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Nanoparticle tracking analysis, a multi-probe single particle tracking technique, is a widely used
method to quickly determine the concentration and size distribution of colloidal particle suspen-
sions. Many popular tools remove non-Brownian components of particle motion by subtracting the
ensemble-averaged displacement at each time step, which is termed ‘de-drifting’. Though critical for
accurate size measurements, de-drifting is shown here to introduce significant biasing error and can
fundamentally limit the dynamic range of particle size that can be measured for dilute, heterogeneous
suspensions, such as biological extracellular vesicles. We report a more accurate estimate of particle
mean-squared displacement, which we call Decorrelation Analysis, that accounts for correlations
between individual and ensemble particle motion, which are spuriously introduced by de-drifting.
Particle tracking simulation and experimental results show that this approach more accurately de-
termines particle diameters for low concentration, polydisperse suspensions when compared with
standard de-drifting techniques.

PACS numbers: 87.16.dp, 87.80Nj, 87.16.A-, 05.40.Jc
Keywords: Nanoparticle tracking analysis, Extracellular vesicles, Brownian motion

I. INTRODUCTION

The analysis of multi-probe spatial positions tracked
over time provides important statistical information used
in rendering super resolution microscopy images [1], in-
vestigating cellular transport mechanisms in biological
systems [2, 3], characterizing local rheological properties
of heterogeneous fluids, soft matter or cross-linked poly-
mer gels [4–6], and measuring the particle size distribu-
tion (PSD) of nanoparticles in suspension [7, 8]. Empir-
ical single particle tracking (SPT) trajectories are neces-
sarily a superposition of thermal Brownian motion and
particle localization errors. Additional sources of non-
Brownian particle behavior – such as platform vibration,
mechanical drift, intentional or artifactual ballistic mo-
tion, coupled motion and potential wells – confound sta-
tistical analyses that consider Brownian motion only [9–
13]. Therefore, approaches that extract Brownian motion
from a complicated mobility landscape are necessary for
reliable analyses in a variety of contexts.
When deviations from Brownian behavior are well un-

derstood, solving in parallel for both Brownian and non-
Brownian motion statistics often produces optimally ac-
curate estimates [14–16]. These optimally accurate es-
timators are generally derived from parametric models
of non-Brownian motion or other errors [17–19]. For ex-
ample, random motion overlayed by uniform, constant
directed motion leads to first- and second-order terms
for mean-squared displacement (MSD), which can be de-
termined simultaneously using maximum likelihood esti-
mation [20]. Orthogonal experiments that reduce the di-
mension of the parametric model are also effective, such
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as using immobile beads to estimate localization error
[21, 22]. Other models rely on particle interactions and
thereby forego any requirement to consider the underly-
ing motion present in the bulk fluid [23]. However, accu-
racy in parameter estimation does not necessarily mean
that the model is appropriate for the given data set. For
example, unbiased covariance-based estimators can out-
perform ‘optimal’ maximum likelihood estimators when
particle trajectories span relatively few time steps [24].

The most widely used approaches serially extract
Brownian behavior by first removing non-Brownian com-
ponents of particle motion [25]. The effect is to revert a
non-stationary process, such as random motion super-
posed with heterogeneous ballistic motion, to a station-
ary process. The standard strategy in SPT has been to
subtract an estimated non-Brownian motion defined by
the ensemble-averaged displacement in each time step,
a process called ‘de-drifting’ or ‘de-trending’ in the lit-
erature [25, 26]. Additional processing of this estimate,
such as convolution with a uniform weighting function,
assumes Brownian and non-Brownian motion have sep-
arable characteristic timescales. Choosing the span of
the weighting function is commonly subjective, such as
in the popular IDL code [12], although first perform-
ing an ellipticity analysis on SPT trajectories may of-
fer reasonable values for window span [27]. Less sub-
jective approaches have been recently developed using
multiresolution wavelet analysis with universal thresh-
olding, which have been employed to correct spatiotem-
porally heterogeneous advection of intracellular probes in
migrating cells [28] and to identify particular time steps
in which displacements are influenced by hydrodynamic
interactions in the diffusion of confined probe particles
[29]. To process the estimated non-Brownian motion re-
lies on large SPT data sets obtained by tracking large
ensembles over numerous time steps.
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Current de-drifting methods are important tools for
SPT but require numerous, monodisperse particles. De-
drifting using small ensembles (those with few parti-
cles) can erroneously reduce measured Brownian mo-
tion because ensemble-averaged displacement and com-
ponent particle displacements remain significantly corre-
lated. To prevent this effect, one can analyze only the
components of particle displacements orthogonal to the
estimated drift vector, but displacement data sets are in-
herently halved [30]. For identical particles, Bessel’s cor-
rection can provide accurate determination of MSD af-
ter de-drifting with small ensembles [26]. This correction
factor extended the application of de-drifting to heteroge-
neous non-Brownian motion by utilizing small ensembles
of homogeneous particles from local domains [31]. Yet,
no correction factor has been developed for small ensem-
bles composed of particles with heterogeneous diffusive
mobility. Savin et al. considered monodisperse probe
particles in a complex fluid with heterogeneous viscosity
but used overlapping displacements, requiring a block-
averaging technique in addition to de-drifting [32].

Residual correlations induce new and more compli-
cated effects when they exist in suspensions with hetero-
geneous diffusive mobility as compared to homogeneous
particle suspensions. These effects prevent the proper
application of de-drifting in several important SPT ap-
plications. De-drifting in nanoparticle tracking analy-
sis (NTA) of highly disperse suspensions necessarily uses
ensembles of particles with different diffusive mobility.
Improved measurement accuracy could be influential for
characterizing the PSD of biological extracellular vesi-
cles, where dilute, polydisperse particle suspensions are
commonly measured in applied fluid flow [33, 34]. In ad-
dition, de-drifting in passive particle tracking microrhe-
ology of complex media with heterogeneous viscoelastic
properties may require ensembles of monodisperse probes
that are localized to regions with uniform collective mo-
tion but different rheological properties. For these cases,
standard (uncorrected) de-drifting or de-drifting with a
single correction factor per ensemble do not isolate Brow-
nian motion, and instead introduce artifacts into particle
spatial positions, as demonstrated in this work. For clar-
ity, our work is presented in a single practical context –
NTA, wherein the desired output from analyzing numer-
ous single particle trajectories is the PSD. Heterogeneous
diffusive mobility is clearly illustrated by heterogeneous
particle diameters, where we implement the Stokes-Ein-
stein relation to map between the two parameters.

This work is structured in four main sections. First,
the methodology of SPT simulations emulating NTA of
suspensions composed of heterogeneous particles embed-
ded in a Newtonian fluid and NTA experiments of well-
defined polystyrene bead mixtures suspended in water
are described. In Section IIIA, the removal of bulk fluid
motion, i.e. drift, by standard de-drifting is presented in
general form, replicating previous work on monodisperse
suspensions (Section III B) and extending de-drifting to
particle suspensions with arbitrary PSD (Section III C).

The general form clarifies the origin of spurious biasing
of particle diameter introduced by de-drifting for dilute,
polydisperse particle diameter populations, and leads to
predicted error for previous SPT experiments (Section
IIID) and of predicted dynamic range limitations for the
practical scenario of a single large particle in a bath of
small, identical particles (Section III E). Spurious bias-
ing of particle diameter has two competing influences.
First, the residual correlation (O(2/N)) between the es-
timated drift used in de-drifting and individual particle
displacements results in subtracting away true Brownian
motion. Second, composition-dependent noise in the es-
timated non-Brownian motion adds spurious motion and
may even dominate the de-drifted displacement of parti-
cles with lower mobility, i.e. larger particles in a high dis-
persity suspension. In Section IVA, we report a de-drift-
ing method (Decorrelation Analysis) for SPT trajectories
in multi-probe experiments that contain temporally het-
erogeneous non-Brownian motion and where ensembles
may have heterogeneous diffusive mobility. Decorrela-
tion Analysis (DA) effectively isolates isotropic Brown-
ian motion, as validated by simulations and experimental
data (Section IVB). Throughout this work, we demon-
strate the effect of convolving the estimated drift vector
with a linear weighting function by comparing ‘raw’ and
‘smooth’ analyses (Table I).

II. METHODS

A. Simulations

To investigate the effect of de-drifting on ensem-
bles composed of few particles with heterogeneous dif-
fusive mobility, we simulated 2D SPT trajectories in
a Newtonian fluid using MATLAB R© version R2013a
(The MathWorks, Natick, Massachusetts, USA). In sim-
ulations characterizing artifacts introduced by standard
de-drifting with no corrections (Fig. 1,2,3) all parti-
cle trajectories spanned the equivalent number of time
steps, whereas in simulations benchmarking DA against
other correction methods (Fig. 4, 5, 6) each parti-
cle trajectory spanned a random number of time steps
between 100 and 1000 in order to better represent
the experimental conditions of NTA. Particle diameters
were sampled from a probability distribution with one,
fLogN(x;µ1, σ1), or two lognormally distributed modes,
fa(x) = λ1fLogN(x;µ1, σ1) + λ2fLogN(x;µ2, σ2), where λ
is the proportion of sampling (

∑
i λi = 1), µ is the mean

and σ is the standard deviation of the given mode. Di-
ameters were translated into diffusion constants by use
of the Stokes-Einstein relation, D = kbT/(3πηa), and
used to generate particle trajectories consisting of dis-
placements sampled from a zero-mean normal distribu-
tion ∼ N (0, 2D∆t) for each spatial dimension, where kb
is the Boltzmann constant, T and η are the absolute tem-
perature and dynamic viscosity, respectively, of the sim-
ulated Newtonian fluid, a is particle diameter, and D is
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particle isotropic diffusion constant. Time-varying non-
Brownian motion, typically termed ‘drift’ as its primary
cause is often bulk fluid motion, was simulated for pre-
scribed frequencies given the constant time step, and ap-
plied uniformly to simulated particles at each time step.
In each dimension the superposition of Brownian (∆xBr)
and non-Brownian motion (utrue,x∆t) formed individual
particle observed displacements,

∆xobs(ti) = ∆xBr(ti) + utrue,x(ti)∆t , (1)

and subsequent subtraction of estimated drift formed de-
drifted displacements (i.e. the inferred displacement of a
particle after de-drifting),

∆xdd(ti) = ∆xBr(ti) +
(
utrue,x(ti)− uest,x(ti)

)
∆t .

(2)
To demonstrate the effect of convolving a linear weight-
ing function with the estimated drift in the time do-
main, ‘raw’ (not time-averaged) values were compared
to ‘smooth’ (time-averaged using top-hat weighting func-
tion) values (Table I).
Each particle track generated multiple sets of displace-

ment data associated with an analysis, and these data
sets were analyzed in parallel during a particular iter-
ation of a simulation (see Table I for descriptions of
analyses). Particle diameters were computed individ-
ually using the Stokes-Einstein relation and lognormal
distribution parameters were determined using the na-
tive Expectation-Maximization algorithm gmdistribu-

tion initialized with mean values from the native k-
Means Clustering function kmeans assuming two dis-
tribution modes. Probability density functions created
from the determined lognormal distribution parameters
were used to create distinct PSDs for each analysis ap-
proach.

B. Experiments

Experiments were performed using the NanoSight R©

NS300 (Malvern Instruments, Malvern, UK) equipped
with a 532nm laser source, sCMOS camera and soft-
ware version NTA 3.0 build 0068. 100- and 400nm
polystyrene bead standards (Thermo Fisher Scientific,
Waltham, MA, USA) were diluted in 1% phosphate-
buffered saline (PBS). A Fusion 400 syringe pump (Che-
myx Inc, Stafford, TX, USA) generated uniform, con-
stant flow in the suspending fluid and was physically
coupled to a high frequency oscillator to generate uni-
form, dynamic flows. The NanoSight R© particle position
data was exported and analyzed in MATLAB R©. Some
tracks were identified as ‘false’ and removed for all analy-
ses. False tracks were identified using the exported ‘true’
or ‘false’ track designation from the NTA software with
the additional criteria of a trajectory length threshold se-
lected to prevent a biased over-sampling of smaller parti-
cles that are more likely to jump in and out of the camera

field of view [18]. For quiescent bulk conditions, frame-
by-frame suspension composition was controlled by sam-
pling particles from specific size modes as specified by the
size exported from NanoSight R© and then dictating the
starting frame of the selected particle tracks. This pro-
cess of recreating an experiment with a controlled number
of particles in each frame is possible only for quiescent
bulk conditions. Plots of the % error of PSD parame-
ters from experimental data use ‘true’ parameters that
were measured in quiescent bulk conditions for the same
sample.

III. DE-DRIFTING OF SPT TRAJECTORIES

A. Theory

SPT records individual particle’s spatial positions over
time and weaves these discrete positions together to cre-
ate SPT trajectories that span any number of time steps.
Observed particle position in one spatial dimension at

time step ti is given by x(ti) = x(t0) +
∑i−1

l=0 ∆xobs(tl),
where ∆xobs(tl) = x(tl+1) − x(tl). One-dimensional ob-
served particle displacement (∆xobs) is determined by a
combination of random thermal fluctuation and motion
from a variety of possible non-Brownian ‘drift’ sources,

∆xobs(ti) = ∆xBr(ti) + udrift,x(ri, ti)∆t , (3)

where ri is two-dimensional particle position at time ti
and ∆t is the constant time lag between observations.
Although the source-agnostic drift term, udrift,x, can vary
discretely in time and space, it is assumed constant over
∆t.
De-drifting is elegant in concept – simply remove the

drift analytically by subtracting an estimate, thereby in-
cluding only Brownian motion in further analyses. The
presence of drift, i.e. bulk fluid flow, generates a nonzero
mean displacement, but de-drifting theoretically reverts
particle displacement to a zero-mean process. The es-
timate is taken as the ensemble-averaged displacement
between time steps, 〈∆xobs〉

N
, where 〈·〉

N
indicates the

average of an N -particle ensemble. The respective dy-
namics of drift and Brownian motion are generally con-
sidered separable such that high-frequency components
of the ensemble average are often filtered out to obtain
lower frequency drift by itself. For example, the popular
MATLAB R© implementation of Crocker et al.’s IDL code
uses a top-hat temporal filter [35]. The choice of weight-
ing function determines the power of spectral components
remaining in the estimated drift. Here, a general linear
weighting function is applied as a central moving average
and convolved with the ensemble-averaged displacement
to show the de-drifted displacement,

∆xdd(ti) = ∆xobs(ti)−

w−1

2∑

k=−w−1

2

{
Wk · 〈∆xobs(ti+k)〉

N

}
,

(4)
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where the weighting function has odd-valued span w and
coefficients that sum to unity (

∑
Wk = 1). Because par-

ticles can leave and enter the camera focal plane, N is
dependent on time step. The true spatial variation of
drift determines the spatil length scale over which par-
ticles may be ensemble-averaged for this purpose – uni-
form bulk motion can be removed with a single ensemble
whereas heterogeneous bulk motion may require spatially
localized ensembles [31]. In this manuscript, we con-
sider only uniform bulk motion because it is the expected
form of directed transport in NTA experiments. Appli-
cations with spatially heterogeneous drift would require
a method to define local ensembles, such as by machine
learning methods [36]. Substitution of Eq. (3) into Eq.
(4) leads to

∆xdd(ti) = ∆xBr(ti)−

w−1

2∑

k=−w−1

2

{
Wk · 〈∆xBr(ti+k)〉

N

}

+ udrift,x(ri, ti)∆t

−

w−1

2∑

k=−w−1

2

{
Wk · 〈udrift,x(ri, ti+k)∆t〉

N

}
, (5)

where 〈·〉
N

has been considered a linear operator such
that 〈A+B〉

N
= 〈A〉

N
+ 〈B〉

N
for arbitrary random vari-

ables A and B. For negligible spatiotemporal heterogene-
ity in the true drift given the particular ensemble and
averaging window span, drift terms cancel and de-drifted
displacement is dependent only on particle Brownian mo-
tion,

∆xdd(ti) = ∆xBr(ti)−

w−1

2∑

k=−w−1

2

{
Wk · 〈∆xBr(ti+k)〉

N

}
.

(6)
As N −→ 0, the resulting de-drifted displacement for an
individual particle can no longer be assumed fully inde-
pendent of the other particles in the suspension.

It is well known that the variance of a sum of random
variables A1+A2+ · · ·+AN is the sum of all covariances,

var

(
N∑

m=1

bmAm

)
=

N∑

m,j

bmbjcov (Am, Aj) , (7)

where b’s are constants. Because de-drifted displacement
is a sum of random variables all with zero mean, the
variance of ∆xdd can be determined using Eq. (7) and is
equivalent to the MSD. The Brownian motion of any two
particles is not cross-correlated because hydrodynamic
interactions are assumed negligible, and single-particle
Brownian motion is not autocorrelated in time. Impor-
tantly, uncorrelated random variables have covariance
equal to zero. Thus, the de-drifted MSD simplifies to

a sum of variances,

αdd
1 =

(
1−

2W0

N

)
αBr
1 +

w−1

2∑

k=−w−1

2

{
W 2

k ·
1

N
〈αBr〉

N

}
,

(8)
where the subscript in αm identifies a specific probe par-
ticle m. Eq. (8) is an important result of this work. The
first term contains the independent Brownian motion of
an arbitrary particle 1 that is to be measured, and the
second term represents the influence of the other tracked
particles. This equation demonstrates that de-drifting,
though removing correlated bulk fluid motion, introduces
spurious correlations in the motion of particles composing
the ensemble used to estimate drift. Equivalently stated,
de-drifting converts the original displacement data series
to a stationary process, but does not recreate a process
describing the independent motion of a single Brownian
particle.

B. Monodisperse SPT

Monodisperse particle suspensions are composed of
particles with essentially equivalent diameter and there-
fore equivalent diffusive mobility. In this section, we val-
idate simulation results with the literature on monodis-
perse suspensions and describe the effect of time-averag-
ing, i.e. smoothing, estimated drift on measured PSDs.
An unsmoothed approach (‘Raw de-drifting’) is com-
pared to a smoothed approach (‘Smooth de-drifting’) to
characterize the effect of time-averaging (see Table I for
description of analyses).
In dilute, monodisperse suspensions, Monte Carlo

(MC)-averaged distribution means and variances show
that de-drifting introduced spurious peak shifts in the
PSD. Bulk fluid displacement approximated by the un-
processed ensemble-averaged measured particle displace-
ment consistently over-estimated particle sizes, and the
error magnitude was inversely related to the total num-
ber of tracked particles per time step (‘Raw de-drifted’
in Fig. 1a). Previous reports have made the same ob-
servations [26, 31]. By assuming that averaged particle
fluctuations originate only from bulk fluid motion, this
approach spuriously subtracted away a portion of par-
ticle fluctuation, reducing MSD and increasing inferred
diameter. For raw de-drifting of a monodisperse parti-
cle suspension (αBr

1 = αBr
2 = · · · = αBr

N = αBr), Eq.
(8) simplifies to αdd

1 = (1− 1/N)αBr, where the coeffi-
cient (1− 1/N) has been described as an MSD correction
factor [26, 31]. Thus, for monodisperse suspensions, en-
semble-averages remain correlated to the individual parts
with scaling O( 1

N
). As N −→ ∞, ensemble-averaged es-

timates become correct.
Smoothing the estimated drift signal can reduce high-

frequency components that remain correlated to individ-
ual particle motion. Smoothing effectively augments the
number of particles in the ensemble by considering ad-
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Analysis name Displacement data set MSD calculation a

Specified PSD (continuous) - -

Sampled PSD (discrete) -
4kbT
3πηa

No correction ∆xobs 〈|∆r|2〉

Perfect correction ∆xBr 〈|∆r|2〉

Raw de-drifting Eq. (6) with w = 1,W0 = 1 〈|∆r|2〉

Smooth de-drifting Eq. (6) with Wk = 1/w 〈|∆r|2〉

Monodisperse correction [26] Eq. (6) with w = 1,W0 = 1 〈|∆r|2〉 · (1− 1/N)

Raw Decorrelation Analysis - Eq. (12) with w = 1

Smooth Decorrelation Analysis - Eq. (12) with Wk = 1/w

TABLE I. Methods to generate PSDs used in this work. ‘Specified PSD’ is a continuous probability density function generated
from the summation of two lognormally-distributed random variables with specified parameters, and therefore is not associated
with a set of displacements nor any calculation of MSD. ‘Sampled PSD’ contains the particle diameter values that were sampled
from ‘Specified PSD’ in SPT simulations, and therefore is associated with the discrete MSD values used to generate particle
trajectories. ‘No correction’ implies that observed particle trajectories were not modified in any manner. ‘Perfect correction’
only considers particles’ Brownian motion, and therefore represents ideal values given instrument broadening. ‘Monodisperse
correction’ utilizes the MSD correction factor from [26]. Both ‘Raw de-drifting’ and ‘Smooth de-drifting’ are presented in order
to illustrate the effect of applying linear weighting functions to estimated non-Brownian motion. Accordingly, both ‘Raw DA’
and ‘Smooth DA’ forms are presented for clarity. Although only the x component of displacement is shown, the y component
is equivalently determined, and ∆r

2 = ∆x2 +∆y2 is used in calculations of MSD. a Individual particle MSDs were converted
into suspension PSDs by using k-means Clustering to initialize Gaussian mixture model fitting of multivariate distribution
parameters, as described in the Methods section.

jacent values in the estimated drift. Distributions de-
termined from 20 particles per time step, Nt = 20, for
example, were identical to distributions determined from
4 particles per time step but 20 particles per averaging
window, Nw = 20 (Fig. 1a,b,c). The equivalent dis-
tribution shifts for these two conditions show that time
averaging simply expands the number of particles used
to estimate drift, systematically reducing spurious peak
shifts at the cost of temporal resolution in the estimated
drift.

C. Polydisperse SPT

Polydisperse particle suspensions are composed of par-
ticles with heterogeneous diameters. SPT simulations
demonstrate that the magnitude and direction of parti-
cle diameter biasing introduced by standard de-drifting
is not equivalent for both subpopulations of a bi-modal
PSD. Results from this section are presented in the con-
text of NTA but are also applicable for SPT-based mi-
crorheology measurements of complex fluids with hetero-
geneous rheological properties.
Similar to the monodisperse case, de-drifting the mo-

tion of particles sampled from bi-modal PSDs demon-
strated an inverse relationship between the magnitude of
spurious peak shifts and the total number of tracked par-
ticles. As the number of tracked particles increased, size
measurements for both populations became more accu-
rate (Fig. 1b,c).
Simulations of tracked particles sampled from two dif-

ferent bi-modal PSDs show that biases in the measured

diameter are a function of suspension composition. Two
subpopulations close in mean diameter both exhibited
over-estimated particle diameters (Fig. 1b); for exam-
ple, 200- and 400-nm particles appeared to be 291- and
457-nm, respectively. On the other hand, two subpopula-
tions far apart in mean diameter exhibited a varied bias-
ing of particle diameter (Fig. 1c), where 100nm particles
appeared larger (152nm) but 400nm particles appeared
smaller (355nm). The role of the suspension composition
in de-drifting has been inherently neglected by studies of
monodisperse suspensions.

The varied nature of particle diameter biasing in SPT
simulations of bi-modal particle suspensions occurs be-
cause the net shift in size depends on two counteracting
influences represented by the two main terms in Eq. (8).
First, as described for monodisperse suspensions, resid-
ual correlation between the estimated drift and individual
particle motion causes vector subtraction to erroneously
remove a portion of Brownian motion. The first term
of Eq. (8) shows that this error is O(2W0

N
). To bet-

ter understand the second influence, consider the limit
case of a motionless particle. Because this particle has
no inherent diffusive MSD, de-drifting adds, rather than
subtracts, particle motion equivalent to the opposite of
the estimated drift vector. Thus, the inferred particle
diameter, which in theory is infinite, is instead a finite
value fully determined by the motion of other particles in
the ensemble. This limit case represents high dispersity
suspensions composed of particles with widely varying
diffusive mobility. Disparities in diffusive mobility create
disparities between particles in the relative magnitude of
noise introduced by subtracting the ensemble-averaged
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FIG. 1. De-drifting causes particle number- and composition-dependent errors related to the correlation be-

tween estimated drift and particle displacement. (a–c) P̂ r is the measured probability density distribution normalized
by the ‘Perfect correction’. PSDs represent MC-averaged (1000 iterations) distribution parameters measured from different
total number particles per time step, Nt, or per window, Nw. The magnitude of peak shift was inversely related to the number
of particles defined by the ensemble and the direction of shift depended on the suspension composition. Particles were sampled
equally from lognormal distributions with standard deviation σ = 8nm and applied constant drift (1µm/s). (d–f) R̂xy is the
unbiased zero-lag cross-correlation function, Eq. (9), normalized by the ‘Observed’ value for each peak. Data points represent
the MC average ±2σ in the case of Nt = 4, 2e5 displacements per particle and no applied drift. Data points (circles) indicate
whether the spurious peak shift was dominated by residual correlation (< 1) or introduced correlation (> 1). Legend indicates
vectors being assessed for correlation.

displacement. Depending on the exact composition, this
noise can dominate the inferred displacement of less mo-
bile, larger particles. The second term of Eq. (8) shows

that this error scales with O(
wW 2

k

N
φ), where φ = 〈α

Br

αBr

1

〉
N

is a measure of the dispersity relative to the particle be-
ing measured. The greater the dispersity or the smaller
the relative mobility of the particle being measured, the
greater the influence of this type of error.

In accordance with these scaling arguments, parti-
cle diameters sampled from a bi-modal PSD with peak
means close in value were over-estimated, i.e. the domi-
nating influence of de-drifting was the removal of a por-
tion of Brownian motion (Fig. 1b). Individual de-drifted
displacements and the ensemble average remained corre-
lated because of small Nt, and noise associated with the
ensemble average did not dominate the inferred displace-
ment of larger particles.

Particle diameters sampled from a bi-modal PSD with
peak means further apart exhibited varied biasing of in-
ferred particle diameter because the dominant influence

on biasing error was dependent on diameter (Fig. 1c).
Correlated subtraction again introduced spurious peak
shifts toward larger diameters, which dominated the net
biasing of 100nm particles. For these smaller particles,
the noise in the estimated drift did not drown out Brow-
nian motion. Larger particles, however, have lower diffu-
sive mobility and the relative magnitude of the noise was
greater compared to particle Brownian motion. Uncor-
related vector subtraction of the ensemble-averaged dis-
placement added noise whose magnitude dominated the
inferred particle displacement, decreasing the inferred di-
ameter of less-mobile 400nm particles.

To demonstrate the dominant source of particle size
biasing, we traced the average value of the cross-correla-
tion function between the estimated drift and individual
particle displacements through de-drifting. Investigating
only the correlations associated with the de-drifting step
was achieved in simulations with no applied drift and by
evaluating the cross-correlation function at zero lag for
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each individual particle,

Rm =
1

T

T∑

t=1

∆rm〈∆̃r
obs

〉
N

, (9)

where m indicates the arbitrary particle identification
number, T is the total number of displacements in the

trajectory and 〈∆̃r
obs

〉
N

is the complex conjugate of the
estimated drift. The imaginary vector component was
equal to the y-direction component of the estimated drift
vector. Then, the cross-correlation function value for a
particular size subpopulation was determined by aver-
aging Rm over the particles composing that population.
Simulations in which peaks spuriously shift toward larger
diameters show that the observed displacement corre-
lated most strongly with the estimated drift and that
de-drifting reduced this correlation (Fig. 1d,e). Because
the simulations here do not include an applied drift, re-
ducing correlation corresponded to spurious removal of
a portion of the true Brownian motion. Underestimated
particle diameter, however, corresponded with increased
correlation between particle de-drifted displacement and
estimated drift, indicating that the estimated drift vector
erroneously dominated the particle de-drifted displace-
ment (Fig. 1f). Therefore, the fluctuating motion of the
other particles in the suspension mostly determined the
estimated diameter of less-mobile, larger particles.

D. Quantifying systematic bias of de-drifted

particle MSD

There are circumstances when predicting the error
caused by de-drifting may be important, such as to re-
evaluate previous SPT results. In this section, we demon-
strate a straightforward method to make analytical pre-
dictions of bias, and then show that these predictions
agree perfectly with true bias calculated from simulated
SPT trajectories (Fig. 2).
For a top-hat temporal filter, the linear weighting func-

tion coefficients are defined by Wk = 1
w
∀ k. By applying

the Stokes-Einstein relation, Eq. (8) simplifies to,

aBr
1

add1
=

(
1−

2

wN

)
+

1

wN2

N∑

m=1

aBr
1

aBr
m

, (10)

where all N particles were tracked over the same time
steps and under the same conditions, add is the ‘de-
drifted diameter’ (inferred diameter after de-drifting) and
aBr is the true hydrodynamic diameter. Eq. (10) re-
iterates the scaling argument made above – that shifts in
particle diameter depend on relative, rather than abso-
lute, diameters in the particle suspension.
De-drifting introduces equivalent relative bias in the

inferred particle diameter for monodisperse suspensions
regardless of diameter. The magnitude of the peak shift
reproduces previous results in the literature [26] and de-
pends on the total number of particles. Furthermore, the
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FIG. 2. Spurious shifts from simulated particle mo-

tion are exactly predicted analytically. Results from
SPT simulations of bi-modal PSDs with 100nm- and 400nm-
diameter peak means (a) or 200nm- and 400nm-diameter peak
means (b) are shown. The y axes are a measure of the spuri-
ous peak shifting caused by de-drifting where values > 1 cor-
respond to under-estimated diameter (add < aBr), values = 1
have no bias (add = aBr) and values < 1 correspond to over-
estimated diameter (add > aBr). Lines represent the result of
Eq. (10) given the relative number of each subpopulation that
was simulated. Data points represent the average diameter ra-
tio of the indicated size subpopulation (empty square or filled
diamond) calculated from 10 simulations in which particles
were tracked for 1e4 displacements with no bulk flow. Line
color/style represent five cases corresponding to the number of
small:large particles in ∞:0 (red/line), 3:1 (green/dotted), 1:1
(cyan/dot dash), 1:3 (blue/dash) and 0:∞ (red/line) ratios.
The inset in (b) zooms in on the case N = 8 in order to bet-
ter visualize the agreement between analytical and simulation
results. Analytically calculated bias and true bias calculated
from simulated trajectories are in perfect agreement, demon-
strating that Eq. (10) predicts composition-dependent error
introduced by de-drifting.
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value of the y value in Fig. 2 indicates the direction of
the peak shift, corroborating that de-drifting monodis-
perse suspensions always causes over-estimation of in-
ferred particle diameter (aBr/add < 1).
De-drifting particle motion in SPT simulations of poly-

disperse suspensions, represented by particle sizes sam-
pled from two different bi-modal PSDs, causes spurious
shifts in inferred particle diameter that perfectly match
the shifts predicted by analytical curves. Both the rel-
ative diameters of the size modes and the relative num-
ber of particles from each mode contribute to spurious
peak shifts. MC simulations with 100- and 400-nm (Fig.
2a) and 200- and 400-nm (Fig. 2b) size modes shows
both over- (add > aBr) and under-estimated (add < aBr)
inferred particle diameter. There is perfect agreement
between simulation results and analytical curves across
mono- and poly-disperse suspensions with varying levels
of dispersity, indicating that Eq. (10) is a straightforward
analytical method to assess de-drifting-related biasing er-
ror for particle suspensions with arbitrary dispersity.

E. Limitations for single large particles

Accurate measurement of very low numbers of large
particles in a bath of smaller particles is an important
practical concern for NTA, especially for the characteri-
zation of tumor-derived extracellular vesicles, which are
dilute, polydisperse and measured in applied bulk flow
[33, 34]. Importantly, the large-diameter portion of the
PSD has typically been reported as a small tail of the
distribution or a small secondary peak [37], and thus
these particles are likely strongly affected by the bias-
ing effect described herein. To assess the limitations
imposed by de-drifting in this relevant scenario, SPT
simulations were performed using a single large parti-
cle of diameter abig in a bath of identical small particles
of diameter abath. Fig. 3 shows the inferred diameter
of a particle ∞- (i.e. motionless), 100-, 10-, 5-, 3- and
1-times the diameter defined by the homogeneous bath
particles and results are plotted as a function of true di-
ameter ratio, ζ = abig/abath, de-drifted diameter ratio,
ζdd = addbig/abath and ensemble size per time step, N .

Differences between ζ and ζdd indicate biasing in parti-
cle diameter caused by de-drifting.
In general, the accuracy of inferred diameter increases

with N and decreases with diameter ratio, ζdd. More
numerous particles (N −→ ∞) better estimate the true
bulk fluid flow and reduce remaining correlation between
particle de-drifted displacements and the estimated drift.
Larger particles move less and their inferred diameters
are more susceptible to noise in the estimated drift. Even
with N = 50, a 1µm particle in a bath of 100nm parti-
cles would be measured as having a diameter of 0.865µm.
Special mention should be made of the case ζ = 3, in
which the two counteracting biases essentially cancel out.
It is easily shown from Eq. (10) that ζ = 3 is the transi-
tion diameter ratio, at which net biasing transitions from
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FIG. 3. Accuracy of a single large particle in a bath

of small particles. Results from SPT simulations of N −
1 bath particles and a single large particle over a range of
diameters, ζ = abig/abath. Plots show (a) a broad range and
(b) a practical range of ζ for vesicles. The y axes are the
de-drifted diameter ratio, ζdd = add

big/abath, while ζ indicates
the true diameter ratio, thus the de-drifted ratio approaches
the known true ratio as N −→ ∞. Whether values approach
ζ from ∞+ or ∞− indicates the dominant source of error.

over- to under-estimation.

IV. DE-CORRELATION ANALYSIS

Given that de-drifting removes motion associated with
the bulk fluid yet introduces error by correlating parti-
cle motion, in this section we present an additional pro-
cessing step that corrects for correlated particle motion.
Low particle density causes de-drifting to systematically
bias inferred particle diameter because the ensemble-av-
eraged displacement either remains correlated to particle
motion or contains sufficient noise to drown out less mo-
bile, larger particle Brownian motion. We use the term
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‘Decorrelation Analysis’ to describe the combination of
removing bulk motion by de-drifting and removing intro-
duced correlations by matrix inversion, as shown below.
The solution provided here applies to suspensions of par-
ticles with arbitrary diameters and is straightforward to
implement. The improved accuracy in measuring parti-
cle diameter permits reduced smoothing of the estimated
drift and better maintains the temporal resolution of the
analysis.

A. Theory

The MSD of particle Brownian motion, αBr, is the de-
sired quantity for size determination using NTA. In most
studies to date, the de-drifted MSD (Eq. (8)) is used
rather than the MSD of Brownian motion, which is valid
only for large ensembles of particles. When ensembles are
small, however, Eq. (8) must be simultaneously solved
for αBr for all tracked particles. Translating Eq. (8) into
matrix form requires the approximation that all N parti-
cles are tracked for the duration of the averaging window
centered at time step ti, which is reasonable when aver-
aging windows span much fewer time steps than particle
trajectories. Thus,

α
dd =



(
1−

2W0

N

)
δ +


 1

N2

w−1

2∑

k=−w−1

2

W 2
k


 11


 · αBr ,

(11)
where δ is the identity matrix, 11 is an N ×N matrix of
ones, and both αdd and αBr are vectors containing de-
drifted and Brownian motion MSDs, respectively, for all
N particles. The dimensions of MSD vectors may vary
in each time step as N changes. If the linear weighting
function is an unweighted moving average (Wk = 1

w
∀ k),

the bracketed matrix can be inverted analytically using
a method for sums of matrices [38],

α
Br =

w

wN − 2

(
Nδ −

1

wN − 1
11

)
·αdd , (12)

providing a straightforward calculation of de-drifted and
de-correlated MSD related only to the Brownian motion
of each particle. The identity matrix term contains the
correction for correlated subtraction whereas the ones
matrix term contains the correction for uncorrelated sub-
traction. This solution reflects the concept of ergodicity:
time-averaging for w −→ ∞ is equivalent to ensemble-av-
eraging for N −→ ∞. Consistent with expectations, as
N or w −→ ∞, de-drifting effectively removes bulk fluid
flow without causing bias in the inferred MSD. Time-av-
eraging, however, will reduce the temporal resolution of
the estimated drift, which is important for dynamic bulk
flows. Eq. (12) represents particle DA MSDs over time,
and therefore a single particle has as many definitions as
time steps in its trajectory. An unweighted average of a
particle’s DA MSD signal provides a good estimate for

mapping to a single value for calculating particle diame-
ter.

B. Benchmarking

In this section, simulations and experimental data val-
idate the gains in measurement accuracy attributable to
a follow-on de-correlation step (Eq. (12)) relative to de-
drifting alone and to a monodisperse correction [26]. As
opposed to current processing approaches to increase ac-
curacy such as time averaging the estimated drift signal,
de-correlation does not require reduced temporal resolu-
tion.

Uniform, constant drift

DA (Eq. (12)) was benchmarked against standard de-
drifting approaches using SPT simulations and experi-
ments. SPT simulations were implemented with real-
world conditions, in which particle tracks do not con-
tain equivalent statistical information. Particle trajec-
tory spans of varying length (100–1000 time steps) be-
gin at random time points within the simulation and
the number of particles for each time step varied around
a specified average composition. To reduce instrument
broadening [39], particle trajectories spanned many time
steps, and to reduce distribution fitting error, numer-
ous particle tracks were simulated. Simulations applied a
constant, uniform bulk fluid flow; however, experiments
were performed with no applied bulk flow because sy-
ringe pump jitter can introduce dynamic drift [40]. A
‘true’ measurement for % error of PSD parameters was
obtained without any drift correction. For the purposes
of evaluating error introduced by different drift correc-
tion methods, zero bulk flow and constant, uniform bulk
flow are equivalent.
Data from particle tracking experiments (Fig. 4c,d)

validated simulation results (Fig. 4a,b). The % errors
of peak means determined from experiment and simula-
tion data were in good agreement for a given diameter
subpopulation (square or diamond markers) and particle
ensemble number (marker size). For example, % error of
peak mean for ‘raw’ de-drifted 100nm particles was 26%
vs. 30% (Nt = 6), 12% vs. 14% (Nt = 12), 8% vs. 10%
(Nt = 18) in simulation vs. experiment, respectively.
Calculated % errors of peak standard deviations gener-
ally shifted toward ∞+ in experimental analyses relative
to simulations (red markers), i.e. distribution peaks were
uniformly broader. Shorter particle trajectories in ex-
periments compared to simulations may have caused this
broadening because it was observed that NanoSight R© ar-
tificially cuts particle trajectories short after ∼100 time
steps.
Both simulated (Fig. 4a,b) and experimental results

(Fig. 4c,d) reproduced the varied magnitude and direc-
tion of spurious PSD peak shifts introduced by standard
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FIG. 4. Simulations and experiments demonstrate that DA is more accurate than de-drifting for constant,

uniform bulk flow measurement conditions. Plots show % error of distribution parameters obtained from analysis of SPT
simulations using the ‘raw’ estimated drift (a) and ‘smooth’ estimated drift (b), as well as from a particle tracking experiment
using the ‘raw’ estimated drift (c) and ‘smooth’ estimated drift (d). Marker shape represents size mode, marker color represents
the approach used for determining particle diameters, and marker size indicates the target number of particles in each time step
– either 6 (large), 12, or 18 (small). (a)(b) For simulations, particle diameters were sampled from bi-modal 100- and 400-nm
lognormal distributions (σ = 10nm) and prescribed trajectories with a random number of time steps (between 100–1000) in
the presence of 65µm/s bulk fluid flow (∼10 seconds to traverse NanoSightR© field of view). Plotted values represent averages
from 100 simulations. (c)(d) For experimental data, 100nm- and 400nm-diameter polystyrene bead standards were tracked
in quiescent fluid, and the number of particles in each time step was controlled in post-processing. In both simulations and
experiments, de-correlating after de-drifting obtained the lowest % error of peak mean of all approaches for a given number of
particles in each time step.

de-drifting approaches when used for dilute, polydisperse
suspensions. For both ‘raw’ and ‘smooth’ de-drifting (red
markers - Fig. 4), results corroborated previous figures
– varying the total number of particles tracked in each
time step modulated the magnitude of peak shifts, as
illustrated by red markers moving away from the ori-
gin along the x axis for decreasing ensemble number.
Plots also reproduced the different direction of peak shifts
for 100- and 400nm subpopulations. The positive % er-
ror of peak mean values for 100nm subpopulations indi-
cate spuriously over-estimated particle diameter, whereas
the negative error values for 400nm subpopulations indi-
cate spuriously under-estimated particle diameters. Two
competing influences caused by de-drifting using the en-
semble-averaged displacement are responsible: one, cor-

related subtraction removes Brownian motion, increas-
ing inferred particle diameter; and two, improperly inter-
preted noise adds Brownian motion, decreasing inferred
particle diameter.

DA (Eq. (12)) more accurately determined PSD peak
means than de-drifting without a de-correlation step (Eq.
(2)). Results in Fig. 4 show reduced % error magnitude
for DA peak means (green markers) relative to de-drifted
peak means (red markers). De-drifting introduced spu-
rious peak shifts dependent on particle number, but the
addition of a de-correlation step removed this dependence
on particle density, thus all green markers regardless of
time step ensemble number align at x = 0. A monodis-
perse correction method [26](blue markers) does not im-
prove the peak mean estimate (Fig. 4a,c).
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Smoothing the estimated drift signal dramatically im-
proved inferred PSD peak standard deviation accuracy
for both standard de-drifting and de-drifting plus de-cor-
relation (Fig. 4b,d). Smoothing the estimated drift sig-
nal effectively augmented the ensemble size by consid-
ering the motion of particles in neighboring time steps,
and larger ensembles will reduce error introduced by de-
drifting. For experimental data analyzed by standard
de-drifting with 6 particles per time step and a moving
window average spanning 5 time steps (Nw = 30), the
% error in the distribution standard deviation decreased
from 32.6% to -0.1% (Fig. 4c,d). Similarly, correspond-
ing simulations of Nw = 30 show a reduction from 148%
to 11% in the % error of standard deviation.

Uniform, time-varying drift

When dynamic bulk flows contribute to particle mo-
tion, smoothing the estimated drift time series may not
just reduce noise in that signal but also eliminate high-
frequency components of true fluid motion. To demon-
strate the effects of smoothing estimated drift under mea-
surement conditions of high frequency oscillatory bulk
flows (as expected with vibration in experimental se-
tups), SPT simulations (Fig. 5a) and experiments (Fig.
5b) were performed with applied uniform, constant and
uniform, oscillatory superimposed bulk flows. Simulated
bulk flows matched experimental drift as estimated by
Fourier-transform analysis of the experimental ensemble-
averaged displacement time series. For calculating % er-
ror with experimental data, bi-modal distribution means
and standard deviations were first determined under qui-
escent conditions. Experimental particle position data
in quiescent fluid could be post-processed to control the
number of particles per frame but the same approach
is not possible with dynamic flows because particles at
different time points in the experiment also experience
different fluid motion.
Simulations show that smoothing the ensemble-aver-

aged displacement time series, i.e. estimated drift, re-
moved true bulk fluid motion and decreased measure-
ment accuracy for dilute, bi-modal particle suspensions
tracked in oscillatory bulk flows (Fig. 5a). Removing the
true oscillatory fluid motion from the estimated drift vec-
tor meant that high-frequency components of bulk flow
were misinterpreted as particle Brownian motion, and
‘smooth’ DA did not properly isolate particle Brown-
ian motion. As a result, ‘smooth’ DA underestimated
particle diameters and % error of peak mean spuriously
shifted away from the origin (blue markers). Because true
fluid motion was spuriously removed, the % error of peak
mean inferred using a ‘smooth’ analysis (blue markers)
approached diameters inferred from Eq. (4) with no drift
subtraction step at all (data not shown). The conclusion
from Fig. 5 is that, while smoothing can be advanta-
geous under the proper conditions, smoothing can disad-
vantageous if bulk fluid motion contains high-frequency

components.
Particle tracking experiments validated simulation re-

sults, demonstrating the importance of maintaining tem-
poral resolution of the estimated drift signal when oscil-
latory bulk flows were present (Fig. 5b). Similar to simu-
lation, a ‘smooth’ approach removed high frequency com-
ponents of the true bulk fluid motion and the correspond-
ing % error of peak mean (blue markers) approached val-
ues determined without a drift subtraction step (data not
shown). On the other hand, a ‘raw’ approach success-
fully compensated for dynamic drift, as demonstrated by
% error magnitudes close to the origin (green markers).
Experimental validation shows that ‘raw’ and ‘smooth’
approaches obtained similar magnitude but oppositely
signed % errors of peak standard deviations.

Mono-modal PSD with high dispersity

In Section IIID, SPT simulations of suspensions with
bi-modal PSDs demonstrated that, in a suspension with
high dispersity, standard de-drifting could bias smaller
particles toward larger diameters and larger particles to-
ward smaller diameters, with a net biasing effect that
peaks shifted toward each other. More generally, this ef-
fect leads to an overall compression of the PSD, which
is important for interpreting broadly distributed popula-
tions. For example, NTA of biological extracellular vesi-
cles often measures a PSD with a single, broad peak [41].
In this section, SPT simulations reflecting the impor-
tant experimental scenario of a mono-modal PSD with
high dispersity were used to compare DA with current
de-drifting approaches, which do not account for hetero-
geneous particle diameters.
SPT simulations showed that de-drifting of suspen-

sions with mono-modal PSDs introduced a spurious peak
shift in the distribution mean, which was most accurately
corrected by DA. Particle trajectory spans of varying
length began at random time steps within the simulation
such that the number of particles for each time step var-
ied around 4 particles. Although these simulated suspen-
sions were mono-modal, particles were not mono-disperse
given the relative wide peak centered at 165nm. De-
drifting spuriously shifted the MC-averaged distribution
mean from 165nm to 201nm (open circles vs. red marks,
Fig. 6a). A monodisperse correction factor partially re-
duced the spurious peak shift, obtaining an MC-averaged
distribution mean of 152nm. However, neither de-drift-
ing nor de-drifting with a monodisperse correction factor
measured the MC-averaged distribution mean as accu-
rately as DA, which found a peak mean at 167nm. Thus,
the error in peak mean varied from 22%, -8% and 1% for
raw de-drifting, a monodisperse correction and raw DA,
respectively.
De-drifting spuriously narrowed the PSD relative to

the PSD made up of sampled particle diameters (σ =
75nm), and this effect was again best corrected by DA.
De-drifting spuriously narrowed the PSD, determining an
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FIG. 5. A ‘raw’ approach determined more accurate

PSDs than a ‘smooth’ approach in oscillatory bulk

flow conditions. Plots show % error of distribution pa-
rameters obtained from DA of SPT simulations (a) and data
from a particle tracking experiment (b) in which uniform bulk
flows with constant and oscillatory components were present.
The frequency spectrum of applied simulated bulk flow was
matched to the frequency spectrum of the experimental en-
semble-averaged displacement time series using Fourier-trans-
form analysis. Marker shape represents size mode, marker
color represents the approach used for determining particle
diameters and, for simulations only, marker size indicates the
target number of particles in each time step – either 6 (large),
12, or 18 (small). In both simulations and experiments, ‘raw’
DA bulk flow removal obtained the lowest % error of peak
mean of all approaches for a given number of particles in each
time step. Smoothing the estimated drift time series removed
true oscillatory drift such that subtracting the ‘smooth’ esti-
mated drift did not remove high frequency bulk flow compo-
nents, spuriously underestimating inferred particle diameters.
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FIG. 6. Simulations demonstrate that DA is more ac-

curate than de-drifting for a broad, mono-modal PSD.
Plots show MC-averaged binned histograms of particle diam-
eter obtained from analysis of SPT simulations using ‘raw’
estimated drift (a) and ‘smooth’ estimated drift (w = 3) (b).
Particle diameters were sampled from a lognormal PSD (open
circles) defined by fLogN(x;µ = 165nm, σ = 75nm), and pre-
scribed trajectories with a random number of time steps be-
tween 1000–2000 that began at random time steps such that
Nt ≈ 4 particles. DA (Eq. (12), green asterisks), is com-
pared to standard de-drifting (Eq. (8), red marks) and to
standard de-drifting with a monodisperse correction factor
(blue marks) [26, 31]. Plotted values represent averages from
100 simulations. DA histogram values were nearly identical
to binned sampled diameters, demonstrating high measure-
ment accuracy regardless of particle diameter. On the other
hand, current de-drifting methods both spuriously shift and
spuriously narrow the PSD.

MC-averaged standard deviation of 65nm. A monodis-
perse correction factor further decreased the standard
deviation to 49nm, whereas DA better estimated peak
width, finding a standard deviation of 82nm. Thus, the
error in peak standard deviation varied from −13%, −
35% and 9% for raw de-drifting, a monodisperse correc-
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tion and raw DA, respectively. Narrowed distributions
follow directly from the varied biasing of particle diam-
eters as a function of relative diffusive mobility – larger
particles are spuriously measured smaller because noise
in the estimated drift adds apparent Brownian motion
whereas smaller particles are spuriously measured larger
because Brownian motion is spuriously subtracted. Sec-
tion IIID isolated this pinching effect using two separate
peaks in the PSD, which effectively showed individual
particle diameter biasing because peaks were very nar-
row. In this section, Fig. 6 shows that the integrated
individual particle diameter bias on a broad distribution
spuriously narrows the distribution peak. The monodis-
perse correction factor intends to correct for these spuri-
ous shifts introduced by de-drifting, but cannot account
for polydispersity. Thus, the ratio of σ/µ remains con-
stant as all particle diameters are shifted equivalently.
DA more accurately corrects spurious shifts caused by de-
drifting because DA properly accounts for different par-
ticle diameters; however, peak width generally increases
slightly. Peak broadening occurs because the corrections
are functions of other particles in the frame, which are
themselves of uncertain diameter. This leads to system-
atic deviation from a normal distribution to a t-distribu-
tion, which has wider tails.
Time averaging the estimated drift before vector sub-

traction greatly improved the measured distribution for
both standard de-drifting and DA. The MC-averaged
distribution parameters for raw and smooth de-drift-
ing methods were fLogN(x;µ = 201nm, σ = 65nm) and
fLogN(x;µ = 175nm, σ = 71nm), respectively, for an av-
eraging window span w = 3 time steps. Similarly, time
averaging improved the measured distribution parame-
ters for raw and smooth DA, resulting in fLogN(x;µ =
167nm, σ = 82nm) and fLogN(x;µ = 165nm, σ = 75nm).
The disadvantage of time averaging is reduced temporal
resolution of high frequency bulk motion components, as
demonstrated in Fig. 5. Importantly, Raw DA mea-
sured more accurate distribution means, showing that
DA is preferred over standard de-drifting when the spec-
tral components of bulk fluid motion are unknown.

V. DISCUSSION

NTA is an increasingly popular, SPT-based character-
ization method that accurately and quickly determines
colloidal particle size. Though NTA has over a 100-
year history [42], only in the last couple of decades have
camera and image-processing technology progressed suf-
ficiently to enable wide-spread adoption. Recent com-
mercial products such as the NanoSight R© (Malvern In-
struments, Malvern, UK) [8] and the ZetaView (Particle
Metrix, Meerbusch, Germany) as well as publicly avail-
able software have popularized particle tracking tech-
niques [43]. NTA is often perceived as a characteriza-
tion method well-suited for polydisperse suspensions be-
cause it analyzes each particle independently; however,

we show that de-drifting correlates individual particle
motion for dilute suspensions. As a result, de-drifting
can introduce significant error.

Some of the limitations of de-drifting dilute suspen-
sions have been known for at least a decade [25], but the
solution presented to date was suitable only for monodis-
perse suspensions [26, 31]. Our work resolves known lim-
itations of de-drifting associated with low particle con-
centration as well as identifies and resolves composition-
dependent limitations. Thus, this work extends the mea-
surement accuracy of NTA to dilute suspensions with
arbitrary size distributions that are measured in uniform
bulk flows with unknown dynamics. Future work could
use local ensembles to further extend this work to nonuni-
form bulk flows [31]. Gains in the accuracy of NTA for di-
lute, polydisperse suspensions are important because the
reliability with which NTA measures polydisperse PSDs
remains an open question [41, 44]. For example, recent
data characterizing patient placental extracellular vesi-
cles using NanoSight R© demonstrated that applied flow
significantly affected results, but the study did not de-
termine whether the difference was physical (issue with
chamber design) or analytical (issue with algorithm) [45].

Since its introduction a decade ago, the NanoSight R©

has demonstrated a remarkable versatility of application
[46]. In addition to standard diameter and concentration
measurements, NanoSight R© scattering intensity data has
been used to identify several extracellular vesicle subpop-
ulations with different refractive index [47]. To the au-
thors’ knowledge, our method is the first to use exported
position data from NanoSight R©, which allowed inves-
tigation of different particle tracking analysis methods
without constructing a custom video microscopy suite
or developing particle tracking algorithms. It was ob-
served that NanoSight R© artificially cuts particle trajec-
tories short after ∼100 time steps. Interestingly, particles
that remain visible are then re-tracked, and in this man-
ner a single particle may produce multiple particle tra-
jectories without ever exiting the field of view. Whether
counting single particles multiple times is part of the pro-
prietary analysis or simply an artifact of data exportation
is unknown.

Decorrelation Analysis facilitates several fields of
study. Investigations of extracellular vesicles have
demonstrated several subpopulations normally shed from
a variety of cell types, but the effect of various stimuli
on vesicle production is not well characterized [48]. For
example, the study of small molecule inhibitors that sup-
press microvesicle production are greatly benefited by ac-
curate size measurements of dilute, polydisperse suspen-
sions [33]. Similarly, microdevices using size-based sep-
aration methods to nanoparticle populations for down-
stream assaying must use accurate cutoff diameters in
the design process [49–51]. Malvern Inc. recently de-
veloped the ability to perform simultaneous nanoparticle
size, zeta potential and scattering intensity characteri-
zation [52]. The zeta potential measurement, however,
relies on accurate analysis of non-Brownian motion as-
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sociated with particle electrophoresis and bulk fluid elec-
troosmosis and thermal effects [53]. Our work shows that
care should be taken with zeta potential measures of het-
erogeneous particle populations. Because our approach
has the benefit of increased accuracy with minimal loss
of temporal resolution, DA could facilitate dynamic stud-
ies, such as the dynamics of protein aggregation [54]. DA
can also be used in passive particle tracking microrheol-
ogy to measure the local viscosity of a complex fluid,
where arguments of heterogeneous diameters in homoge-
neous fluid are substituted with homogeneous diameters

in heterogeneous fluid.
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