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We present both exact and numerical results for the behavior of the Casimir force in O(n) systems
with a finite extension L in one direction when the system is subjected to surface fields that induce
helicity in the order parameter. We show that for such systems the Casimir force in certain temper-
ature ranges is of the order of L−2, both above and below the critical temperature, Tc, of the bulk
system. An example of such a system would be one with chemically modulated bounding surfaces,
in which the modulation couples directly to the system’s order parameter. We demonstrate that,
depending on the parameters of the system, the Casimir force can be either attractive or repulsive.
The exact calculations presented are for the one dimensional XY and Heisenberg models under
twisted boundary conditions resulting from finite surface fields that differ in direction by a specified
angle and the three dimensional Gaussian model with surface fields in the form of plane waves that
are shifted in phase with respect to each other. Additionally, we present exact and numerical results
for the mean field version of the three dimensional O(2) model with finite surface fields on the
bounding surfaces. We find that all significant results are consistent with the expectations of finite
size scaling.

PACS numbers: 64.60.-i, 64.60.Fr, 75.40.-s

I. INTRODUCTION

Casimir forces result from, and provide insight into,
the behavior of a medium confined to a restricted space,
canonically the region between two plane, parallel sur-
faces. In the case of the electromagnetic Casimir force
[1–5], the medium is the vacuum, and the underlying
mechanism is the set of quantum zero point or temper-
ature fluctuations of the electromagnetic field. The now
widely-investigated critical Casimir force (CCF) results
from the fluctuations of an order parameter and more
generally the thermodynamics of the medium supporting
that order parameter in the vicinity of a critical point [6–
9]. In fact, the free energy of a confined medium can me-
diate a Casimir force at any temperature provided its ex-
citations are long-range correlated ones. This fact, along
with the wide range of options for a mediating substance
opens up a range of possibilities for the study and ex-
ploitation of the Casimir force arising from a confined
medium.

One of the principal influences on the Casimir force
is the nature of the bounding surface. With respect to
the CCF, published investigations have been focused, al-
most exclusively, on systems belonging to the Ising uni-
versality class. On a basic level, based on the behavior
of coupling in the vicinity of the surface, there are three
universality classes—extraordinary (or normal), ordinary
and surface-bulk (or special), ones [7, 8, 10]. Experimen-
tal investigations into the influence of surface universal-
ity classes on the Casimir force have been reported in
[11–17]. Most of them focus on the behavior of colloids
in a critical solvent. They probe the dependence of the

force between boundaries on temperature, the concen-
tration of the components of the solvent and the relative
preference of the surfaces of the colloids for the compo-
nents of the solvent. For example, in [14] the critical
thermal noise in a solvent medium consisting of a binary
liquid mixture of water and 2,6-lutidine near its lower
consolute point is shown to lead to attractive or repul-
sive forces, depending on the relative adsorption prefer-
ences of the colloid and substrate surfaces with respect
to the two components of the binary liquid mixture. On
the theoretical side, the influence of the surface fields has
been studied on the case of two dimensional Ising model
via exact calculation [18–21], using the variational for-
mulation due to Mikheev and Fisher [22, 23], with the
help of density-matrix renormalization-group numerical
method [24–27], via conformal invariance [28, 29], Monte
Carlo methods [28], and numerically using bond propaga-
tion algorithms [30]. The three dimensional Ising model
has been studied with Monte Carlo methods in [31–37],
mean-field type calculations [38–43] and renormalized lo-
cal functional theory [44]. In general, it has been shown
that the Casimir force depends on the strength of the
surface fields h1 and h2 and that it can change sign as
the magnitudes of the surface field, the thickness of the
films, and the temperature of the system are varied.

For the general case of O(n) systems there is no sim-
ilarly thorough classification [45]. References [2, 46–53]
report on studies of the Casimir force in liquid crystals,
and [54–60] describe investigations for 4He and 3He–4He
mixtures. In the case of Helium films, however, it is
generally accepted that the boundary conditions are de-
termined, in the region where the liquid behaves as a
quantum liquid, by its quantum nature and, thus, can-
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not be easily influenced by modification of bounding sur-
faces, in that there are no surface fields that couple to
the order parameter in such systems. In that respect
liquid crystals seem much more readily adjustable, and
in particular more amenable to the influence of bound-
ary conditions. For example, in Ref. [46] it is shown that
director fluctuations in nematics induce long-range inter-
actions between walls, which are attractive with symmet-
ric boundary conditions, but may become repulsive with
mixed ones. In smectics such forces are longer ranged
than van der Waals ones.

In [48] the authors concluded that in the case of finite
surface coupling, the fluctuation-induced forces for ne-
matics are weaker than in the strong anchoring limit. In
the example of three-dimensional lattice XY model with
nearest neighbor interaction, it has been shown [61] that
the Casimir force depends in a continuous way on the pa-
rameter α characterizing the so-called twisted boundary
conditions when the angle between the vector order pa-
rameter at the two boundaries is α where 0 < α ≤ π. The
effect is essential; depending on α the force can be attrac-
tive or repulsive. By varying α and/or the temperature T
one can control both the sign and the magnitude of the
Casimir force in a reversible way. Furthermore, when
α = π, an additional phase transition, which occurs only
in finite systems, has been discovered, associated with
the spontaneous symmetry breaking of the direction of
rotation of the vector order parameter through the body
of the system.

In the current article we show that the strength and
the mutual orientation of surface fields—as well as struc-
turing on the surface via chemical or other alternations
that can be described in terms of surface fields—lead to
interesting and substantial modification in the behavior
of the force between the confining surface. Such modi-
fication includes the change of the sign of the force, as
well as non-monotonic behavior, appearance of multiple
minima, of a longitudinal Casimir force, and also an am-
plification of the force in regions with strong helicity ef-
fects. We will demonstrate the above with the example
of few models: the one dimensional XY and Heisenberg
models, the three dimensional Gaussian model and the
three dimension O(2) XY model.

We start with the one-dimensional XY and Heisenberg
models.

II. 1D CONTINUUM SYMMETRY MODELS
WITH BOUNDARY FIELDS

Here we consider two one-dimensional models with
continuous O(n) spin symmetry: XY (n = 2) and Heisen-
berg (n = 3) chains of N spins with ferromagnetic inter-
action J between nearest-neighbor spins, the boundary
fields H1 and H2 of which are at an angle 0 ≤ ψ ≤ π with
respect to each other. Obviously, such systems do not
exhibit spontaneous ordering at non-zero temperatures
given their low dimension and the short range nature

of the interactions between spins, as has been shown to
follow rigorously from the Mermin-Wagner theorem [62].
Nevertheless, they posses an essential singular point at
T = 0 and will, in that limit, support spontaneous or-
der. We will demonstrate that when the boundary fields
are non-zero the Casimir force, FCas, of these systems
displays very rich and interesting behavior. We also
show that near T = 0 the force has a scaling behavior
and that, depending on the angle between the boundary
fields and the value of the temperature scaling variable
x ∼ NkBT/J , this force can be attractive or repulsive.
More precisely, we will establish that:

i) For low temperatures, when x = O(1) and

N � J

(
1

H1
+

1

H2

)
(2.1)

the leading behavior of the Casimir force can be
written in the form

βFCas(T,N,H1,H2) = N−1X(ψ, x), (2.2)

with x a scaling variable and X a universal scaling
function. Equation (2.2) implies that, under con-
straint Eq. (2.1), XCas depends only on the scaling
variable x defined in (2.12) and the angle ψ. The
latter parameter effectively describes the boundary
conditions on the system. Note that, unlike the
Ising model, the boundary conditions depend here
continuously on one parameter—in our notation ψ.

ii) When x → 0+ the scaling function of the Casimir
force becomes positive, i.e., the force turns repulsive
provided that ψ 6= 0. In that case XCas ∼ x−1 and,
thus, the overall N -dependence of the force is of
the order of N−2.

iii) When x & 1 the scaling function has a sign that
depends on the sign of cos(ψ): for 0 < |ψ| < π/2
the force will be attractive, while for π/2 < |ψ| < π
it will be repulsive. For x � 1 the force decays
exponentially to zero.

iv) For any ψ such that 0 < |ψ| < π/2 the Casimir
force changes from attractive to repulsive when the
temperature decreases from a moderate value to
zero for fixed system size, N .

v) When ψ = 0 the force is attractive for any value of
the scaling variable x.

These 1d models have been studied analytically in the
case of free (frequently termed “open” or Dirichlet) and
periodic boundary conditions [63–67], but we are not
aware of any investigation of them in the presence of
boundary fields, which are responsible for the effects of
interest in this article.
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A. The 1d XY model

We consider a system with the Hamiltonian

H = −J
N−1∑
i=1

Si.Si+1 −H1.S1 −HN .SN (2.3)

where Si, with S2
i = 1 and Si ∈ Z2, i = 1, · · · , N , are

N spins arranged along a straight line. The Hamiltonian
can be written in the form

H = −J
N−1∑
i=1

cos (ϕi+1 − ϕi) (2.4)

−H1 cos (ψ1 − ϕ1)−HN cos (ψN − ϕN ) ,

where the surface magnetic field angles ψ1, ψ2 and indi-
vidual spin angles ϕ1, · · · , ϕN are measured with respect
to the line of the chain which is taken to be, say, the x
axis. The free energy −βFN of this system is given by

exp (−βFN ) =

∫ 2π

0

exp (−βH)

N∏
i=1

dϕi
2π

. (2.5)

Performing the requisite calculations (see Appendix A)
one obtains

exp (−βFN ) (2.6)

=

∞∑
k=−∞

exp (ikψ) Ik (h1) Ik(K)N−1Ik (hN )

where

ψ ≡ (ψ1 − ψN ),K ≡ βJ, h1 ≡ βH1, hN ≡ βHN . (2.7)

Here Ik(x) is the modified Bessel function of the first kind
[68, 69]. Note that the free energy depends only on the
difference in angles, (ψ1 − ψN ), and not on ψ1 and ψN
separately. For the Casimir force in the system, i.e., for
the finite size part of the total force, see Eq. (A8), one
then has the exact expression

βFCas =
2
∑∞
k=1 cos [k(ψ1 − ψ2)] log

[
Ik(K)
I0(K)

]
Ik(h1)
I0(h1)

(
Ik(K)
I0(K)

)N−1
Ik(hN )
I0(hN )

1 + 2
∑∞
k=1 cos [k(ψ1 − ψ2)] Ik(h1)

I0(h1)

(
Ik(K)
I0(K)

)N−1
Ik(hN )
I0(hN )

. (2.8)

From here on we will be interested in the behavior
of the system in the limit β � 1, i.e., when T → 0.
Obviously, when β � 1 from Eq. (2.7) one has h1 � 1,
hN � 1 and K � 1, which means that in Eq. (2.6) one
uses the large argument asymptote of Ik(z) for z � 1.
We will use the asymptote in the form reported in [70]

Iν(z) =
ez−ν

2/2z

√
2πz

[
1 +

1

8z
+O

(
ν2

z2

)]
. (2.9)

Retaining only the first term in the above expansion, one
obtains

βFCas(x) =
1

Neff
XCas(ψ, x, heff) (2.10)

where

XCas = −x
∑∞
k=1 k

2 cos (kψ) exp
[
− 1

2k
2
(
h−1

eff + x
)]

1 + 2
∑∞
k=1 cos (kψ) exp

[
− 1

2k
2
(
h−1

eff + x
)] ,

(2.11)
and

x ≡ Neff

K
, h−1

eff = h−1
1 + h−1

2 , Neff = N − 1.

(2.12)
Here, x is the scaled version of the reduced tempera-
ture variable, which in systems with a non-zero transi-
tion temperature takes the form x = tνL, with t the re-
duced temperature ∝ T − Tc, L the characteristic size of

the finite system and ν the correlation length exponent.
Recall that with an effective transition temperature of
T = 0 and K ∝ 1/T , the definition in (2.12) is consistent
with this definition under the assumption that ν = 1.

Obviously, when Eq. (2.1) is fulfilled one has x� h−1
eff ,

and one can safely ignore heff in Eq. (2.11). Then the
behavior of the force is exactly as stated in Eq. (2.2).

The representation of XCas given by Eq. (2.11) is con-
venient for all values of x except in the limit x � 1.
For that limit, using the Poisson identity Eq. (A9), one
obtains

XCas(ψ, x, heff) = − x

2
(
x+ h−1

eff

) (2.13)

+
x

2
(
x+ h−1

eff

)2
∑∞
n=−∞ (2nπ + ψ)

2
exp

[
− (2nπ+ψ)2

2(x+h−1
eff )

]
∑∞
n=−∞ exp

[
− (2nπ+ψ)2

2(x+h−1
eff )

] .

Under the assumption that the constraint (2.1) is fulfilled
and given the asymptotic behavior of XCas from Eqs.
(2.11) and (2.13), we derive

XCas(ψ, x) =

{
− 1

2 + 1
2xψ

2 + · · · , x→ 0+
−x cos(ψ) exp(−x/2), x� 1.

(2.14)
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FIG. 1. (Color online) The scaling function XCas of the XY
model as a function of the scaling variable x, see Eq. (2.12),
for different values of the phase change ψ.

FIG. 2. (Color online) The surface of the scaling function
XCas(ψ, x) of the XY model as a function of the scaling vari-
ables x and ψ. The horizontal plane marks the XCas = 0
value.

From Eq. (2.13) one can also derive an expression for
the low T behavior of the system that retains the depen-
dence on H1 and H2. The result is

βFCas = −1

2

1

(J/H1 + J/HN +N − 1)

+
1

2
K

(ψ1 − ψN )
2

(J/H1 + J/HN +N − 1)
2 . (2.15)

This result can be also directly derived by realizing that
the ground state of the system is a spin wave such that
the end spins are twisted with respect to each other at
angle ψ = ψ1 − ψN .

Equations (2.11), (2.13), (2.14) and (2.15) confirm the
validity of the statements i)-iv) in the first part of this
section. For example, Eq. (2.11) demonstrates that when
ψ = 0 the force is attractive for any value of the scal-
ing variable x; Eq. (2.14) then confirms this behavior for
small and large values of the scaling variable x.

The behavior of the scaling function XCas(ψ, x) for dif-
ferent values of ψ as a function of the scaling variable x is
shown in Fig. 1. Fig. 2 shows a 3D plot of this function
for x ∈ [0, 10] and ψ ∈ [−π, π].

B. The 1d Heisenberg model

The Hamiltonian of the system is again given by
Eq. (2.3) with the conditions that now the N spins Si,
i = 1, · · ·N , again arranged along a straight line, are
three-dimensional vectors Si ∈ Z3, i = 1, · · · , N .

FIG. 3. (Color online) The scaling function XCas of the
Heisenberg model as a function of the scaling variable x, see
Eq. (2.21), for different values of the phase change ψ.

As shown in Appendix B the free energy of the system
is given by the exact expression

exp (−βFN ) =
( π

2K

)(N−1)/2 π

2
√
h1hN

∞∑
n=0

(2n+ 1)Pn (cosψh) In+1/2(h1)In+1/2(hN )
[
In+1/2(K)

]N−1
(2.16)

=
sinhh1

h1

sinhhN
hN

[
sinhK

K

]N−1
{

1 +

∞∑
n=1

(2n+ 1)Pn (cosψh)
In+1/2(h1)

I1/2(h1)

In+1/2(hN )

I1/2(hN )

[
In+1/2(K)

I1/2(K)

]N−1
}
,

where ψh is the angle between the vectors H1 and HN

and we have used that I1/2(x) =
√

2/(πx) sinh(x). Here
In+1/2(z) is the modified Bessel function of the first kind
of half-integer index, Pn(x) is the Legendre polynomial
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of degree n and K, h1 and hN are defined in accord with
Eq. (2.17):

K ≡ βJ, h1 ≡ βH1, hN ≡ βHN . (2.17)

When h1 → 0 and hN → 0 the system considered be-
comes the one with Dirichlet boundary conditions, a case
that was studied by M. E. Fisher in [63]. Taking into ac-
count that In+1/2(x) = [2n+1/2Γ(n + 3/2)]−1xn+1/2 +

O(x5/2+n) and that P0(x) = 1, one concludes that only
the term with n = 0 will contribute to the free energy in

this case. One obtains

exp (−βFN ) =
( π

2K

)(N−1)/2 [
I1/2(K)

]N−1
(2.18)

=

[
sinhK

K

]N−1

.

The last expression is precisely the result derived in [63].
From Eq. (2.16) one can easily derive the correspond-

ing exact expression for the Casimir force for the one
dimensional Heisenberg model. One has

βFCas =

∑∞
n=1(2n+ 1)Pn (cosψh) ln

[
In+1/2(K)

I1/2(K)

]
In+1/2(h1)

I1/2(h1)

In+1/2(hN )

I1/2(hN )

[
In+1/2(K)

I1/2(K)

]N−1

1 +
∑∞
n=1(2n+ 1)Pn (cosψh)

In+1/2(h1)

I1/2(h1)

In+1/2(hN )

I1/2(hN )

[
In+1/2(K)

I1/2(K)

]N−1
. (2.19)

In the limit T → 0 when h1 � 1, hN � 1 and K � 1
from Eq. (2.9) one obtains

βFCas(x) =
1

Neff
XCas(ψh, x, heff) (2.20)

where the scaling variable x, as well as heff , are as defined
in Eq. (2.12) while the scaling function XCas is

XCas(ψh, x, heff) = −1

2
x

∑∞
n=1 n(n+ 1)(2n+ 1)Pn (cosψh) exp

[
− 1

2n(n+ 1)
(
x+ h−1

eff

)]
1 +

∑∞
n=1(2n+ 1)Pn (cosψh) exp

[
− 1

2n(n+ 1)
(
x+ h−1

eff

)] . (2.21)

As in the case of the XY model, when Eq. (2.1) is ful-
filled one can ignore heff in the above expression. If not
stated otherwise we will always suppose this to be the
case. Then the scaling function XCas depends only on
the scaling variable x and the angle ψh that parametrizes
the boundary conditions on the system, exactly as set
forth in Eq. (2.2). The representation of XCas given by

Eq. (2.21) is applicable for all values of x except in the
limit x � 1. Keeping in mind that P1(cosψh) = cosψh,
and in light of the fast decay off the terms in the sums
in Eq. (2.22), it is clear that for those very small values
of x the sign of the force will be determined by the sign
of cosψh. For the leading behavior of the Casimir force
when x� 1 one obtains

XCas(ψh, x, heff) = −1 +
h−1

eff

h−1
eff + x

+
x(1− cosψh)(
h−1

eff + x
)2 + x

coth
(

1
h−1
eff +x

)
− 1(

h−1
eff + x

)2 , (2.22)

which follows from Eq. (B16). One can also derive the
first three terms in that expansion by considering the N
dependence of the ground energy of the 1d Heisenberg
model, assuming it to be in the form of a spin wave.
Explicitly, for the behavior of the Casimir force for T → 0

from Eq. (2.22) one obtains

βFCas = − 1

(J/H1 + J/HN +N − 1)

+K
1− cosψh

(J/H1 + J/HN +N − 1)
2 . (2.23)

The behavior of the scaling function XCas(ψ, x) for dif-
ferent values of ψ as a function of the scaling variable x
is shown in Fig. 3 while Fig. 4 shows a 3D plot of this
function for x ∈ [0, 10] and ψ ∈ [−π, π]. Thus, for the
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overall behavior of the Casimir force as a function of ψh
one arrives at the same set of conclusions for the Heisen-
berg model as for the XY model as a function of ψ, as
summarized in statements i)-v).

FIG. 4. (Color online) The surface of the scaling function
XCas(ψ, x) of the Heisenberg model as a function of the scaling
variables x and ψ. The horizontal plane marks the XCas = 0
value.

III. THE 3D GAUSSIAN MODEL

The Gaussian model [8, 67], or Gaussian Approxima-
tion [71], assumes spins with continuously variable ampli-
tude and a polynomial free energy that is at most second
order in the amplitude of the spins. Here, we focus on
such a system with scalar spins. This means that, strictly
speaking, there is no helicity. However, the surface fields
that influence the order parameter will have sinusoidal
variation along the film boundaries, conforming to the
behavior of the individual components of a field that in-
duces helical order in a multi-component system. We
therefore expect that the results to be derived and dis-
cussed in this section will be germane to corresponding
behavior in such a system. We consider a planar dis-
crete system containing L two-dimensional layers with a
Hamiltonian

−βH =

M∑
x=1

N∑
y=1

{
K‖

L∑
z=1

Sx,y,z (Sx+1,y,z + Sx,y+1,z) +K⊥
L−1∑
z=1

Sx,y,zSx,y,z+1 + h1Sx,y,1 cos (kxx+ kyy)

+hLSx,y,L cos (kx (x+ ∆x) + ky (y + ∆y))− s
L∑
z=1

S2
x,y,z

}
(3.1)

which describes a system with short-ranged nearest
neighbor interactions possessing chemically modulated
bounding surfaces situated at z = 1 and z = L. Here
h1 = βH1 and hL = βHL are the external fields acting
only on the boundaries of the system. In the specific
example considered the modulation depends on the co-
ordinates x and y in a wave-like way specified by the ap-
plied surface fields h1 cos (kxx+ kyy) ≡ h1 cos(k.r) and
hL cos[kx (x+ ∆x) + ky (y + ∆y)] ≡ hL cos(k.(r + ∆)),
the phases of which are thus shifted with respect to each
other by ∆x in x direction and by ∆y in y direction.
Here r = (x, y), k = (kx, ky) and ∆ = (∆x,∆y). Peri-
odic boundary conditions are applied along the x and y
axes, while missing neighbor (Dirichlet) boundary con-
ditions are imposed in the z direction. These boundary
conditions are expressed as follows:

S1,y,z = SM+1,y,z, Sx,1,z = Sx,N+1,z (3.2)

and

Sx,y,0 = 0 and Sx,y,L+1 = 0. (3.3)

Given those the boundary conditions, the Hamiltonian
in Eq. (3.1) can be rewritten in the form

−βH =

M∑
x=1

N∑
y=1

L∑
z=1

Sx,y,z

{
K‖ (Sx+1,y,z + Sx,y+1,z)

+K⊥Sx,y,z+1 + δ1,zh1 cos [k.r]

+δL,zhL cos [k.(r + ∆)]− s Sx,y,z

}
. (3.4)

Since we will be considering the limit M,N → ∞ we
can always take the wave vector components kx and ky
to coincide with (2πp)/M and (2πq)/N for some p =
1, · · · ,M and q = 1, · · · , N , respectively. In Eqs. (3.1)
and (3.4) one has

K‖ = βJ‖, and K⊥ = βJ⊥, (3.5)

where J‖ and J⊥ are the strengths of the coupling con-
stants along and perpendicular to the L layers of the
system. The parameter s > 0 on the right hand side of
(3.4) is subjected to the constraint that it has a value
that ensures the existence of the partition function of
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the system. It is easy to check that 2K‖ + K⊥ − s ≡
β(2J‖+ J⊥)− s = 0 determines the critical temperature
βc of the bulk model, i.e., one has

βc = s/(2J‖ + J⊥). (3.6)

For the model defined above the Casimir force acting
on the bounding planes at z = 1 and z = L has both

orthogonal, βF
(⊥)
Cas , and lateral, βF

(‖,α)
Cas , α = x or α = y,

components, which can be written in the form

βF
(··· )
Cas = L−3

(
J⊥

J‖

)
X

(··· )
Cas (xt, xk, x1, xL), (3.7)

where (· · · ) stands for either (⊥) or (‖, α), with α = x or
α = y. Here

x1 =
√
LK‖

h1

K⊥
, xL =

√
LK‖

hL
K⊥

, (3.8)

are the field-dependent scaling variables, xt is the
temperature-dependent one with

xt = L

√
2

(
βc
β
− 1

)[
2
J‖

J⊥
+ 1

]
, xk =

√
J‖

J⊥
Lk,

(3.9)

with k =
√
k2
x + k2

y is the scaling variable related to the

surface modulation. When h1 = O(1) and hL = O(1)

we will see that F
(··· )
Cas has a field dependent contribution

which, in this regime, will provide the leading contribu-
tion to the force of the order of L−2.

The Hamiltonian (3.4) can be easily diagonalized in a
standard way—see Appendix C. The resulting free energy
of the system, F , is

F = ∆F0 + ∆Fh, (3.10)

where

−β∆F0 =
1

2
MNL lnπ (3.11)

−1

2

L∑
l=1

M∑
m=1

N∑
n=1

ln

{
s−K‖

[
cos

(
2πm

M

)
+ cos

(
2πn

N

)]
−K⊥ cos

(
πl

L+ 1

)}
is the field independent part of the free energy and ∆Fh,
the field dependent contribution, is

i) when either p 6= M or q 6= N :

−β∆Fh =
MN

8(L+ 1)
× (3.12)

L∑
l=1

sin2
(

πl
L+1

) [
h2

1 + h2
L − 2hLh1(−1)l cos(k.∆)

]
s−K‖

[
cos
(

2πp
M

)
+ cos

(
2πq
N

)]
−K⊥ cos

(
πl
L+1

) ,
where k = (kx = 2πp/M, ky = 2πq/N), and ∆ =
(∆x,∆y), and

ii) when p = M and q = N :

−β∆Fh =
MN

2(L+ 1)
× (3.13)

L∑
l=1

sin2
(

πl
L+1

) [
h1 − hL(−1)l cos (2π(∆x + ∆y))

]2
s− 2K‖ −K⊥ cos

(
πl
L+1

) .

Note that there is a fundamental difference between the
sub-cases in Eqs. (3.12) and (3.13); while in the first sub-
case i) the average field applied on the surfaces is zero
when spaially averaged, in the second sub-case ii) it is a
constant. In the last sub-case one can think of hL as a
constant field acting on the second surface being twisted
in direction with respect to the constant field h1 applied
to the first one with a twist governed by ∆x and ∆y.

Obviously

s−K‖
[
cos

(
2πm

M

)
+ cos

(
2πn

N

)]
−K⊥ cos

(
πk

L+ 1

)
= (βc/β − 1)

[
2K‖ +K⊥

]
+K⊥

[
1− cos

(
πk

L+ 1

)]
+K‖

[
2− cos

(
2πm

M

)
− cos

(
2πn

N

)]
> 0 (3.14)

for β < βc. The above implies that the statistical sum of
the infinite system exists for all β < βc. The statistical
sum of the finite system exists, however, under the less
demanding constraint that

(βc/β − 1)
[
2J‖ + J⊥

]
+ J⊥

[
1− cos

(
π

L+ 1

)]
> 0.

(3.15)
In the remainder we will assume that the constraint given
by Eq. (3.15) is fulfilled for all temperatures considered
here.

For the contribution of the field-independent term to
the transverse Casimir force

β∆F
(0,⊥)
Cas = − ∂

∂L
(β∆f0), (3.16)

with

∆f0 = lim
M,N→∞

∆F0

MN
, (3.17)

it is demonstrated in Appendix C that

β∆F
(0,⊥)
Cas = −1

2

∫ π

−π

∫ π

−π
δ [coth((1 + L)δ)− 1]

dθ1dθ2

(2π)2
,

(3.18)
where δ = δ

(
θ1, θ2|βc/β, J‖/J⊥

)
is given by the expres-

sion

cosh δ = 1 +

(
βc
β
− 1

)(
1 + 2

J‖

J⊥

)
(3.19)

+
J‖

J⊥
(2− cos θ1 − cos θ2) .
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The result in Eq. (3.18) is an exact expression for

β∆F
(0,⊥)
Cas ; no approximations have been made. Since

coth(x) > 1 for x > 0 one immediately concludes that

∆F
(0,⊥)
Cas < 0, i.e., it is an attractive force, for all values

of L. In order to obtain scaling and, thus, the scaling

form of ∆F
(0,⊥)
Cas we have to consider the regime L � 1.

Obviously, then Casimir force will be exponentially small
if δ is finite. For the scaling behavior of the force—see
Appendix C—one obtains

β∆F
(0,⊥)
Cas = L−3

(
J⊥

J‖

)
X

(0,⊥)
Cas (xt) (3.20)

where X
(0,⊥)
Cas (xt) is the universal scaling function

X
(0,⊥)
Cas (xt) = − 1

8π

{
Li3
(
e−2xt

)
+ 2xtLi2

(
e−2xt

)
−2x2

t ln
(
1− e−2xt

)}
. (3.21)

and the scaling variable xt is

xt = L

√
2

(
βc
β
− 1

)(
1 + 2

J‖

J⊥

)
, (3.22)

in accord with Eq. (C33). It is easy to show that

X
(0,⊥)
Cas (xt) is a monotonically increasing function of xt.

The behavior of X
(0,⊥)
Cas (xt) is visualized in Fig. 5

FIG. 5. (Color online) The scaling function X
(0,⊥)
Cas (xt) as

a function of the temperature dependent scaling variable xt
The horizontal line marks the Casimir amplitude X

(0,⊥)
Cas (0) =

−ζ(3)/(8π).

At the critical point one has xt = 0 and then one im-
mediately obtains the well known Casimir amplitude for
the Gaussian model under Dirichlet boundary condition

X
(0,⊥)
Cas (xt = 0) = −ζ(3)

8π
. (3.23)

It is easy to show that

X
(0,⊥)
Cas '

 −
1

8π exp(−2xt) [1 + 2xt (1 + xt)] , xt � 1

− 1
8π ζ(3) + 1

48πx
2
t

(
6− 4xt + x2

t

)
, xt → 0.

(3.24)
For the field component of the transverse Casimir force

β∆F
(h,⊥)
Cas = − ∂

∂L
(β∆fh) (3.25)

where

∆fh = lim
M,N→∞

∆Fh
MN

(3.26)

one derives, see Eqs. (C21) and (C22) in Appendix C:
i) if p 6= M or q 6= N :

β∆F
(h,⊥)
Cas =

λ sinh(λ)

32K⊥
(3.27)

×
{[
h2

1 + h2
L − 2hLh1 cos(k.∆)

]2
csch2

[
1 + L

2
λ

]
−
[
h2

1 + h2
L + 2hLh1 cos(k.∆)

]2
sech2

[
1 + L

2
λ

]}
.

and
ii) if p = M and q = N

β∆F
(h,⊥)
Cas =

λ sinh(λ)

32K⊥
(3.28)

×
{

[h1 − hL cos 2π(∆x + ∆y)]
2

csch2

[
1 + L

2
λ

]
− [h1 + hL cos 2π(∆x + ∆y)]

2
sech2

[
1 + L

2
λ

]}
.

Here we have introduced the helpful notation

coshλ = Λ (3.29)

for the case when Λ ≥ 1 and

cosλ = Λ (3.30)

in the opposite case when Λ ≤ 1, where

Λ = 1 +

(
βc
β
− 1

)[
2
J‖

J⊥
+ 1

]
+
J‖

J⊥

[
2− cos

(
2πp

M

)
− cos

(
2πq

N

)]
. (3.31)

Note that

• when h1 = O(1), hL = O(1) and

w = Lλ/2 (3.32)

is such that w = O(1), the Casimir force is of the
order of O(L−2) despite the fact that the system
is at a temperature above the bulk critical one.
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• If h1 and hL are such that the field-dependent
scaling variables x1 = O(1) and xL = O(1), see
Eq. (3.8), then, in terms of w, the Casimir force

β∆F
(h,⊥)
Cas reads

β∆F
(h,⊥)
Cas = L−3

(
J⊥

J‖

)
X

(h,⊥)
Cas (w, x1, xL) (3.33)

where the scaling function X
(h,⊥)
Cas (w, x1, xL) is

i) if p 6= M or q 6= N :

X
(h,⊥)
Cas (w, x1, xL) =

1

8
w2 (3.34)

×
{

[x2
1 + x2

L − 2x1xL cos (k.∆)]csch2w

−[x2
1 + x2

L + 2x1xL cos (k.∆)]sech2w
}
,

and

ii) if p = M and q = N

X
(h,⊥)
Cas (w, x1, xL) =

1

8
w2 (3.35)

×
{

[x1 − xL cos 2π(∆x + ∆y)]2csch2w

−[x1 + xL cos 2π(∆x + ∆y)]2sech2w
}
.

The latter expression implies that in the regime
considered here the field-dependent part of the
force if of order of L−3, as it is the field-independent
part of it.

The asymptotic behavior of ∆F
(h,⊥)
Cas for w � 1 can be

easily obtained from Eqs. (C23) and (C24). The result
is

β∆F
(h,⊥)
Cas ' − 2w2

K⊥L2
e−2wh1hL

×
{

cos (k.∆) , p 6= M or q 6= N,
cos 2π(∆x + ∆y), p = M, q = N.

(3.36)

which implies that in this limit the transverse component
of the force is exponentially small in L and attractive
or repulsive depending on the product h1hL cos[k.∆] or
h1hL cos 2π(∆x + ∆y).

For the field contribution to the longitudinal compo-
nent of the Casimir force along the α axis, where α = x, y,
one has

β∆F
(h,α)
Cas (L) = − ∂

∂∆α
∆fh. (3.37)

Thus, from Eqs. (C21) and (C22) one derives
i) if p 6= M or q 6= N :

β∆F
(h,α)
Cas (L) = −h1hL

4K⊥
kα sin(k.∆)

sinh(λ)

sinh[λ(L+ 1)]
(3.38)

and

ii) if p = M and q = N

β∆F
(h,α)
Cas (L) = −π sin[2π(∆x + ∆y)]

2K⊥
hL (3.39)

×

{
h1

sinh(λ)

sinh[(L+ 1)λ]

+hL cos[2π(∆x + ∆y)]

[
Λ− sinh(λ)

tanh(L+ 1)λ

]}
.

When Lλ� 1 the above simplifies to
i) if p 6= M or q 6= N :

β∆F
(h,α)
Cas (L) ' − kα

2K⊥
sinh[λ]e−(L+1)λh1hL sin (k.∆)

(3.40)
and

ii) if p = M and q = N

β∆F
(h,α)
Cas (L) ' (3.41)

− πh
2
L

4K⊥
sin[4π(∆x + ∆y)] {Λ− sinh[λ]}

− π

K⊥
sinh[λ]e−(L+1)λh1hL sin[2π(∆x + ∆y)].

Note that in the first sub-case the L � 1 limit of the
lateral force is zero, in the second sub-case, when the av-
erage value of the external field on the upper surface is
not zero the lateral force tends to a finite, well defined
limit which is proportional to the surface area of the sys-
tem. Obviously, this force has the meaning of a local
purely surface force.

Subtracting from ∆F
(h,α)
Cas its L-independent part we

obtain the lateral force that will act on the upper surface
due to the presence of the lower one if we act in lateral
direction on the upper one. In the case p = M and q = N
one obtains

βδF
(h,α)
Cas (L) ≡ β

[
∆F

(h,α)
Cas (L)− lim

L→∞
∆F

(h,α)
Cas (L)

]
= − πhL

2K⊥
sin[2π(∆x + ∆y)] sinh(λ)

{
h1/ sinh[(L+ 1)λ]

+hL cos[2π(∆x + ∆y)][1− coth(L+ 1)λ]

}
. (3.42)

In the other sub-case when p 6= M or q 6= N one has that

βδF
(h,α)
Cas (L) ≡ β∆F

(h,α)
Cas (L).

In scaling variables for βδF
(h,α)
Cas (L) one has

βδF
(h,α)
Cas (L) = L−3

(
J⊥

J‖

)
X

(h,α)
Cas (w, x1, xL), (3.43)

where w is the scaling variable defined in (3.32), and
i) if p 6= M or q 6= N :

X
(h,α)
Cas = −πx1xL pα sin(k.∆)

w

sinh[2w]
, (3.44)

where pα = p for α = x, and pα = q for α = y.



10

ii) if p = M and q = N :

X
(h,α)
Cas = −πxLw sin[2π(∆x + ∆y)] (3.45)

×

{
x1/ sinh[2w] + xL cos[2π(∆x + ∆y)][1− coth 2w]

}
.

Eq. (3.43) implies that in the scaling regime the longitu-
dinal Casimir force is of the same order of magnitude as
the orthogonal component of the force.

Let us now clarify the physical meaning of the regimes
w = O(1) and w � 1 in terms of the temperature T .
Taking into account Eq. (3.31) one has

Λ = 1+

(
βc
β
− 1

)[
2
J‖

J⊥
+ 1

]
+2

J‖

J⊥

[
sin2 kx

2
+ sin2 ky

2

]
,

(3.46)
where kx = 2πp/M , ky = 2πq/N , as well as all the other
terms in the sum determining Λ are dimensionless. We
again have to consider two sub-cases:

i) if p 6= M or q 6= N .
In this case, in order to have λ small, one needs to have

β/βc → 1, and kα → 0, α = x, y. Under this conditions
one has

λ '

√
2

(
βc
β
− 1

)[
2
J‖

J⊥
+ 1

]
+
J‖

J⊥
[
k2
x + k2

y

]
. (3.47)

Then

w =
1

2

√
x2
t + x2

k, (3.48)

where xt and xk are defined in Eq. (3.9). From Eq. (3.48)
it is clear that in order to have w = O(1) one needs to
have simultaneously xt = O(1) and xk = O(1). Taking
into account that ν = 1/2 for the Gaussian model, one
has that x2

t is in its expected form attL
1/ν , with t = (T −

Tc)/Tc. The condition xk = O(1) implies that in order
to encounter the regime w = O(1) one needs to have a
modulation with a wave vector k . L−1 which includes,
e.g., the k = 0 case. If xk � 1 one will have, even at
the critical point β = βc that w � 1 and, according to
Eq. (3.36), that the field contributions into the Casimir
force will be exponentially small then.

ii) if p = M and q = N .
As it is clear from Eq. (3.46), this sub-case reduces to

the previously considered one with kx = ky = 0. The
last implies that, then, ω = xt/2.

When w = O(1), from Eqs. (3.27) and (3.28) with

h1 = O(1) and hL = O(1) one has that ∆F
(h,⊥)
Cas =

O(L−2), i.e., the longitudinal force in this case is in an
order of magnitude larger in L than the usual transverse
Casimir force, which is of the order of O(L−3).

The behavior of the function X
(h,⊥)
Cas (w, x1, xL) is visu-

alized in Fig. 6 if i) p 6= M or q 6= N and in Fig. 7 if ii)
p = M and q = N .

We observe, inspecting the legends, that the maximal

values of the function X
(h,⊥)
Cas (w, x1, xL) are in this case

smaller than in previous case shown in Fig. 6.

-0.5

0

0.5

1.0

1.5

2.0

FIG. 6. (Color online) The scaling function X
(h,⊥)
Cas (w, x1, xL),

see Eq. (3.34), as a function of w ∈ (0, 10] and (k.∆) ∈ [0, 2π]

for x1 = xL = 1. As wee see, X
(h,⊥)
Cas (w, x1, xL) can be both

positive and negative, depending on the values of its argu-
ments.

-0.2

0

0.2

0.4

FIG. 7. (Color online) The scaling function X
(h,⊥)
Cas (w, x1, xL),

see Eq. (3.35), as a function of w ∈ (0, 10] and ∆x + ∆y ∈
[0, 1] for x1 = xL = 1. As wee see, also in this case

X
(h,⊥)
Cas (w, x1, xL) can be both positive and negative, depend-

ing on the values of its arguments. Let us remind that in this
sub-case w = xt/2.

Let us turn now to the behavior of the total orthogonal

Casimir force F
(⊥)
Cas . From Eqs. (3.10), (3.16), (3.17),

(3.20), (3.25) and (3.33) one has

F
(⊥)
Cas ≡ ∆F

(0,⊥)
Cas + ∆F

(h,⊥)
Cas (3.49)

and

βF
(⊥)
Cas = L−3

(
J⊥

J‖

)
X

(⊥)
Cas(xt, xk, x1, xL). (3.50)

The behavior of the scaling function of the total or-

thogonal Casimir force X
(⊥)
Cas(xt, xk, x1, xL) is depicted in

Figs. 8 - 10 for the case when i) p 6= M or q 6= N and
in the Figs. 11 for the case ii) p = M and q = N with
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xk = 0. Let us note that in the case i) the function X
(⊥)
Cas

is symmetric about x1 and xL, while in the case ii) that
is not so. The last implies that when x1 6= xL in the case
ii) we have to consider separately the sub-case x1 � xL
and x1 � xL.

-0.5

0

0.5

1.0

1.5

FIG. 8. (Color online) The scaling function

X
(⊥)
Cas(xt, xk, x1, xL) as a function of xt ∈ (0, 10] and

k.∆ ∈ [0, 2π] for xk = 0.1, x1 = xL = 1. As wee see, X
(⊥)
Cas

can be both positive and negative, depending on the values
of its arguments.

Figs. 8 and 11 show the behavior of the force for for
equal values of the field scaling variables x1 = xL. When
they are not equal this behavior is visualized in Figs. 9
and 10 for the case i) and in Figs. 12, 13 and 14 for
the case ii). Figs. 9 and 12 represent the situation when
x1 � xL, namely x1 = 10xL, while Figs. 10 and 14
represent the results for the case when x1 = −xL = 1.

The comparison of these figures with Figs. (6) and (7)
shows, as it might be expected from the data presented

in Fig. (5), that the contribution of X
(0,⊥)
Cas (xt) to the

overall behavior of the force is quite small, at least in the
depicted cases.

-0.025

0

0.025

0.050

0.075

0.100

0.125

FIG. 9. (Color online) The scaling function

X
(⊥)
Cas(xt, xk, x1, xL) as a function of xt ∈ (0, 10] and

k.∆ ∈ [0, 2π] for xk = 0.1, x1 = 10xL = 1. As wee see, the
scaling function in that case is predominantly positive.

-0.5

0

0.5

1.0

1.5

FIG. 10. (Color online) The scaling function

X
(⊥)
Cas(xt, xk, x1, xL) as a function of xt ∈ (0, 10] and

k.∆ ∈ [0, 2π] for xk = 0.1, x1 = −xL = 1. As wee see,
the scaling function in that case can be both positive and
negative, depending on the values of its arguments.

-0.2

0

0.2

0.4

FIG. 11. (Color online) The scaling function X
(⊥)
Cas(xt, xk =

0, x1, xL) as a function of xt ∈ (0, 10] and ∆x + ∆y ∈ [0, 1]

for x1 = xL = 1. As wee see, X
(⊥)
Cas can be both positive and

negative, depending on the values of its arguments.

Let us now consider the behavior of the longitudinal
Casimir force. We first note that it does not have a con-
tribution that is field-independent. Thus, the scaling fuc-
tion, which characterizes this force, is given by Eq. (3.44)
and Eq. (3.45). Because of the term sin(k.∆), multiply-
ing the expression for the force in the first case, and to
sin[2π(∆x+∆y)], in the second case, the scaling function

X
(h,α)
Cas can be both positive and negative, independently

on the values of x1 and/or xL.
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0

0.02

0.04

0.06

0.08

0.10

FIG. 12. (Color online) The scaling function X
(⊥)
Cas(xt, xk =

0, x1, xL) as a function of xt ∈ (0, 10] and ∆x+ ∆y ∈ [0, 1] for
x1 = 10xL = 1. As wee see, the scaling function in that case
is predominantly positive.

-0.025
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0.025

0.050

0.075

0.100

FIG. 13. (Color online) The scaling function X
(⊥)
Cas(xt, xk =

0, x1, xL) as a function of xt ∈ (0, 10] and ∆x+ ∆y ∈ [0, 1] for
10x1 = xL = 1. As wee see, the scaling function in that case
can be both positive and negative.

IV. THE 3D MEAN-FIELD XY MODEL

A. With infinite surface fields

In Ref. [61] the XY model characterized by the func-
tional

F [m; t, L] =

∫ L/2

−L/2
dz

[
b

2

∣∣∣∣dmdz
∣∣∣∣2 +

1

2
at |m|2

+
1

4
g |m|4

]
, (4.1)

has been studied in the presence of what have been
termed twisted boundary conditions.

Switching to polar coordinates,

m(z) = (Φ(z) cosϕ(z),Φ(z) sinϕ(z)) , (4.2)

these boundary conditions can convenietly be defined by

-0.2

0

0.2

0.4

FIG. 14. (Color online) The scaling function X
(⊥)
Cas(xt, xk =

0, x1, xL) as a function of xt ∈ (0, 10] and ∆x+ ∆y ∈ [0, 1] for
x1 = −xL = 1 or x1 = −xL = −1. As wee see, the scaling
function in that case can be both positive and negative.
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0.5
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1.5

FIG. 15. (Color online) The scaling function

X
(h,α)
Cas (w, x1, xL), see Eq. (3.44), as a function of w ∈ (0, 3]

and (k.∆) ∈ [0, 2π] for x1 = xL = 1.

requiring that

ϕ(±L/2) = ±α/2,
Φ(±L/2) =∞, (4.3)

i.e., the moments at the boundaries are twisted by an
angle α relative to one another. It has been shown that
the Casimir force has the form

βFCas(t, L) =
b

ĝ
L−4X

(α)
Cas(xt), (4.4)

where â = a/b, ĝ = g/b, xt = âtL2 and

X
(α)
Cas(xt) =

{
X4

0 [p2 − (1 + τ)], xt ≥ 0

X4
0 [p2 − (1 + τ/2)

2
], xt ≤ 0

. (4.5)

Here

τ = xt/X
2
0 , X0 =

∫ ∞
1

dx√
(x− 1)[x2 + x(1 + τ) + p2]

,

(4.6)
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-2

-1

0

1

2

FIG. 16. (Color online) The scaling function

X
(h,α)
Cas (xt, x1, xL), see Eq. (3.45), as a function of w ∈ (0, 3]

and ∆x + ∆y ∈ [0, 1] for x1 = xL = 1. Let us remind that in
this sub-case w = xt/2.

-50
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50

100

150

FIG. 17. (Color online) The scaling function X
(α)
Cas(xt) of the

XY model under twisted boundary conditions as a function of

xt and α for h = 0. The plane surface marks the X
(α)
Cas(xt) = 0

value of the force: the force is repulsive above it and attractive
below it.

and p is to be determined for any fixed value of xt so that
the twisted spins at the boundary make the prescribed
angle α. Let

x± =
1

2

[
−(τ + 1)±

√
(τ + 1)2 − 4p2

]
(4.7)

be the roots of the quadratic term in the square brackets
in the denominator of the integrand in Eq. (4.6). There
are two subcases: it A) the roots are real, and B) the
roots are complex conjugates of each other.

A) The roots x± are real. Then

X0 =
2√

1− x−
K

[√
x+ − x−
1− x−

]
(4.8)

and

α =

√
|x−x+|X0

x−

{
1

− 2

X0
√

1− x−
Π

[
x−

x− − 1
,

√
x+ − x−
1− x−

]}
. (4.9)

We note that

τ = −1− x− − x+, p =
√
|x−x+|. (4.10)

B) The roots x± are complex.
One has

X0 =
2√
r
K (w) , (4.11)

and

α =
pX0

1− r
+

4p

r2 − 1

√
r

1− w2

×Π

[(
r − 1

r + 1

)2

,
w√

w2 − 1

]
. (4.12)

where

r ≡ r(x−, x+) =
√

(1− x−)(1− x+)

=
√

2 + τ + p2, (4.13)

and

w2 ≡ w2(x−, x+) =
1

2
+

x−+x+

2 − 1

2
√

(1− x−)(1− x+)

=
1

2

(
1− 3 + τ

2
√

2 + τ + p2

)
. (4.14)

The scaling function X
(α)
Cas(xt) of the XY model under

twisted boundary conditions as a function of xt and α is
shown in Fig. 17. We recall that, as shown in Ref. [61]

the asymptotic expression for X
(α)
Cas(xt)

X
(α)
Cas(xt) '

1

2
α2

[
|xt|+ 4

√
2|xt|+

1

2

(
48− 3α2

)]
,

(4.15)
when xt → −∞. According to Eq. (4.4) the last implies
that in this regime

βFCas(t, L) ' 1

2
α2 b

ĝ
|xt|L−4 =

1

2

ab

g
α2|t|L−2, (4.16)

i.e., its leading behavior is of the order of L−2 there due
to the existence of helicity within the system.
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B. With finite surface fields

The model described immediately above constrains the
spins at the surface of the film to point in particular
directions. The physical realization of a such a system
is much more likely to be one in which the spins at the
surfaces to be under the influence of finite surface fields.
Here, we consider a model for such a system. In order to
do so, we employ the approach utilized in Section II and
Appendix A of [61], in which the spin system occupies
sites on a lattice that is infinite in extent in two directions
and that consists a finite number of layers (here labeled
1 to L) in the third dimension. As in the case of infinite
surface fields, the boundary conditions are open, in that
we assume the spins on the surface to be coupled to an
external layer of spins with amplitude zero. We impose
surface fields that couple in the standard way to the spins
on the leftmost layer, labeled 1, and the rightmost layer,
labeled L. The magnitude of each of those fields is hs,
and the angle between them is α. In our mean field
approach, the free energy is minimized by adjusting the
expectation value of the amplitude and direction of the
spins in each layer. The Casimir force follows from the
difference between the free energies with L and L + 1
layers; because of the numerical nature of the free energy
results, we are unable to take the derivative with respect
to film thickness, as in Section II.

We find that the Casimir force is consistent with the
following scaling form

FCas = L−4f(tL2, hcL) (4.17)

where t is the bulk reduced temperature. Furthermore,
for small enough hc and t higher than the value at which
the film orders spontaneously, the function f on the right
hand side of (4.17) has the form

f(tL2, hcL) = f0(tL2) + f1(tL2) (hcL)
2

+O
(

(hcL)
4
)

(4.18)
Because of this, it is possible to envision for small hs the
behavior of the Casimir force that one encounters in the
Gaussian model.

Figure 18 is a plot of the scaled Casimir force versus
the scaled reduced temperature and scaled surface fields
for two values of the film thickness, L. The perspective
highlights the departure from the behavior in (4.18) that
occurs when the temperature is sufficiently far below the
bulk critical temperature that the moments in the film
order spontaneously. The films in question consists of
L = 50 and L = 100 layers, and the angle between the
two surface fields is α = π/3. As is clear from the figure,
the difference between the two plots is quite small.

As indicated in Fig. 18, L = 50 is sufficiently large that
the difference between the function and the scaling limit
is quite small. Figure 19 illustrates the dependence of the
scaled Casimir force on the scaled surface field amplitude
for various values of the scaled reduced temperature. For
all reduced temperatures greater than −π2, the initial de-
pendence on scaled surface fields is quadratic, consistent
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FIG. 18. (Color online) Scaled Casimir force, L4FCas, as a
function of the scaled reduced temperature, tL2 and scaled
surface field amplitude, hsL. The number of layers in the two
films are L = 50 and L = 100, and α, the angle between the
surface fields, is π/3. The difference between the two plots is
barely discernible, indicating that the difference between the
scaling function for L = 50 and the infinite L limit is quite
small.
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FIG. 19. (Color online) Scaled Casimir force, L4FCas, as a
function of the scaled surface field, hsL for various scaled
reduced temperatures, tL2. Here, L = 50 and α = π/3.
When tL2 > −π2 the small hs dependence of the Casimir
force is quadratic, consistent with (4.18). Below that value
of the scaled reduced temperature, the small hs dependence
is linear in the absolute value of that quantity, as exemplified
by the curve for tL2 = −15.

with (4.18). In fact for temperatures at and above the
bulk critical temperature (t ≥ 0) the second term in the
right hand side of (4.18) is the leading non-zero contri-
bution to that expansion. This is consistent with the
amplification of the Casimir force that one finds in the
Gaussian model—see Section III. However, such ampli-
fication only occurs when there is spontaneous ordering
in the film. Figure 20 shows the scaled Casimir force
as a function of the scaled surface field for tL2 = 5 and
tL2 = −5, above and below the bulk transition but above
the threshold for film ordering. This plot illustrates the
saturation of the Casimir force when the reduced temper-
ature is above the threshold for film ordering, tL2 = −π2.
The Casimir force changes sign as L increases for fixed
α, T and hs. This is displayed in Fig. 21. We also note
that the force changes sign for moderate values of L. It
can readily be established that the overall behavior of
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FIG. 20. (Color online) Dependence of the scaled Casimir
force on the scaled surface field for two values of scaled re-
duced temperature above the point, tL2 = −π2, at which
spontaneous ordering occurs in the film. Here, L = 50 and
α = π/3. The plots illustrate the saturation of the influence
of the surface fields, at odds with the amplification effect seen
in Section III. The figure also illustrates the fact that the
Casimir force can change change sign as the temperature is
varied. This is due to the fact that there is a range of tem-
peratures below the bulk critical temperature in which the
bulk system orders while the film remains disordered. For
T > Tc both the bulk and the finite system are disordered.
For |hs| � 1 the Casimir force approaches its value for fixed
boundary conditions, the case considered in Subsection IV A.
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FIG. 21. (Color online) Scaled Casimir force, L2FCas, as a
function of L, for fixed values of temperature t = 0.001, helic-
ity α = π/3 and value of the surface field amplitude hs = 0.1.

the Casimir force is in accord with Eq. (4.18); see, for
instance, Fig. 20.

If spontaneous ordering is possible, then amplification
of the Casimir force does occur. Figure 22 plots the newly
scaled Casimir force L2FCas against system size L, illus-
trating the enhanced force amplitude as a function of
system size, L, expressed in terms of the scaled variable
tL2. Here, the reduced temperature is fixed at t = −0.05,
while the surface field amplitudes are set to 0.05, α = π/3
and the system size varies from L = 2 to L = 3, 000. The
behavior displayed is a direct result of the energy stored
in the helical spin configuration, a response to the surface
fields that are tilted with respect to each other. Of addi-
tional interest in this plot is the variation of the Casimir
force for smaller values of L, shown in the inset. Note
the change in the sign of the Casimir force. A Casimir
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FIG. 22. (Color online) Illustrating the L dependence of the
Casimir force for a negative value of reduced temperature,
t = −0.05 with surface field amplitude hs = 0.05 and α =
π/3. The plot is generated by varying the film thickness L
for fixed values of t, hs and α. The large graph shows how
L2FCas varies over an extended range of film thicknesses L,
and the inset shows the L dependence over a much smaller
range.

force going as L−2 is consistent with the energy associ-
ated with a helicity modulus, which is natural given that
the XY system supports such a modulus in the regime
in which it spontaneously orders. In this case the surface
fields play the essential role of enforcing a helical struc-
ture on the order parameter when spontaneous ordering
occurs.

The enhanced Casimir force is consistent with the scal-
ing form of (4.17). Figure 23 displays the dependence of
the scaled Casimir force L4FCas on the scaled variable
tL2. An important feature of this plot is its linear de-
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FIG. 23. (Color online) The scaled Casimir force, L4FCas, as
a function of the scaled variable tL2. The thickness of the
film is L = 50, the surface field amplitudes have been set to
0.01 and the angle between them, α, is π/3.

pendence on the scaled reduced temperature when it is
sizable and negative. This leads to an overall L depen-
dence going as L−2. Another significant property of the
critical Casimir force plotted in Fig. 23 is its change in
sign in the vicinity of the bulk critical point. In this
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sense, the Casimir force is tunable—and can be changed
from attractive to repulsive—through a variation in tem-
perature.

Finally, Fig. 24 displays the dependence of the scaled
Casimir force, L4FCas, on scaled reduced temperature,
tL2 and scaled surface field amplitude, hsL for a vari-
ety of values of the angular difference, α, between the

two surface fields. As shown in the plots, when α in-
creases from 0 to π the minimum of the force becomes
shallower and the region of parameters tL2 and hsL in
which the force is repulsive expands. We also note that
the amplitude of the force for any fixed combination of
the parameters tL2 and hsL is a monotonically increas-
ing function of α. The force is attractive in the whole
region of hsL and tL2 values only for α = 0.

a b

dc

FIG. 24. (Color online) Scaled Casimir force, L4FCas, as a function of the scaled reduced temperature, tL2 and scaled surface
field amplitude, hsL. The number of layers in the film is L = 50. The values of α, the angle between the surface fields are,
reading left to right and then top to bottom are a: 0, b: π/2, c: 2π/3 and d: π.

V. DISCUSSION AND CONCLUDING
REMARKS

The Casimir force has provided an unexpectedly rich
and varied set of phenomena for study and potential ex-
ploitation. In this paper, we have attempted to demon-
strate that interactions between the bounding system and
the media that supports the Casimir force allow for the
possibility of utilizing those interactions, here parame-
terized as surface fields, to control—and in certain cases
greatly amplify—that force. Our focus has been the crit-

ical Casimir force, but a number of our results extend
far beyond the critical regime. We find that the angle
between surface fields can significantly affect the magni-
tude and the sign of the Casimir force, that variations in
temperature can also have such an effect, and that the
strength of the critical Casimir force can undergo sub-
stantial amplification as a consequence of the application
of surface fields. Such fields represent a useful and likely
accurate quantification of the action of modifications of
the structure or composition of bounding surfaces in the
medium giving rise to the Casimir force. Thus, the re-
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sults presented here could well be utilized or expanded
upon to motivate experimental investigations of the ef-
fects of surface patterning on the Casimir force.

The key findings reported here are twofold. First,
the combination of helicity and surface fields allows for
the manipulation of both the sign and the amplitude of
the Casimir force. In certain circumstances—particularly
when the system supports helicity in the bulk—the force
can be greatly amplified in magnitude. The second find-
ing is that the expressions describing the Casimir force
are consistent with the expectations of finite size scaling,
as embodied in Eqs. (2.11), (2.20), (3.20), (3.33), (3.43),
(4.4) and (4.17).

One possible setting for an experimental study might
be a nematic liquid crystal film. Here, the order param-
eter is quadrupolar, rather than dipolar as in the case of
the XY or Heisenberg models, but the continuous sym-
metry with respect to rotation of the order parameter is
nevertheless in the same general class as in the systems
considered here. In fact, a class of Liquid Crystal Dis-
play (LCD) devices operates on the basis of inducing of a
helical structure in liquid crystalline films [72]. It is also
possible that the results reported here are applicable to
the case of a liquid Helium film in the superfluid state
in which a temperature gradient exists between the sub-
strate on which the film has condensed and that gas phase
bordering its free surface. Such a temperature gradient
induces flow in the superfluid component, which entails
a rotation of the superfluid wave function in the complex
plane [73, 74].

The models investigated here are unlikely to be directly
realized in nature, either because of their low dimension-
ality, or because they neglect important phenomena such
as saturation of the order parameter as in the Gaussian
model or are based on approximations, such as the mean
field theory. Nevertheless, we are confident in the the
overall import of our results: that surface fields and he-
licity in the medium that generates the Casimir force are
likely to prove quite significant as experimentally accessi-
ble modifiers of that force. How those surface fields are to
be generated will vary from system to system, but there
is every reason to anticipate that ways will be found and
that the result will be a greater insight into the Casimir
force and, one hopes, new and useful applications of this
interaction.
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Appendix A: Calculation of the free energy for the

1d XY model with boundary fields

The simplest way we are aware of for calculation of the
free energy of the 1d XY model is based on the identities
[68, 69]

ez cos θ =

∞∑
n=−∞

einθIn(z) (A1)

and

δn,0 =
1

2π

∫ 2π

0

einθdθ. (A2)

From Eqs. (2.4) and (B3) one then obtains

exp (−βFN ) =

∫ 2π

0

N∏
i=1

dϕi
2π
× (A3)

∞∑
n1=−∞

ein1(ψ1−ϕ1)In1
(h1)

∞∑
n2=−∞

ein2(ϕ1−ϕ2)In2
(K)×

· · · ×
∞∑

nN−1=−∞
einN−1(ϕN−1−ϕN )InN−1

(K)× (A4)

∞∑
nN=−∞

einN (ϕN−ψN )InN
(hN ), (A5)

wherefrom, using Eq. (A2), one obtains Eq. (2.6). Obvi-
ously, Eq. (2.6) can be written in the form

exp (−βFN ) = I0 (h1) I0(K)N−1I0 (hN )× (A6)[
1 + 2

∞∑
k=1

cos (kψ)
Ik (h1)

I0 (h1)

(
Ik(K)

I0(K)

)N−1
Ik (hN )

I0 (hN )

]
.

From Eq. (A6) for the total pressure

βFtot = − ∂

∂N
[βFN ] (A7)

exerted by the end points on the system one then obtains

βFtot = ln I0(K) +
2
∑∞
k=1 cos [k(ψ1 − ψ2)] log

[
Ik(K)
I0(K)

]
Ik(h1)
I0(h1)

(
Ik(K)
I0(K)

)N−1
Ik(hN )
I0(hN )

1 + 2
∑∞
k=1 cos [k(ψ1 − ψ2)] Ik(h1)

I0(h1)

(
Ik(K)
I0(K)

)N−1
Ik(hN )
I0(hN )

, (A8)
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wherefrom one immediately derives the expression (2.8)
for the Casimir force given in the main text.

Using the Poisson identity

∞∑
k=−∞

exp
(
ika− k2b

)
=

√
π

b

∞∑
n=−∞

exp

[
− (2πn+ a)2

4b

]
(A9)

one can derive expressions for the scaling function of the
Casimir force convenient for values of the scaling variable
x ranging from moderate to large values of x and one
convenient for small values of x.

Appendix B: Calculation of the free energy for the
1d Heisenberg model with boundary fields

Let us write the vectors in Eq. (2.3) in spherical coor-
dinates supposing the spin chain to be along the x axis.
One has

H1 = H1

{
sinϕh1 cos θh1 , sinϕ

h
1 sin θh1 , cosϕh1

}
(B1)

HN = HN

{
sinϕhN cos θhN , sinϕ

h
N sin θhN , cosϕhN

}
Si = {sinϕi cos θi, sinϕi sin θi, cosϕi} , i = 1, · · · , N.

Then for the scalar products one obtains

H1.S1 = H1

[
sinϕh1 sinϕ1 cos

(
θh1 − θ1

)
+

cosϕh1 cosϕ1

]
≡ H1 cosψ1,

HN .SN = HN

[
sinϕhN sinϕN cos

(
θhN − θN

)
+

cosϕhN cosϕN
]
≡ HN cosψN ,

Si.Si+1 = sinϕi sinϕi+1 cos (θi − θi+1) +

cosϕi cosϕi+1 ≡ cosφi, (B2)

where the angle φi, i = 1, · · · , N −1 is between the spins
Si and Si+1, and the angles ψ1 and ψN are between the
vectors H1 and S1, and the vectors HN and SN , respec-
tively.

The free energy −βFN of this system is

exp (−βFN ) =

∫ 2π

0

N∏
i=1

dθi
4π

∫ π

0

N∏
i=1

dϕi sinϕi exp (−βH) ,

(B3)

where the normalization is over the solid angle 4π because

∫ 2π

0

dθ

∫ π

0

dϕ sinϕ = 4π. (B4)

In order to perform the integrations we use the expansion

ez cos θ =

√
π

2z

∞∑
n=0

(2n+ 1)In+1/2(z)Pn(cos θ) (B5)

combined with the addition theorem for the spherical
harmonics [68, 69]

Pn(cosφi) =
4π

2n+ 1
× (B6)

n∑
m=−n

Y ∗n,m(ϕi+1, θi+1)Yn,m(ϕi, θi).

Here In+1/2(z) is the modified Bessel function of the first
kind, Pn(x) is the Legendre polynomial of degree n and
Yn,m(ϕ, θ) is the spherical harmonic. We remind the or-
thogonality relation that holds for the spherical harmon-
ics

∫ π

0

dϕ

∫ 2π

0

dθ sinϕ Yl1,m1(ϕ, θ)Y ∗l2,m2
(ϕ, θ)

= δl1,l2δm1,m2
. (B7)

From Eq. (B3) we obtain

exp (−βFN ) =

∫ 2π

0

N∏
i=1

dθi
4π

∫ π

0

N∏
i=1

dϕi sinϕi (B8)

×eh1 cosψ1

(
N−1∏
i=1

eK cosφi

)
ehN cosψN ,

whereK, h1 and hN are defined in accord with Eq. (2.17).
Now we have to take into account that, according to Eqs.
(B5) and (B6),

eh1 cosψ1 =

√
π

2h1

∞∑
n1=0

(2n1 + 1)In1+1/2(h1)Pn1(cosψ1) (B9)

= (4π)

√
π

2h1
×
∞∑

n1=0

In1+1/2(h1)

n1∑
m1=−n1

Y ∗n1,m1
(ϕ1, θ1)Yn1,m1(ϕh1 , θ

h
1 ),
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ehN cosψ1 =

√
π

2hN

∞∑
nN=0

(2nN + 1)InN+1/2(hN )PnN
(cosψN ) (B10)

= (4π)

√
π

2hN
×

∞∑
nN=0

InN+1/2(hN )

nN∑
mN=−nN

Y ∗nN ,mN
(ϕhN , θ

h
N )YnN ,mN

(ϕN , θN ),

and

eK cosφi =

√
π

2K

∞∑
ni+1=0

(2ni+1 + 1)Ini+1+1/2(K)Pni+1
(cosφi) (B11)

= (4π)

√
π

2K

∞∑
ni+1=0

Ini+1+1/2(K)

ni+1∑
mi+1=−ni+1

Y ∗ni+1,mi+1
(ϕi+1, θi+1)Yni+1,mi+1

(ϕi, θi), (B12)

with i = 1, · · · , N − 1. Inserting the above expres-
sion into Eq. (B8) one can easily perform the integra-
tion over ϕi and θi, i = 1, · · · , N taking into account

the orthogonality relations Eq. (B7). One derives that
n1 = n2 = · · · = nN = n, and m1 = m2 = · · · = mN = m
and, thus, from Eq. (B8) we obtain

exp (−βFN ) = (4π)

√
π

2h1

√
π

2hN

(√
π

2K

)N−1

(B13)

∞∑
n=0

In+1/2(h1)In+1/2(hN )
[
In+1/2(K)

]N−1
n∑

m=−n
Yn,m(ϕh1 , θ

h
1 )Y ∗n,m(ϕhN , θ

h
N )

=
( π

2K

)(N−1)/2 π

2
√
h1hN

∞∑
n=0

(2n+ 1)Pn (cosψh) In+1/2(h1)In+1/2(hN )
[
In+1/2(K)

]N−1
,

where, in the last line, we have again used the addi-
tion theorem for the spherical harmonics Eq. (B6). In
Eq. (B13) ψh is the angle between the vectors H1 and
HN where

cosψh = sinϕh1 sinϕhN cos
(
θh1 − θhN

)
+ cosϕh1 cosϕhN .

(B14)

From Eq. (B13) and Eq. (2.16) for the total pressure
exerted by the end points on the system one derives

βFtot ≡ −
∂

∂N
[βFN ] = ln

[
sinhK

K

]
+

∑∞
n=1(2n+ 1)Pn (cosψh) ln

[
In+1/2(K)

I1/2(K)

]
In+1/2(h1)

I1/2(h1)

In+1/2(hN )

I1/2(hN )

[
In+1/2(K)

I1/2(K)

]N−1

1 +
∑∞
n=1(2n+ 1)Pn (cosψh)

In+1/2(h1)

I1/2(h1)

In+1/2(hN )

I1/2(hN )

[
In+1/2(K)

I1/2(K)

]N−1
.

(B15)

From here one derives the exact result for the Casimir
force reported in Eq. (2.19) in the main text. From it one
can extract the corresponding scaling behavior reported
in Eq. (2.22) which is convenient for evaluation of the
behavior of the force for moderate and large values of

the scaling variable x. Here we present the corresponding
derivation of the representation convenient for extracting
the behavior of the force for small values of the scaling
variable. Let us start by considering the sum
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S(ψh, h1, hN ,K) ≡
∞∑
n=1

(2n+ 1)Pn (cosψh)
In+1/2(h1)

I1/2(h1)

In+1/2(hN )

I1/2(hN )

[
In+1/2(K)

I1/2(K)

]N−1

'
∞∑
n=1

(2n+ 1)Pn (cosψh)
eh1−(n+1/2)2/(2h1)

√
2πh1I1/2(h1)

ehN−(n+1/2)2/(2hN )

√
2πhNI1/2(hN )

[
eK−(n+1/2)2/(2K)

√
2πKI1/2(K)

]N−1

'
∞∑
n=1

(2n+ 1)Pn (cosψh)
exp

[
− 1

2 (n+ 1/2)
2
(

1
h1

+ 1
hN

+ N−1
K

)]
exp

[
− 1

2 (1/2)
2
(

1
h1

+ 1
hN

+ N−1
K

)]
'
∞∑
n=1

(2n+ 1)Pn (cosψh)
In+1/2

(
1

h−1
eff +x

)
I1/2

(
1

h−1
eff +x

) =

∞∑
n=0

(2n+ 1)Pn (cosψh)
In+1/2

(
1

h−1
eff +x

)
I1/2

(
1

h−1
eff +x

) − 1

=

√
2

π
(
h−1

eff + x
) exp

[
cosψh

h−1
eff +x

]
I1/2

(
1

h−1
eff +x

) − 1 =
1(

h−1
eff + x

) exp
[

cosψh

h−1
eff +x

]
sinh

(
1

h−1
eff +x

) − 1. (B16)

Appendix C: Calculation of the free energy for the
3d Gaussian model

In the current appendix we will outline some technical
steps needed to obtain the free energy of the Gaussian
model under the considered boundary conditions.

Performing the Fourier transform

Sx,y,z =
1√
M

M∑
m=1

[
cos

(
2π

M
mx

)
+ sin

(
2π

M
mx

)]

× 1√
N

N∑
n=1

[
cos

(
2π

N
ny

)
+ sin

(
2π

N
ny

)]

×
√

2

L+ 1

L∑
l=1

sin

(
π

L+ 1
lz

)
S̃m,n,l (C1)

in Eq. (3.4), one can easily diagonalize the Hamilto-

nian. Then, performing the integrations over S̃m,n,l,
m = 1, · · · ,M , n = 1, · · · , N and l = 1, · · · , L one im-
mediately obtains Eqs. (3.11) and (3.12) for the filed-
independent and field-dependent parts of the free energy
reported in the main text. In what follows we explain
how to perform the summations in these terms. We start
with the term that depends on the applied surface fields.

1. Evaluation of the field dependent term

Taking L, for definiteness, to be odd number, we start
by rewriting Eq. (3.11) in the form

∆Fh = ∆F odd
h + ∆F even

h , (C2)

where

i) if p 6= M or q 6= N :

−β∆F even
h =

MN

8(L+ 1)K⊥
Seven(Λ, L)× (C3)[

h2
1 + h2

L − 2hLh1 cos(k.∆)
]
,

and

−β∆F odd
h =

MN

8(L+ 1)K⊥
Sodd(Λ, L)× (C4)[

h2
1 + h2

L + 2hLh1 cos(k.∆)
]
,

ii) if p = M and q = N

−β∆F even
h =

MN

8(L+ 1)K⊥
Seven(Λ, L)× (C5)

[h1 − hL cos 2π(∆x + ∆y)]
2
,

and

−β∆F odd
h =

MN

8(L+ 1)K⊥
Sodd(Λ, L)× (C6)

[h1 + hL cos 2π(∆x + ∆y)]
2
.

In the above expressions

Seven(Λ, L) =

(L−1)/2∑
l=1

sin2
(

2πl
L+1

)
Λ− cos

(
2πl
L+1

) , (C7)

Sodd(Λ, L) =

(L−1)/2∑
l=1

sin2
(
π(2l+1)
L+1

)
Λ− cos

(
π(2l+1)
L+1

) , (C8)

and Λ is defined in Eq. (3.31).
It is easy to show that

Seven(Λ, L) =
1

2
(L− 1)Λ + (1− Λ2)Ŝeven(Λ, L) (C9)
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where

Ŝeven(Λ, L) =

(L−1)/2∑
l=1

1

Λ− cos
(

2πl
L+1

) (C10)

and that

Sodd(Λ, L) =
1

2
(L+ 1)Λ + (1− Λ2)Ŝodd(Λ, L) (C11)

where

Ŝodd(Λ, L) =

(L−1)/2∑
l=1

1

Λ− cos
(
π(2l+1)
L+1

) . (C12)

The summations in Eq. (C10) and Eq. (C12) can be per-
formed using [75] the identities

coshnx− cosny = 2n−1
n−1∏
k=0

[
coshx− cos

(
y +

2πk

n

)]
(C13)

and

cosnx− cosny = 2n−1
n−1∏
k=0

[
cosx− cos

(
y +

2πk

n

)]
.

(C14)
With the help of the variable λ, introduced in Eq. (3.29)

and Eq. (3.30), for the sums Ŝeven(Λ, L) and Ŝodd(Λ, L)
we obtain

Ŝeven(Λ, L) =
Λ

1− Λ2
(C15)

+
1

2
(1 + L) coth

[
1

2
(1 + L)λ

]
cosh(λ), Λ ≥ 1.

and

Ŝeven(Λ, L) =
Λ

1− Λ2
(C16)

−1

2
(1 + L) cot

[
1

2
(1 + L)λ

]
csc(λ), Λ ≤ 1.

for Ŝeven(Λ, L), while for the sum Ŝodd(Λ, L) one has

Ŝodd(Λ, L) =
1

2
(1 + L)

tanh
[

1
2 (1 + L)λ

]
sinhλ

,Λ ≥ 1, (C17)

and

Ŝodd(Λ, L) =
1

2
(1 + L)

tan
[

1
2 (1 + L)λ

]
sinλ

,Λ ≤ 1.(C18)

Obviously, the two pairs Eq. (C15) and Eq. (C16), and
Eq. (C17) and Eq. (C18) represent a continuation from
real to purely complex values of λ. Because of that, in the
remainder we will report only one of the corresponding
representations concerning the sums.

From Eq. (C9) and Eq. (C15) one obtains

Seven(Λ, L) =
L+ 1

2

{
Λ− coth

[
L+ 1

2
λ

]
sinh[λ]

}
(C19)

whereas from Eq. (C11) and Eq. (C17) one derives

Sodd(Λ, L) =
L+ 1

2

{
Λ− tanh

[
L+ 1

2
λ

]
sinh[λ]

}
.

(C20)
Using the above expressions and taking into account Eqs.
(C2) - (C6) for ∆fh, see Eq. (3.26), one obtains

i) if p 6= M or q 6= N :

−β∆fh =
1

16K⊥
{[
h2

1 + h2
L − 2hLh1 cos(k.∆)

]
×
[
Λ− coth

[
L+ 1

2
λ

]
sinh[λ]

]
+
[
h2

1 + h2
L + 2hLh1 cos(k.∆)

]
×
[
Λ− tanh

[
L+ 1

2
λ

]
sinh[λ]

]}
, (C21)

ii) if p = M and q = N

−β∆fh =
1

16K⊥

{
[h1 − hL cos 2π(∆x + ∆y)]

2

×
[
Λ− coth

[
L+ 1

2
λ

]
sinh[λ]

]
+ [h1 + hL cos 2π(∆x + ∆y)]

2

×
[
Λ− tanh

[
L+ 1

2
λ

]
sinh[λ]

]}
, (C22)

Note that in deriving the above expression no approx-
imations have been made - it is an exact result.

If Lλ� 1 from the above one immediately obtains
i) if p 6= M or q 6= N :

−β∆fh '
1

8K⊥
{Λ− sinh[λ]}

{
h2

1 + h2
L

}
+

1

2K⊥
sinh[λ]e−(L+1)λh1hL cos (k.∆) ,(C23)

and
ii) if p = M and q = N

−β∆fh ' (C24)

1

8K⊥
{Λ− sinh[λ]}

{
h2

1 + cos 2π(∆x + ∆y)h2
L

}
+

1

2K⊥
sinh[λ]e−(L+1)λh1hL cos 2π(∆x + ∆y),

wherefrom one derives the surface part ∆f
(s)
h of the field-

dependent term in the free energy
i) if p 6= M or q 6= N :

− β∆f
(s)
h =

1

8K⊥
{Λ− sinh[λ]}

{
h2

1 + h2
L

}
. (C25)

and
ii) if p = M and q = N

−β∆f
(s)
h =

1

8K⊥
{Λ− sinh[λ]}

×
{
h2

1 + cos 2π(∆x + ∆y)h2
L

}
. (C26)



22

From Eqs. (C21) and (C22) one can determine both
the transverse and the longitudinal field contribution to
the components of the Casimir force. The corresponding
results are reported in the main text.

2. Evaluation of the field independent term

We are interested in the L-dependent behavior of the
field-independent part of the statistical sum of the sys-
tem, see Eq. (3.17), where ∆F0 is given by Eq. (3.11). It
is easy to see that

−β∆f0 −
1

2
L ln

π

K⊥
= −1

2

1

(2π)2

∫ 2π

0

dθ1

∫ 2π

0

dθ2 (C27)

= −1

2

1

(2π)2

∫ 2π

0

dθ1

∫ 2π

0

dθ2 S0

(
βc
β
,
J‖

J⊥
, L

∣∣∣∣ θ1, θ2

)
where

S0

(
βc
β
,
J‖

J⊥
, L

∣∣∣∣ θ1, θ2

)
≡ (C28)

L∑
k=1

ln

[
s

K⊥
− K‖

K⊥
(cos θ1 + cos θ2)− cos

πk

L+ 1

]

=

L∑
k=1

ln

[(
βc
β
− 1

)(
1 + 2

J‖

J⊥

)
+

(
1− cos

πk

L+ 1

)

+
J‖

J⊥
(2− cos θ1 − cos θ2)

]
and we have used Eq. (3.6).

The expression in Eq. (C27) can be evaluated in several
ways. Let us briefly sketch one of them. By doing so we
will also obtain an expression for the free energy that has
not been derived before and which are valid not only for
large, but for any positive value of L.

Using the identity in Eq. (C13) one can show that

S0

(
βc
β
,
J‖

J⊥
, L

∣∣∣∣ θ1, θ2

)
= −L ln 2 + ln

[
sinh(1 + L)δ

sinh δ

]
,

(C29)

where δ is defined in Eq. (3.19). For the contribution
of the field-independent term to the transverse Casimir

force β∆F
(0,⊥)
Cas , see Eq. (3.16), from Eq. (C27) and

Eq. (C29) one derives Eq. (3.18) given in the main

text. In order to derive the scaling form of ∆F
(0,⊥)
Cas

we have to consider the regime L � 1. Obviously,
then Casimir force will be exponentially small if δ is fi-
nite. In order to avoid that, one needs δ → 0 so that
(L + 1)δ = O(1). When δ goes to zero, however, both
(βc/β− 1)(1 + 2J‖/J⊥)→ 0 and θ1, θ2 → 0. Then, from
Eq. (3.19) one obtains

δ2 = 2

(
βc
β
− 1

)(
1 + 2

J‖

J⊥

)
+
J‖

J⊥
(
θ2

1 + θ2
2

)
. (C30)

Passing to polar coordinates, from Eq. (3.18) one obtains,
up to exponentially small in L corrections

β∆F
(0,⊥)
Cas = −1

2

∫ ∞
δmin

x2 [coth((1 + L)x)− 1]
dx

2π
(C31)

where

δmin =

√
2

(
βc
β
− 1

)(
1 + 2

J‖

J⊥

)
. (C32)

Noting that

xt = Lδmin, (C33)

using that

cothx = 1 + 2

∞∑
k=1

e−2kx (C34)

and performing the integration in Eq. (C31), one derives
Eqs. (3.20) and (3.21) given in the main text. From
Eq. (C31) and taking into account the definition (C33)

one immediately concludes that X
(0,⊥)
Cas (xt) is a monoton-

ically increasing function of xt.
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