < 0) or (ii) a folded node (if 0 < π(ξ∗) < γ2/4),
corresponding in (5) to (i) excitable dynamics and (ii)
mixed-mode dynamics.

Classical theory [19] now guarantees the presence of
canards in (5), and these correspond to spatio-temporal
canards in (4) for sufficiently small ε > 0, close to the
above-mentioned folded singularities.

We have confirmed these predictions using the full
model (4) with the heterogeneous synaptic kernel

W (x, y) =
1

2
e−|x−y|

(
a+ b cos

y

Λ

)
, (9)

where a, b ≥ 0, Λ > 0 and the firing rate function

f(u) = (1 + e−µu)−1. (10)

For µ� 1 this sigmoidal function approximates a Heavi-
side firing rate employed in the theory. We use the spec-
tral algorithm developed in Ref. [24] to solve the result-
ing equations. System (1), where h is a fixed parame-
ter, admits branches of localized steady states arranged
in a characteristic snakes-and-ladders bifurcation struc-
ture exhibiting countably many folds at which ψ′(ξ∗) = 0
(Fig. 1(d)).

A. Spatio-temporal folded-saddle canards

We first consider the uncoupled case with α = 0.5,
β = γ = 0, which leads to spatio-temporal folded-saddle
canards. Figure 2(a) shows the solution of the full spa-
tial system (4) in the form of a space-time plot while
Fig. 2(b) shows the same results but projected onto the
(h, q, ξ) space (blue curve), compared with the singular
canards of (7) (red curves). For reference we plot S0 in
grey. In Fig. 2(c) we show a projection onto the (ξ, q)
plane, where we indicate folded saddles (open circles)
and the attracting (A) and repelling (R) sheets of S0.

For these parameters the theory predicts the presence of
a folded-saddle spatio-temporal canard in system (4) and
the projection indeed displays behavior typical of folded-
saddle singularities in ODEs: the orbit follows the upper
attracting sheet, passes the folded singularity from right
to left (Fig. 2(c)) and then continues near a repelling
sheet of S0 for an O(1) time, before a fast (anterior) jump
leads to the lower attracting sheet; the orbit returns to
the upper attracting sheet with a second (posterior) fast
jump.

Since the latter jump occurs near a folded saddle, this
opens the possibility of a jump-on canard segment, in
which the orbit jumps and lands on the upper repelling
sheet of S0 before returning to the upper attracting
one. We observe this behavior in canard cycles obtained
with slightly different parameter values, as reported in
Figs. 3(a)–(b): the solution is periodic and passes near
four different folded-saddle singularities, marked with red
circles in Fig. 3(b); this trajectory contains one clear ca-
nard segment near the topmost folded saddle; this seg-
ment is a jump-on canard, as the orbit makes a fast up-
ward jump and then follows directly a repelling segment
along the maximal canard of the folded saddle. The tra-
jectory then passes near the other folded saddles, without
displaying a clear canard segment.

In Figs. 3(c)–(d) we present a family of solutions of
Eqs. (4) for different initial conditions near an attract-
ing sheet of S0. This experiment explains the sensitivity
documented in Figs. 1(a)–(c), and highlights the transi-
tion through the canard in the folded-saddle case. This
corresponds—modulo a change of direction near the re-
pelling sheets of S0—to a perturbation of the stable man-
ifold of the folded saddle (as a saddle equilibrium of the
DRS). Indeed, trajectories approach the canard and fol-
low it past the folded saddle; the trajectories are then
repelled and jump to a lower or upper attracting sheet
of S0, depending on their initial condition. In Fig. 3(d)
we plot the singular canards associated with this folded
saddle: the true canard (from A to R) and the so-called
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FIG. 3. Additional features of the folded-saddle scenario. In (a)–(b) we repeat the simulation of Fig. 2 with ε = 3.6 · 10−3,
finding a periodic solution displaying a jump-on canard. (a): Projection of the trajectory of the full spatio-temporal model on
the (h, q, ξ) space (blue), where we also plot the critical manifold S0 (grey) and singular canards on S0 (red). (b): Projection
on the (q, ξ) plane with attracting (A) and repelling (R) sheets of S0. In (c)–(d) we show a family of orbit segments passing
near the folded saddle and displaying sensitivity to initial conditions, separating orbits jumping up towards (A) or jumping
down towards another attracting sheet of S0 (also marked as (A) in panel (b)).

“false” (or faux ) canard (from R to A), both shown in
red. In this scenario, the true canard plays the role of a
separatrix between trajectories that jump upwards, fol-
lowing the faux canard, and downwards, towards a dif-
ferent attracting sheet of S0.

B. Spatio-temporal folded-node canards

We next repeat our numerical analysis for the fully cou-
pled system (4) when α = 1, β = 0, γ = 1 for which the
theory predicts spatio-temporal canards of folded-node
type (Fig. 4(a)–(c)). The folded-node scenario is richer
than the folded-saddle one: first, solutions containing ca-
nard segments exist for O(1) ranges of initial conditions
and parameter values; second, there are many more pos-
sible waveforms due to the existence of a funnel region
around the folded-node singularity that induces a rota-
tion of the trajectories as they pass through it; this ef-
fect is clearly visible in Fig. 4(b)–(c) as small amplitude
spiraling motion in the vicinity of the fold, and rather

less clearly as the minute oscillations for t ∈ [0, 1.5] in
Fig. 4(a). As initial conditions change, the number of
these small (subthreshold) oscillations in the funnel re-
gion varies and this phenomenon defines rotation sectors
near S0. The boundaries between different rotation sec-
tors correspond to canard solutions generating mixed-
mode dynamics in the system. For fixed parameter val-
ues, the maximum number of subthreshold oscillations is
given by the eigenvalue ratio of the folded node [19], seen
as an equilibrium of Eqs. (8). Thus trajectories with dif-
ferent initial conditions will be trapped in the funnel and
pass near the folded node while making different num-
bers of subthreshold oscillations, thereby encoding the
possible waveforms in this regime.

We exemplify this behavior in Figs. 4(d)–(i) by time-
stepping (4) with slightly different initial conditions,
close to a folded node, when α = 1, β = 0, γ = 0.7. In the
experiment under consideration we pre-computed a sta-
tionary pattern u0(x) for the neural field equation with

constant firing rate threshold, h = 0.57, ḣ = 0, that is,
we select a stationary state on S0. We then perturb this
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FIG. 4. Examples of solutions containing spatio-temporal canards of folded-node type. Parameters are as in Fig. 2, except
α = γ = 1, β = 0, for which the theory predicts folded-node canards. In (a)–(c) we plot the full spatio-temporal solution (a),
its projection on the (h, q, ξ) space (b) and on the (q, ξ) plane (c); the latter show oscillations typical of folded-node canards,
and therefore correspond to spatio-temporal folded-node canards in the neural field model. In (d)–(i) we set ε = 3.6 · 10−3,
α = 1, γ = 0.7 and retain all other parameter values; when initial conditions are varied slightly, a variable number of small
oscillations is found near the folded node, as expected from the ODE theory. We set q(0) = −18.35 (label 1 in (d), (e), (f), (i))
and q(0) = −18.40 (label 2 in (f), (g), (h), (i)). (f): Projections on the (q, ξ) plane, revealing an initial drift near the folded
node, during which trajectory 1 (2) displays 3 (5) small-amplitude oscillations around the folded singularity (see inset (i)).

state and compute two trajectories, with initial condi-
tions close to the folded node by setting u(x, 0) = u0(x),
h(0) = 0.58, q(0) = −18.40 (label 1) and q(0) = −18.35
(label 2). Figures 4(d,g) show the corresponding space-

time evolution u(x, t) while Figs. 4(e,h) show the corre-
sponding trajectories in (h, q, ξ) space. Panel (c) and the
enlargement in (f) show the projections of these trajec-
tories on the (q, ξ) plane. The trajectories are initially
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close and exhibit the drifting and spiralling motion pre-
dicted by the theory [19], with respectively three and five
subthreshold oscillations near the folded node. After an
initial transient, in which trajectory 1 visits the upper
attracting sheet of S0, both trajectories wrap clockwise
around the middle and bottom attracting sheets of S0

(Figs. 4(e,h)). Both also display jump-on canard seg-
ments at every turn, in the vicinity of the left boundary
of the upper repelling sheet of S0, although these become
less pronounced as time increases.

IV. NEURAL FIELDS POSED ON A SPHERE

We have also studied neural field models posed on
a more realistic spherical domain and identified spatio-
temporal canards with octahedral symmetry where inter-
faces are no longer points but curves in 3D. The above
theory does not readily generalize to this setting but
we nevertheless successfully tested its predictions in the
folded-saddle case, when u and h are decoupled. As
shown in Fig. 5, the model displays orbits with canard
segments (and canard cycles). In this case the system
with constant h admits an intricate bifurcation diagram
(not shown), where coexisting stable states with octahe-
dral, icosahedral and rotational symmetry are intercon-
nected via symmetry-breaking bifurcations and saddle-
node bifurcations.

The calculations for neural fields posed on the unit
sphere were performed using a neural field model with a
constant threshold crossing h,

∂tu(x, t) = −u(x, t) (11)

+ κ

∫
S2
W
(
〈x, y〉

)
f
(
u(y, t)− h

)
dσ(y),

where x ∈ S2 = {z ∈ R3 : |z| = 1} and the integral is
over S2. In this integro-differential equation the kernel W
models the synaptic wiring between two points x, y on the
surface of a sphere; we assume that this wiring depends
solely on the great-circle distance (geodesic) between x
and y, hence the dependence on the scalar product 〈x, y〉.
We use an excitatory-inhibitory Gaussian synaptic kernel

W (ξ) = A1 exp(−ξ2/B1)−A2 exp(−ξ2/B2). (12)

Stationary patterned states of (11) were continued
in the parameter h using a Nyström scheme, com-
bined with standard path-following techniques as well as
high-order, highly efficient, icosahedral- or tetrahedral-
invariant quadrature schemes. A comprehensive study
of branches of patterned states supported by this model,
their symmetries and stability, as well as the properties of
the numerical scheme will be described in a separate pub-
lication [42]. A sample result showing a branch of states
with octahedral symmetry is reported in Fig. 5(b). So-
lutions with this symmetry bifurcate transcritically from
the homogeneous steady state, and then undergo a se-
quence of saddle-nodes and symmetry-breaking bifurca-
tions shown in the figure.

We are interested in testing the predictions of the the-
ory developed for 1D domains for more realistic cor-
tical surfaces. For physical domains in higher dimen-
sions, it is possible to reduce the equations as for 1D
domains, but the reduction is still a spatially-extended
dynamical system. In 1D, the activity set is given by
A(t) = [−ξ(t), ξ(t)] ∈ R and, differentiating one of the
threshold conditions, say u(ξ(t), t) = h(t), we obtain

∂xu(ξ(t), t)ξ̇(t) = h(t) + ḣ(t)−
∫ ξ(t)

−ξ(t)
W (x, y) dy (13)

which is an evolution equation for the scalar variable ξ.
To extend this procedure to the sphere, we assume that
the activity set A(t) = {x ∈ S2 : u(x, t) ≥ h(t)} has a
boundary which can be parameterized as follows,

∂A(t) =

K⋃
k=1

Ck(t),

Ck(t) = {x ∈ S2 : x = ξk(s, t), s ∈ [0, 2π)},

where the functions {ξk} are 2π-periodic and smooth
in the variable s. In other words, we assume that the
boundary of the activity set on the spherical domain is
the union of K disjoint curves on the spherical surface S2.
We seek evolution equations for the functions {ξk}. Since
the solution u(x, t) crosses the threshold h(t) on each of
the curves Ck, we differentiate the threshold condition
u(ξk(s, t), t) = h(t) with respect to t to obtain〈
∇u
(
ξk(s, t), t

)
, ∂tξk(s, t)

〉
= h(t) + ḣ(t) (14)

−
∫
A(t)

W
(
〈ξk(s, t), y〉

)
dσ(y),

s ∈ [0, 2π), k = 1, . . . ,K,

ξk(0, t) = ξk(2π, t), k = 1, . . . ,K, (15)

where the gradient is in spherical coordinates. It can be
shown that, under suitable assumptions on the kernel,
the inner product on the left hand side and the surface
integral on the right hand side of (14) can be written [30,
43] in terms of line integrals over the closed curves Ck(t).
The system (14)–(15) is therefore closed and represents
a generalization of (13). In this case, however, the state
variables are the functions {ξk(s)}, as opposed to the
scalar ξ, and a canard theory for this system is currently
unavailable.

We can, however, simulate the system (11) or the sys-
tem (14)–(15) numerically and search for evidence of
spatio-temporal canards. More precisely, we have per-
formed numerical experiments to test the robustness of
the 1D theory to

1. Changes in the geometry of the problem: the spher-
ical model includes curvature effects via the great-
circle distance 〈x, y〉 between points x, y on the
spherical cortex (see Eq. (11)).
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FIG. 5. Spatio-temporal canards of folded-saddle type occurring in a neural field model posed on a spherical domain using h
as the continuation parameter. (b) Bifurcation diagram of steady states with octahedral symmetry in the system (11). (a,c)
Bifurcation diagram (red), orbit (blue) and representative patterns obtained when h varies slowly through (a) a low-lying
fold, and (c) one of the higher folds. When the evolution of h is decoupled from u, we observe spatio-temporal canards of
folded-saddle type. Animations displaying a canard cycle [39] and orbits jumping to the upper [40] and lower [41] branch can
be found in the Supplementary Material.

2. Changes in the synaptic connectivity function: the
kernel (12) is different from that used in the 1D
computations; in particular, the kernel (12) is
excitatory-inhibitory and homogeneous while ker-
nel (9) is purely excitatory and heterogeneous.

3. Changes in the firing rate function: the theory is
valid for a Heaviside firing rate which is approx-
imated in the 1D simulations by a steep sigmoid
(Eq. (10) with µ = 50); in the spherical simula-
tions we employ a shallow firing rate (µ = 8).

4. Changes in the evolution equation of the firing
threshold h: in the spherical simulations, h evolves
slowly and independently from u, but not harmon-
ically:

h(t) =

{
εt+ h0 0 ≤ t < (h1 − h0)/ε

−εt+ 2h1 − h0 t ≥ (h1 − h0)/ε,
(16)

where h1 is a fold point in the bifurcation diagram
(located using standard bifurcation analysis tech-
niques) and h0 < h1. Consequently, h undergoes
a slow linear increase up to the fold, followed by a
slow linear decrease.

In each case we found that the qualitative predictions of
the 1D theory carried over to this much more complicated
situation.

V. CONCLUSIONS AND PERSPECTIVES

To the best of our knowledge, this article presents the
first theory for folded-singularity temporal canards in a

spatially-extended system. This result paves the way to-
wards a systematic study of spatio-temporal mixed-mode
oscillations (MMOs) in spatially-extended systems, with
the view of explaining the origin of MMOs observed in
spatio-temporal signals modelling spike-frequency adap-
tation and synaptic depression [44]. The spatio-temporal
structures discussed here are also directly relevant to neu-
ral mass and connectomic models, in which a discrete
connectomic matrix replaces the heterogeneous kernel
W [45]: canard structures in these models would offer
a rigorous explanation of the brutal transitions observed,
for instance, in models of partial epilepsy [46]. There
is a general consensus that spike (and more generally
burst) timings, durations and rates are involved in infor-
mation coding in the brain [47]. Being able to identify
boundaries (represented by spatio-temporal canards) be-
tween different activity regimes (e.g. spiking/bursting or
mixed-mode oscillations with different signatures) may
shed further light on the transmission of information in
the brain.
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[12] E. Benôıt, J.-L. Callot, F. Diener, and M. Diener, Col-
lect. Math. 32, 37 (1981).

[13] M. Krupa and P. Szmolyan, J. Differ. Equations 174, 312
(2001).

[14] M. Desroches, M. Krupa, and S. Rodrigues, J. Math.
Biol. 67, 989 (2013).

[15] J. Mitry, M. McCarthy, N. Kopell, and M. Wechsel-
berger, J. Math. Neurosci. 3, 1 (2013).

[16] J. Moehlis, J. Math. Biol. 52, 141 (2006).
[17] M. A. Kramer, R. D. Traub, and N. J. Kopell, Phys.

Rev. Lett. 101, 68103 (2008).
[18] J. Rinzel, in Proc. Intern. Congr. Math., Vol. 1-2 (Amer.

Math. Soc., Providence, RI, 1987) pp. 1578–1593.
[19] M. Desroches, J. Guckenheimer, B. Krauskopf,

C. Kuehn, H. M. Osinga, and M. Wechselberger,
SIAM Rev. 54, 211 (2012).

[20] M. Desroches, T. J. Kaper, and M. Krupa, Chaos 23,
046106 (2013).

[21] P. Gandhi, C. Beaume, and E. Knobloch, in Nonlinear
Dynamics: Materials, Theory and Experiments, edited
by M. Tlidi and M. G. Clerc (Springer, New York, 2016)
pp. 303–316.

[22] S. Coombes, Biol. Cyber. 93, 91 (2005).
[23] C. R. Laing and W. C. Troy, SIAM J. Appl. Dyn. Sys.

2, 487 (2003).
[24] J. Rankin, D. Avitabile, J. Baladron, G. Faye, and

D. J. B. Lloyd, SIAM J. Sci. Comput. 36, B70 (2014).
[25] P. C. Bressloff, Phys. D 155, 83 (2001).
[26] S. Coombes and C. Laing, Phys. Rev. E 83, 011912

(2011).
[27] D. Avitabile and H. Schmidt, Phys. D 294, 24 (2015).
[28] C. R. Laing, W. C. Troy, B. Gutkin, and G. B. Ermen-

trout, SIAM J. Appl. Math. 63, 62 (2002).
[29] S. Coombes, G. Lord, and M. Owen, Phys. D 178, 219

(2003).
[30] S. Coombes, H. Schmidt, and I. Bojak, J. Math. Neu-

rosci. 2, 9 (2012).
[31] S.-I. Amari, Biol. Cybern. 27, 77 (1977).
[32] E. Knobloch, Annu. Rev. Condens. Matter Phys. 6, 325

(2015).
[33] C. A. Brackley and M. S. Turner, Phys. Rev. E 75,

041913 (2007).
[34] R. Thul, S. Coombes, and C. R. Laing, J. Math. Neu-

rosci. 6, 1 (2016).
[35] S. Coombes and M. R. Owen, Phys. Rev. Lett. 94, 148102

(2005).
[36] S. Coombes and M. R. Owen, in Fluids and Waves: Re-

cent Trends in Applied Analysis: Research Conference,
May 11-13, 2006, the Universtiy of Memphis, Memphis,
TN, Vol. 440 (American Mathematical Soc., 2007) p. 123.

[37] D. V. Madison and R. A. Nicoll, J. Physiol. 354, 319
(1984).

[38] M. Desroches, M. Krupa, and S. Rodrigues, Phys. D
331, 58 (2016).

[39] See Supplemental Material at [URL will be inserted by
publisher] for an orbit displaying a canard cycle.

[40] See Supplemental Material at [URL will be inserted by
publisher] for an orbit displaying an abrupt jump to the
upper branch.

[41] See Supplemental Material at [URL will be inserted by
publisher] for an orbit displaying an abrupt jump to the
lower branch.

[42] D. Avitabile, R. Nicks, and O. Smith, in preparation
(2017).

[43] S. Coombes, H. Schmidt, and D. Avitabile, in Neural
Field Theory, edited by S. Coombes, P. beim Graben,
R. Potthast, and J. J. Wright (Springer, New York, 2013)
pp. 187–211.

[44] S. E. Folias and P. C. Bressloff, SIAM J. Appl. Math. 65,
2067 (2005).

[45] A. Haimovici, E. Tagliazucchi, P. Balenzuela, and D. R.
Chialvo, Phys. Rev. Lett. 110, 178101 (2013).

[46] T. Proix, F. Bartolomei, P. Chauvel, C. Bernard, and
V. K. Jirsa, J. Neurosci. 34, 15009 (2014).

[47] A. Borst and F. E. Theunissen, Nat. Neurosci. 2, 947
(1999).


