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Fast collisionless shocks in cosmic plasmas convert their kinetic energy flow into the hot downstream ther-

mal plasma with a substantial fraction of energy going into abroad spectrum of superthermal charged particles

and magnetic fluctuations. The superthermal particles can penetrate into the shock upstream region producing

an extended shock precursor. The cold upstream plasma flow isdecelerated by the force provided by the su-

perthermal particle pressure gradient. In high Mach numbercollisionless shocks, efficient particle acceleration

is likely coupled with turbulent magnetic field amplification (MFA) generated by the anisotropic distribution of

accelerated particles. This anisotropy is determined by the fast particle transport making the problem strongly

nonlinear and multi-scale. Here, we present a nonlinear Monte Carlo model of collisionless shock structure

with super-diffusive propagation of high-energy Fermi accelerated particles coupled to particle acceleration and

MFA which affords a consistent description of strong shocks. A distinctive feature of the Monte Carlo tech-

nique is that it includes the full angular anisotropy of the particle distribution at all precursor positions. The

model reveals that the super-diffusive transport of energetic particles (i.e.,Lévy-walk propagation) generates a

strong quadruple anisotropy in the precursor particle distribution. The resultant pressure anisotropy of the high-

energy particles produces a non-resonant mirror-type instability which amplifies compressible wave modes with

wavelengths longer than the gyroradii of the highest energyprotons produced by the shock.

I. INTRODUCTION

In contrast to collision-dominated shocks, strong collision-

less plasma shocks are capable of converting the kinetic power

of the upstream flow to both thermal and non-thermal com-

ponents. The conversion process, in diffuse plasmas where

Coulomb collisions are very infrequent, is due to highly non-

linear interactions between the particles and the background

magnetic turbulence utilizing the first-order Fermi mechanism

[1, 2]. While collisionless shocks are difficult to study in the

laboratory, they are known to exist in cosmic plasmas and

play a critical role in producing nonthermal particles observed

throughout the cosmos. The lack of Coulomb collisions al-

lows the nonthermal components – accelerated energetic par-

ticles (EP) and magnetic turbulence – to be long-lived and dy-

namically significant. Observations and theory both confirm

that particle acceleration can be efficient enough so the en-

ergetic particles that penetrate into the shock precursor can

slow the bulk supersonic flow significantly before the viscous

subshock occurs. The viscous subshock is a small-length-

scale collisionless shock of moderate Mach number∼ 3. The

subshock, which is directly observed in heliospheric shocks

and particle-in-cell (PIC) simulations, involves mainly ther-

mal particles and is required to produce the entropy and jumps

in plasma density, temperature, and magnetic field needed

to satisfy the Rankine-Hugoniot relations. The superthermal
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precursor particles are highly anisotropic and drive a number

of plasma instabilities [e.g., 3–5] producing magnetic turbu-

lence which interacts with the precursor particles producing

the turbulence. Modeling strong collisionless shocks is anin-

teresting multi-scale problem strictly from the point of view

of nonlinear plasma physics. It is also fundamentally impor-

tant for understanding energetic particle populations observed

in space.

The fact that collisionless shocks accelerate ambient parti-

cles in many locations ranging from the Earth bow shock to

shocks in galactic clusters is widely accepted. While a great

deal is known about the acceleration process, the most impor-

tant part—the collisionless wave-particle interactions driving

particle isotropization—remains uncertain. In principle, a full

description of the plasma interactions is obtainable with PIC

simulations [e.g., 6]. However, PIC simulations are compu-

tationally expensive and results thus far are limited to a rela-

tively narrow dynamical range which is particularly restricting

for the modeling of nonrelativistic shocks such as those seen

in supernova remnants.

All collisionless shock calculations, other than PIC, must

approximate particle transport and most models assume fast

particles obey standard diffusion (in the local plasma rest

frame) where the mean-square-displacement is proportional

to time, i.e.,

〈
∆z2

〉
= ADtb , (1)

with b = 1. This simple equation (even withb = 1) hides a

great deal of complexity since the proportionality factor,AD,

depends non-linearly on the details of the self-generated mag-

netic turbulence and will vary with particle momentum, posi-

tion relative to the subshock, and the Fermi acceleration effi-

ciency.

Furthermore, there is no fundamental reason whyb = 1 in

Eq. (1) and both super- (b > 1) and sub-diffusive (b < 1)

transport regimes are possible in complex nonlinear and in-

termittent systems [e.g., 7–10]. Such non-standard diffusion

has been shown to be important in laboratory and fusion plas-

mas [e.g., 11–13]. Furthermore, there is evidence from in-situ

spacecraft observations of heliospheric shocks for anomalous

diffusion where the mean-square-displacement grows non-

linearly with time with b > 1 [14]. The effect of complex

transport on EP propagation and acceleration was discussed

by [15–19].

We consider Fermi acceleration in strong quasi-parallel

shocks where the average magnetic field direction upstream of

the shock is close to the shock normal, implicitly assuming the

magnetic field at the subshock is turbulent enough so effects

from perpendicular components of the field can be ignored

[e.g., 20]. An analysis of obliquity effects on particle prop-

agation within the Monte Carlo model suggests that shocks

can be considered “parallel” for angles up to∼ π/4 from the

shock normal. The shock produces anisotropic EP distribu-

tions in the shock precursor that result in strong non-adiabatic

amplification of irregular magnetic fields by EP-driven insta-

bilities [e.g., 2]. Magnetic field fluctuations present in the in-

terstellar medium are highly amplified by these instabilities as

they traverse the shock precursor.

An important characteristic of strong shocks undergoing ef-

ficient Fermi acceleration is that the highest energy particles

are distributed throughout the entire precursor while lower en-

ergy particles are concentrated close to the subshock. This

results in a strong spatial dependence of the growth rate of

magnetic fluctuations with a given wavenumber and may lead

to super-diffusion in the outer precursor where the magnetic

turbulence is growing and is likely highly intermittent.

Here, we assume the intermittency of the turbulence dom-

inates the EP propagation in the super-diffusion region of

the precursor before the growing turbulence saturates. The

boundary of the super-diffusion region in the upstream is pa-

rameterized byzLF which is the distance from the subshock.

This parameterization is needed since we use simplified mod-

els for magnetic turbulence cascade, which deal only with

the spectrum of turbulence, while the intermittency requires

a more detailed description. This is discussed in more detail

in Section II.

Super-diffusive EP propagation has been seen at a few

gyro-rotation periods in magnetohydrodynamic (MHD) sim-
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ulations of the non-resonant EP-driven instability in [21]

where the EP current was fixed (i.e., without considering self-

consistent EP evolution). However, the question whether EP

transport is diffusive in the shock precursor when EP-driven

instabilities are rapidly growing has not yet been addressed.

The nonlinear backreaction of EPs on the shock structure will

influence the EP transport and anisotropy making nonlinear

calculations coupling EP production, shock structure, insta-

bility growth, and particle transport essential. While in prin-

ciple, the full time-dependent picture can be modeled with

large-scale PIC simulations, such calculations are still be-

yond current capabilities. Until these calculations become

available, the effect of non-diffusive propagation on nonlin-

ear Fermi shock acceleration can be studied with Monte Carlo

simulations of particle transport by simply assuming that the

EP transport in some regions of the shock precursor is non-

diffusive.

An important distinction with Fermi shock acceleration

models which are based on the advection-diffusion transport

equation is that they model only EP-current anisotropies. The

Monte Carlo model does not make a diffusion approxima-

tion and thus can account for arbitrary angular anisotropy

harmonics. We find that the inclusion of super-diffusion

from Lévy-walk scattering-length distributions produces spe-

cific anisotropies in the particle distributions that driveinsta-

bilities that do not occur with standard diffusion models.

When Fermi shock acceleration is efficient, particle

transport, the shock structure, MFA, turbulence cascading,

and thermal particle injection must all be calculated self-

consistently. No technique, not even PIC simulations, can

currently do this full calculation from first principles over a

dynamic range sufficient to model EP production in SNRs

or other strong nonrelativistic shocks. While approximations

must be made, much of the essential nonlinear physics can be

modeled with Monte Carlo techniques.

The Monte Carlo simulation we use couples analytic de-

scriptions of resonant and non-resonant wave growth with

anisotropic particle transport in EP-dominated shocks [see

22, 23, and references therein]. All of the nonlinear ef-

fects mentioned above have been consistently included assum-

ing standard diffusion. We now generalize the Monte Carlo

model by explicitly including super-diffusion in the shock

precursor. Because the Monte Carlo model accounts for the

full anisotropic EP distribution functions, the dispersion re-

lations we derive simultaneously include the EP-driven reso-

nant streaming instability, and the two EP-current driven in-

stabilities: Bell’s short-wavelength instability, and the long-

wavelength instability (see [4, 5]).

Our nonlinear model shows two distinctive features. The

first is that super-diffusion results in a highly amplified spe-

cific quadrupole anisotropy of EP particles. This anisotropy

produces a mirror instability that has not been previously con-

sidered in efficient shock acceleration. The mirror instability

contributes significantly to the generation of long-wavelength

magnetic turbulence which, in principle, can be studied with

direct measurements of heliospheric shocks and with indirect

analysis of the broadband synchrotron emission seen in super-

nova remnants. The second feature is that super-diffusion in

the shock precursor results in a substantial broadening of the

spectrum of energetic particles escaping the precursor. Ener-

getic particles escaping the shock will undergo inelastic colli-

sions with surrounding matter and produce high-energy radia-

tion. We quantify the mirror instability and escaping EPs with

a limited number of Monte Carlo examples.

II. THE NONLINEAR MONTE CARLO SHOCK MODEL

We construct a steady-state model of a plane-parallel, non-

relativistic collisionless shock where the nonlinear shock

structure is determined iteratively. The shock is directedin

the−z-direction with a subshock atz = 0 and an upstream

free escape boundary (FEB) limiting Fermi acceleration at

z = zFEB. For simplicity, we model only protons since they

mainly determine the nonlinear shock structure and drive the

long-wavelength instabilities we consider. Electrons canbe

included, as in [24], when radiation is calculated.

The Monte Carlo shock model includes the following main

elements:
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(1) Particle injection, which is self-consistently coupled to

Fermi acceleration where some fraction of shock-heated ther-

mal particles re-cross the subshock (assumed transparent),

gain additional energy, and enter the acceleration process.

Any particle that crosses from downstream back upstream at

least once is termed energetic;

(2) Shock-smoothing, where backpressure from superthermal

particles slows and heats the precursor plasma upstream of the

viscous subshock in order to conserve momentum and energy;

(3) The self-consistent determination of the overall shock

compression ratio,Rtot, taking into account escaping EPs,

magnetic pressure, and the modification of the equation of

state from the production of relativistic particles;

(4) Fluctuating magnetic fields simultaneously calculated

from resonant, short-wavelength, long-wavelength, and mir-

ror instabilities generated from the EP current, and super-

diffusion pressure anisotropies in the shock precursor;

(5) Momentum and position dependent particle transport de-

termined from the self-generated magnetic turbulence;

(6) A determination of the local plasma scattering center speed

relative to the bulk plasma from energy conservation without

assuming Alfvén waves; and,

(7) Turbulence convection and compression, cascade, and dis-

sipation of wave energy into the background plasma. The it-

erative Monte Carlo approach allows all of these processes

to be coupled and calculated simultaneously in a reasonably

consistent fashion.

III. MASS-ENERGY-MOMENTUM CONSERVATION

We determine the self-consistent shock structure with

an iterative procedure by forcing mass-energy-momentum

conservation. All particles–thermal and superthermal–are

transported through the shock keeping full account of the

anisotropic particle distribution and the momentum and en-

ergy contributions from the magnetic fluctuations (see [23]for

full details).

In the shock rest frame, the mass flow conservation is given

by

ρ(z)u(z) = ρ0u0 , (2)

whereρ(z) is the plasma density,u(z) is the bulk flow speed,

and the subscript “0” here and elsewhere indicates far up-

stream values. We define the “shock structure” asu(z), where

z is the distance measured from the subshock atz = 0. The

momentum flux conservation is determined by

Φpart
P (z) + Pw(z) = ΦP0 , (3)

whereΦpart
P (z) is the particle momentum flux,Pw(z) is the

momentum flux carried by the magnetic turbulence, andΦP0

is the far upstream momentum flux, i.e., upstream from the

free escape boundary where the interstellar magnetic field is

B0.

Separating the contributions from the thermal and acceler-

ated particles we have

ρ(z)u2(z) + Pth(z) + Pep(z) + Pw(z) = ΦP0 , (4)

wherePth(z) is the thermal particle pressure andPep(z) is the

accelerated particle pressure. As mentioned above, a particle

is “accelerated” if it has crossed the subshock more then once.

There is no other injection threshold and even though we use

the subscript “EP”, the vast majority of accelerated particles

will always be nonrelativistic. Of course, if the acceleration is

efficient, a large fraction of the pressure may be in relativistic

particles.

The energy flux conservation law is

Φpart
E (z) + Fw(z) = ΦE0 , (5)

whereΦpart
E (z) andFw(z) are the energy fluxes in particles

and magnetic field correspondingly, andΦE0 is the energy

flux far upstream. Taking into account particle escape at an

upstream FEB, this can be re-written as

ρ(z)u3(z)

2
+Fth(z)+Fep(z)+Fw(z)+Qesc = ΦE0 , (6)

whereFth(z) is the internal energy flux of the background

plasma,Fep(z) is the energy flux of accelerated particles, and

Qesc is the energy flux of particles that escape at the upstream
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FEB (note thatQesc is defined as positive even though EPs

escape moving in the negativez-direction).

The separation between “thermal” particles and “acceler-

ated” particles in a shock undergoing diffusive shock acceler-

ation is not necessarily well defined. Furthermore, the energy

exchange between the thermal and superthermal populations

is certain to occur through non-trivial wave-particle interac-

tions. Nevertheless, the bulk of the plasma mass will always

be in quasi-thermal background particles and the internal en-

ergy flux of this background plasma can be expressed as

Fth(z) = u(z)
γgPth(z)

γg − 1
, (7)

whereγg = 5/3 is the adiabatic index of the background ther-

mal plasma.

All of the quantities in Eqs. (2)–(7) are directly measured

in the Monte Carlo simulation. The magnetic turbulence, and

thereforePw(z) andFw(z), is determined fromu(z) and the

analytic expressions for wave growth and cascading discussed

below. Once the assumptions for wave growth are made, the

equations for mass, momentum, and energy flux are over de-

termined and a unique, nonlinear solution conserving mass,

momentum, and energy flux in the shock rest frame can be

found by iteratingu(z). In practice, a “consistent solution”

is accepted when the momentum and energy fluxes are con-

served to within a few percent at allz.

A. Turbulence cascade

The magnetic turbulence energy flowFw(z) in Eq. (6) is

determined by the spectral energy density of the magnetic

fluctuationsW (z, k) (see [23] for details ) which obeys the

equation

u(z)
∂W (z, k)

∂z
+

3

2
W (z, k)

du(z)

dz
+

∂Π(z, k)

∂k
= (8)

= G(z, k)− L(z, k),

whereΠ(z, k) is the flux of magnetic energy,G(z, k) is the

spectral energy growth rate due to EP instabilities, andL(z, k)
is the turbulence dissipation rate. Following [25], we approx-

imate the turbulent energy cascade rate as

Π(z, k) = − DK√
ρ(z)

k
11

2 W (z, k)
1

2

∂

∂k

[
W (z, k)

k2

]
, (9)

whereDK = 0.14 is the cascade constant which was cho-

sen to match the Kolmogorov constant. To study the effect

of anisotropic turbulent cascade we simulated two regimes:

one assumes the turbulent energy cascade is given by Eq. (9),

the other assumes no cascade. The unperturbed spectrum

of turbulence entering the free escape boundary atzFEB is

taken to be Kolmogorov, typically assumed for the interstellar

medium. The incoming spectrum is normalized by

∫ kmax

kmin

W (zFEB, k)dk =
B2

0

4π
. (10)

B. Particle propagation model

With normal (i.e., non-Lévy-walk) diffusion the Monte

Carlo simulation moves particles with a pitch-angle-scattering

scheme that has been described in [22]. Briefly, after a time

δt much less than a gyroperiod a particle scatters isotropi-

cally and elastically in the local plasma frame through a angle

δθ ≤ δθmax, whereδθ is chosen randomly between 0 and

δθmax. The maximum scattering angle is given by

δθmax =
√
6δt/tc , (11)

wheretc = λ0/vpf is the collision time,λ0(z, p) is the po-

sition and momentum dependent scattering length,vpf is the

particle speed in the rest frame of scattering centers,rg =

pc/[eBls(z, p)] is the particle gyro-radius, andBls(z, p) is the

local amplified magnetic field determined by summing fluctu-

ations with wavelengths larger thanrg [see Eq. (19) in refer-

ence 23, for a full description]. In the normal scattering region

we assume Bohm diffusion, i.e.,λ0(z, p) = rg(z, p).

For non-Lévy-walk scattering, particles always move a frac-

tion of λ0(z, p) in the time intervalδt, whereλ0(z, p) is the

mean free path a EP obtains scattering in the self-generated

magnetic turbulence. We use the same Monte Carlo model

as described in earlier work (see e.g., Section 2.7 of [23]) to

calculate MFA andλ0(z, p) except we now include the super-
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diffusion-induced mirror instability along with the resonant

and non-resonant instabilities.

C. Super-diffusive EP propagation: theLévy-walk model

To model super-diffusive particle propagation we use a

Lévy-walk model which assigns a random scattering length

λLF to determine the path length. The probability density

function of theλLF values has a power-law asymptotic form:

Ψ(λLF) ∝ λ−ν
LF for λLF(z, p) > λ0(z, p) . (12)

This density function produces so-called “heavy tails” for

ν ≤ 3, whereν = 2 is the well known Cauchy distribu-

tion. We describe below the specific algorithms to generate

the random scattering lengthsλLF with the power-law prob-

ability density functions. For completeness we discuss the

Cauchy distribution in§ III C 1 noting that since we only con-

siderλLF > 0, ν = 2 in Eq. (12) gives the half-Cauchy dis-

tribution. We further note that while Cauchy distributionsare

used for mathematical convenience in semi-analytic calcula-

tions, they have an infinite mean and variance. The flexibility

of the Monte Carlo model (and the fact that particles always

have a speed less thanc) allows us to derive a more general

expression for the scattering length in§ III C 2 for 2 < ν ≤ 3.

We show examples withν = 2.1 because this value gives a fi-

nite mean yet produces results similar to well-studied Cauchy

ones.

1. The half-Cauchy distribution

With ν = 2 we assume the EP scattering length in the

super-diffusive regionzFEB < z < zLF is determined by

λLF(z, p) = tan

(
πξ0
2

)
λ0(z, p) for z < zLF . (13)

Hereξ0 are random numbers uniformly distributed over the

interval [0,1), where the brackets indicate values up to butnot

including 1. Values ofξ0 ∼ 1 give extremely long scattering

lengths, forcing a modification of Eq. (11), whileλLF ∼ 0 for

ξ0 ∼ 0.

Integrating Eq. (13) fromp to ∞ we find the cumulative

distribution function

F (λLF) =
2

π
arctan

(
λLF

λ0

)
, (14)

and the probability density function corresponding to Eq. (14)

is

Ψ(λLF) =
2

πλ0

[
1 +

(
λLF

λ0

)2
]−1

. (15)

2. Lévy-type power-law distributions with2 < ν ≤ 3

For 2 < ν ≤ 3 the recipe is somewhat more complicated.

The scattering length in theLévy-walk region of the shock

precursor wherez < zLF, is given by

λLF = λ0

[
2ν (ν − 2) ξ1

(ν − 1)
2

+ 1

]
, ξ1 ≤ D0, (16)

λLF = λ0

[
2(ν − 2)

ν − 1

[
1

ν (1− ξ1)

] 1

ν−1

+ 1

]
, ξ1 > D0,

whereD0 = (ν−1)/ν, andξ1 are random numbers uniformly

distributed over the interval [0,1). The corresponding proba-

bility density function forλ∗
LF ≡ λLF − λ0 is

Ψ(λ∗
LF) =

Cν

λ0

, for λ∗
LF ≤ λ∗,

Ψ(λLF) =
Cν

λ0

(
λ∗
LF

λ∗

)−ν

, for λ∗
LF > λ∗ , (17)

where

λ∗ = 2λ0

ν − 2

ν − 1
and Cν =

(ν − 1)D0

2(ν − 2)
(18)

[see 26, for a full discussion].

The normalization and mean value are determined by
∫ ∞

0

Ψ(λ) dλ = 1 (19)

and
∫ ∞

0

λΨ(λ) dλ = λ0 , (20)

respectively. While Eq. (16) applies for2 < ν ≤ 3, we restrict

our calculations here toν = 2.1 to ensure Eq. (20) yields a

finite mean.

We implementLévy-walk transport in a piecewise continu-

ous way. In the precursor, downstream from some precursor
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positionzLF, particles propagate diffusively with a mean free

pathλLF(z, p) = λ0(z, p). Far upstream, betweenzLF and

the FEB atzFEB, we assume EPs propagate super-diffusively.

Typically, zLF ≤ −104rg0, whererg0 = mpu0c/(eB0) is the

gyroradius of a proton with speed equal to the shock speedu0

in the far upstream magnetic fieldB0. Forz < zLF, a particle

is given a random scattering lengthλLF(z, p) generated with

theLévy-type stable distribution described below.

We restrict super-diffusive propagation to regions well up-

stream from the subshock where the self-generated turbulence

has not reached saturation levels. Close to the FEB the turbu-

lence is growing rapidly from the escaping EP flux and be-

ing convected downstream. Closer to the subshock (i.e., for

z > zLF) the turbulence will be intense enough to destroy any

long-range correlations and Bohm-like diffusion is assumed

to occur. Forz < zLF, we have a mixture of ballistic motion

and diffusion, as described below.

D. Particle propagation with Lévy-walk

The Monte Carlo method we employ numerically solves

a Boltzmann equation with a collision operator which is de-

termined by collision frequencies averaged over the self-

generated background turbulence. By replacing a “diffusion

approximation” with a collision operator we are able to model

pitch-angle-scattering controlled by short-scale fluctuations

on the order of the particle gyroradius with arbitrary pitch

angle distributions. Therefore, particle transport is notre-

stricted to standard diffusion and super-diffusive, i.e.,Lévy-

walk, propagation can be directly modeled. All that is re-

quired for super-diffusion to be accurately modeled is to de-

fine a proper particle path length probability distribution.

If path lengths at a given position are determined by macro-

scopic, long-range field correlations on scales larger thanthe

EP particle gyroradius, or by highly intermittent turbulence,

then super-diffusion will occur. In the case when the path

length distribution is Gaussian, or has a power-law index

ν > 3, the probability of a EP having a free path that departs

widely from the mean value is small and normal diffusion oc-

curs with a well definedmeanfree path and mean square dis-

placement
〈
∆z2

〉
= ADt.

On the other hand, if 2≤ ν < 3 super-diffusive propaga-

tion occurs with
〈
∆z2

〉
= ADtb whereb > 1. In this case

there is a non-negligible probability for the free path to be

much longer than the mean. Physically, such a situation can

be expected near the FEB where strong, unsaturated EP driven

turbulence growth occurs. In this case, the turbulence is ex-

pected to be intermittent and long-range correlations are not

immediately destroyed. Closer to the subshock, nonlinear in-

teractions of strong magnetic fluctuations are likely to smooth

out the intermittency and the downstream turbulence is likely

to be statistically homogeneous. As a first approximation for

this complicated situation, we modelLévy-walk propagation

in the precursor in a region away from the subshock between

zFEB andzLF. The effect of varyingzLF is examined.

Once a path length distribution is specified, as with

Eq. (17), the Monte Carlo algorithm determines
〈
∆z2

〉
(t)

without further assumptions. As an illustration, we show

in Fig. 1 Monte Carlo calculations with our algorithm of
〈
∆z2

〉
(t) vs. t for two values ofν, as indicated. This cal-

culation is done in 3D geometry and the projection onto one

axis is plotted. The super-diffusive case withν = 2.1 yields a

slopeb ≃ 1.76. We note that in this example we restrictλLF to

be equal to or greater than the Bohm limit, i.e., to the interval

[λ0,∞). To test our Monte Carlo algorithm we performed the

simulation without this restriction, where the scatteringlength

is allowed to populate the interval[0,∞), and we obtained

b = 1.86 in good agreement with the scalingb = 4− ν = 1.9

presented by [8] and [26]. The solid curve labeledν = 4.5 is

almost identical to the standard diffusion result shown with a

dotted curve. For comparison we also show the ballistic case

with b = 2.

Particle transport withLévy-walk is done in the following

way. When a particle is at a position upstream fromzLF a ran-

dom numberξ1 is chosen and the particle’s scattering length,

λLF(z, p), is found from Eq. (16). This determines the col-

lision time tc = λLF/vpf . However, sinceλLF depends on

λ0(p, z) and is position dependent in the nonlinear model, its
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FIG. 1. The mean square displacement
〈

∆z2
〉

as a function of time

for a particle which is propagating with a probability distribution of

scattering lengths as given by Eq. (17). The displacement isthe

projection on one coordinate for a full 3D propagation. The solid

(red) line is the Monte Carlo result forν = 2.1 which demonstrates
〈

∆z2
〉

= ADtb with b ≃ 1.76, i.e., super-diffusive propagation.

The solid (blue) line is the result forν = 4.5. This is hardly dis-

tinguishable from the pure diffusion case (whereb = 1) shown by a

dotted curve. The dashed (black) curve shows ballistic motion where

b = 2. The curves are normalized to
〈

∆z2
〉

at t = 50t0, where

t0 = λ0/vpf andvpf is the particle speed in the plasma frame. These

consistency checks were done usingA2
θ = π2/2 in the Monte Carlo

algorithm. For theν = 2.1 and 4.5 results,106 Monte Carlo parti-

cles of the same energy were propagated in a uniform upstreamflow

in order to check ourLévy-walk algorithm.

value can change duringtc. To accommodate this we set the

time interval

δt(z, p) =
A2

θλLF(z, p)

6vpf
, (21)

during which the particle moves with a constant speed. Af-

ter δt(z, p), the particle scatters with a newλ0(z, p). The

value ofξ1 is kept fixed forNscat scatterings whereNscat is 1

plus the integer part of(π/Aθ)
2. If a particle completesNscat

scatterings without escaping, the cycle is repeated with a new

ξ1. In the simulations presented below we set the parameter

A2
θ = π2/2. This large-angle scattering value was justified in

[22].

IV. RESULTS

In most of the following examples we calculate magnetic

field amplification with super-diffusive EP propagation in

nonlinear shocks where the energy and momentum conserving

shock structure has been determined self-consistently. How-

ever, in order to isolate and highlight the effects of super-

diffusion, we discuss some unmodified (UM) shocks with

a discontinuous bulk-flow-velocity profile where energy and

momentum are not conserved. For these unmodified shocks,

λLF(z, p) = λ0(p), i.e., spatially independent Bohm diffu-

sion. These unmodified solutions are not, of course, intended

to represent physical models.

In all cases, the shock speedu0 = 5000 km s−1, the far

upstream plasma densityn0 = 0.3 cm−3, the background

magnetic fieldB0 = 3µG, and we accelerate only protons.

The Fermi acceleration is limited by an upstream FEB at

zFEB = −108 rg0, whererg0 = mpu0c/(eB0) ≃ 5.6× 10−9

pc.

As described in§ III C, EPs move super-diffusively in the

shock precursor betweenzFEB and zLF with a scattering

lengthλLF(z, p) given by theLévy-walk probability distribu-

tion Eq. (16) withν = 2.1. The specific valueν = 2.1 is

chosen because it is close to the Cauchy distribution and rep-

resents all of the features typical for prominent super-diffusive

propagation while having a finite scattering length.

We show examples withzLF = −104,−105, and−106 rg0.

For z > zLF, including downstream from the subshock, the

EP scattering length is diffusive, i.e.,λLF(z, p) = λ0(z, p).

For all nonlinear calculations,λ0(z, p) is determined with

MFA from Bell’s instability, the resonant streaming instabil-

ity, the non-resonant long-wavelength instability, and the mir-

ror instability described here for the first time. For the param-

eters used here, the differences inλ0(z, p) derived with the

additional mirror instability are modest except at the highest

particle energies.



9

FIG. 2. In all panels the dashed (red) curves show the resultsfor an

unmodified shock withRtot = 4. The solid (black) curves show

self-consistent results where the momentum and energy fluxes are

conserved across the shock including the total escaping energy flux

qesc, i.e., Qesc(p) summed overp. For this example, where all

four instabilities are active, the self-consistent compression ratio is

Rtot ≃ 7.2 and∼ 20% of the energy flux is lost at the FEB at

z = −108 rg0 ∼ −0.56 pc. The subshock withRsub ∼ 3 is indi-

cated in the upper right-hand panel. All quantities are scaled to far

upstream values and note the split log–linearx-axis.

A. Nonlinear shock structure

In the top panels of Fig. 2 we show the nonlinear shock

structure (solid black curve) in terms of the bulk plasma flow

speedu(x). The solid black curves in the middle and bot-

tom panels show the momentum and energy fluxes for the

self-consistent shock. For illustration, the dashed red curves

show the corresponding quantities for an unmodified shock.

An important element of the Monte Carlo simulation is that

it contains a direct model of thermal leakage injection. The

scattering assumptions described in§ II determine the frac-

tion of shock-heated particles that are injected into the Fermi

acceleration mechanism. This, in turn, influences the overall

acceleration efficiency in an internally self-consistent fashion.

As is clear from the dashed curves in Fig. 2, the Monte

Carlo injection model predicts efficiencies that do not con-

serve energy and momentum in unmodified shocks. A con-

sistent solution can be found without modifying the injection

model by modifying the shock structure, as shown with the

solid black curves in Fig. 2. As mentioned in§ III, the non-

linear bulk flow speedu(z) is determined by iteration and re-

sults in momentum and energy conservation to within a few

percent.

In this case, momentum and energy are conserved while

still having a large Fermi acceleration efficiency. We empha-

size that regardless of the injection process, shock modifica-

tion must occur if Fermi acceleration is efficient. Furthermore,

there must be a corresponding increase in the overall shock

compression ratio,Rtot, above the Rankine-Hugoniot value

of Rtot ≃ 4 for high Mach number shocks. The compres-

sion ratio is determined by the ratio of specific heats and the

energy flux leaving the shock at the FEB. The distribution of

escaping EPs is

Qesc(p) = −J(zFEB, p)p
4

4πmpcu0

, (22)

whereJ(zFEB, p) is the EP current atzFEB measured in the

upstream rest frame. Using the full anisotropy information

provided by the Monte Carlo model, we define the position

and momentum dependent EP current as

J(z, p) = 2π

∫ 1

−1

dµ vµf ep
pf (z, p, µ) , (23)

where f ep
pf (z, p, µ) is the distribution function of acceler-

ated particles, perdµ, in the local rest frame of the back-

ground plasma,µ = cos θ, and θ is the angle between a

particle’s momentum and thez-axis. The bottom panels in

Fig. 2 show that∼ 20% of the far upstream energy flux

qesc =
∫
J(zFEB, p)E(p)p2dp (whereE(p) is the particle

energy) escapes atz = zFEB and the plot foru(x) shows

Rtot ≃ 7.2. While Rtot increases above the test-particle
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FIG. 3. Shown are proton phase-space distributions measured in

the shock rest frame. Downstream spectra are plotted, as aredis-

tributions of particles escaping at the upstream FEB (i.e.,Eq. 22),

as indicated. Spectra for unmodified (UM) shocks are in the top

panel while those for consistent nonlinear (NL) shocks are in the bot-

tom panel and insert. All spectra are absolutely normalizedrelative

to each other. In theLévy-flight examples (solid and dashed black

curves), super-diffusive EP propagation occurs between the FEB at

zFEB = −108rg0 ∼ 0.56 pc andzLF = −104rg0. The normal dif-

fusion cases are shown with dot-dashed red curves and dottedblue

curves. We have included turbulence cascade in the nonlinear cases.

For the unmodified shocks, the scattering is uniform withoutmag-

netic field growth.

Rankine-Hugoniot value, the subshock (indicated in the top

right-hand panel) must decrease below the test-particle value.

For the nonlinear shock in Fig. 2,Rsub ≃ 3. These modi-

fications to the shock structure from efficient diffusive shock

acceleration produce the non-power-law behavior in the non-

linear distribution functions we discuss next.

FIG. 4. Same as bottom panel in Fig. 3 without turbulence cascade.

In the nonlinear (NL)Lévy-flight examples (solid and dashed black

curves), super-diffusive EP propagation occurs between the FEB at

zFEB = −108rg0 ∼ 0.56 pc andzLF = −104rg0. The normal

diffusion cases are shown with dot-dashed red curves and dotted blue

curves.

B. Particle spectra

In Fig. 3 we show particle spectra measured downstream

(DS) from the subshock and at the upstream FEB as indi-

cated. The top panel shows spectra for unmodified shocks

while spectra in the bottom panel are for self-consistent, non-

linear shocks, both with the super-diffusion parameterν =

2.1 in Eq. (16). The proton distributions are calculated for

zLF = −104 rg0 (black, solid and dashed curves) and without

Lévy-flight transport (red, dot-dashed and blue, dotted curves).

Super-diffusion is eliminated by placingzLF outside of the

FEB. In the unmodified examples,λ0 was assumed to be spa-

tially independent Bohm diffusion. The examples in Fig. 3 are

calculated with cascading while those in Fig. 4 are calculated

without cascading. We note that the statistical errors in Figs. 3

and 4 are small. Except for the escaping particles, variations

are typically less than the line thickness.

These examples show that super-diffusion produces a high-
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energy cutoff inf(z, p) that is broader than that for the dif-

fusive case and occurs at a lower momentum. This is clearly

reflected in the escaping distributions where the black dashed

curves are with super-diffusion and the dotted blue curves

are without. The broad cutoff results as particles with long

Lévy-walk scattering lengths leave the FEB from deep within

the precursor. It is significant that the broadening, while still

present, is less in the self-consistent shocks. While not shown

for clarity, we find that the cutoff is only weakly dependent on

zLF.

C. Particle anisotropy with super-diffusion

The energetic particle current anisotropy,A1(z), is given

by

A1(z) = N−1

∫ ∞

0

J(z, p)v−1p2dp . (24)

The partial anisotropy,A2(z, p), associated with the second

spherical harmonic of the particle distribution is defined as

A2(z, p) = π

∫ 1

−1

(3µ2 − 1)f ep
pf (z, p, µ) dµ , (25)

and integrating over momentum gives

A2(z) = N−1

∫ ∞

0

A2(z, p)p
2dp , (26)

where

N = 2π

∫ ∞

0

p2dp

∫ 1

−1

dµ f ep
pf (z, p, µ) . (27)

The anisotropies are both defined in the local plasma frame at

all z.

In Fig. 5 we show dimensionlessA1(z) andA2(z) for the

unmodified shocks (top panel) and nonlinear shocks (bottom

panel) discussed in Fig. 3. In the unmodified case, the bulk

velocity profile is fixed withRtot = 4 (see the dashed curves

in Fig. 2) and the magnetic fluctuations spectra are also fixed,

are position independent, and assume a Bohm-type scatter-

ing lengthλ0 ∝ p. The nonlinear shocks are fully consis-

tent in shock structure,Rtot, self-generated magnetic turbu-

lence, scattering length determination, and scattering center

FIG. 5. Proton anisotropies, as defined in Eqs. (24) and (26),in the

rest frame of the background plasma. The top panel, for unmodified

(UM) shocks, shows examples where super-diffusion withν = 2.1

occurs between the FEB and the upstream positionzLF = −104 rg0

(black dashed curves),zLF = −105 rg0 (green dot-dashed curves),

and zLF = −106 rg0 (blue dotted curves). The bottom panel

shows the anisotropy for nonlinear shocks with cascading (blue solid

curves) and without (black dashed curves) forzLF = −104 rg0. Re-

sults with no super-diffusion are shown with cascading (reddotted

curves). The fluctuations in theA2 results at large|z| are statistical

errors from the Monte Carlo simulation.

speed relative to the bulk speed of the background plasma (see

§ IV E).

The important result here is that super-diffusive propaga-

tion with aLévy-type distribution of particle scattering lengths

results in second harmonics much stronger than produced with

diffusive propagation. The magnitude ofA2(z) is within

a factor of a few to that ofA1(z) in regions where super-

diffusion is acting, while it is orders of magnitude less in re-

gions with only diffusive propagation.
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The second harmonicA2(z) is negative showing that the

magnetic field partial pressure transverse to the local mean

field is greater than the parallel partial pressure. This EP

anisotropy will drive the so-called mirror instability, aswe

describe in more detail in Appendix A. The mirror instabil-

ity is non-resonant where the growing magnetic fluctuations

are nearly transverse wavevectors2k2⊥ > k2‖ of scales larger

than the gyroradius of particles,Rgp, which are contributing

into the transverse pressure, i.e.,k⊥Rgp < 1 butk⊥λ(p) > 1.

The mirror mode is compressive and long-wavelength in the

sense thatk⊥Rgp < 1. This characteristic may help increase

the efficiency of scattering at the highest energy end of the

accelerated particle spectrum.

We note that even though we emphasize effects produced

for extremely efficient diffusive shock acceleration producing

hard, concave spectra, as shown in Figs. 3 and 4, the growth

rates we derive can be applied to weaker shocks. The mir-

ror instability growth rate formulation can be applied to steep

spectra and non-power-laws.

D. Magnetic field amplification

The energetic particle current and the quadrupole

anisotropy, demonstrated in Fig. 5, drive resonant, short–, and

long–wavelength instabilities, as well as the mirror instability

first discussed here. This MFA is included in our nonlinear

model. The turbulence growth rates and the transport equa-

tions used were discussed in detail in sections 2.4 and 2.5 of

[23], while the growth rate for the mirror instability whichis

associated with the quadrupole anisotropy of EPs produced by

super-diffusive propagation is presented in Appendix A.

The strong nonlinear aspects of MFA force a self-consistent

description of the energy exchange between the EPs and the

magnetic field, as well as with the bulk shock flow. We include

the cascade of turbulence energy to shorter wavelengths taking

into account the energy dissipation and heating of the back-

ground plasma. For comparison, we include models with-

out turbulence cascade and show that cascading influences the

magnetic fluctuation spectra, the total shock compression,and

FIG. 6. Spectral energy densities of the EP-driven magneticfluctu-

ations measured at three positions: (a) the FEB, (b)z = 0.01zFEB,

and (c) in the downstream region. There is a strong effect on

kW (k) from turbulence cascade. For both of these nonlinear shocks,

zLF = −104 rg0 andν = 2.1.

the downstream proton temperature.

In Fig. 6 we show the self-generated magnetic turbulence

spectra, with and without cascading, at various positions rel-

ative to the subshock atz = 0. These models include super-

diffusion beginning atzLF = −104 rg0. The top panel, with-

out cascade, shows a strong spike in wave power at long wave-

lengths resulting from super-diffusion. With cascade, this tur-

bulent energy is effectively shifted to shorter wavelengths.

E. Effective Scattering Center Velocity

The magnetic fluctuations produced by EP-driven instabil-

ities in the shock precursor move relative to the bulk plasma

with a speedvscat(z). This is a highly nonlinear effect since

vscat(z) directly influences the effective compression ratio for
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FIG. 7. The bulk flow speed (top panel) and scattering center veloc-

ity derived from the nonlinear Monte Carlo model (bottom panel)

with and without turbulent cascade, as indicated. Also shown in

the bottom panel isvalf(Bls), the local Alfvén speed derived using

the amplified magnetic field (dashed curves). For these examples,

zLF = −104 rg0.

diffusive shock acceleration which, in turn, determines the

Fermi acceleration efficiency and the MFA. While virtually all

work on diffusive shock acceleration attempting to consider a

finite vscat(z) assume it is some function of the Alfvén speed,

valf , there is no justification for this assumption other than

ease of computation. A linear analysis of the four instabilities

included in our model shows a vast variety of phase veloci-

ties. Significantly, even though the fastest growing EP-driven

modes are highly anisotropic, the non-resonant Bell mode, as

well as the long-wavelength and mirror modes, have phase

speeds that are typically well below the local Alfvén speed

calculated with the local amplified large-scale magnetic field

[see Fig. 18 in 23].

The flexibility of the Monte Carlo method allows us to de-

terminevscat(z) from macroscopic energy conservation with-

out making any assumptions regarding the amplified field. In

Fig. 7 (bottom panels) we showvscat(z) for the nonlinear cas-

cade and non-cascade cases shown in Fig. 6.

As is clear from Fig. 7,vscat is different in magnitude

and spatial structure fromvalf . Near the FEBvscat > valf

but closer to the subshockvscat can be orders of magnitude

smaller. It is important to note that even thoughvscat(z) may

be small relative to both the bulk flow speed, it has a strong

effect on the energy exchange between the accelerated parti-

cles, the bulk shock flow, and the magnetic field amplifica-

tion. As in [23],vscat(z) is determined consistently with the

shock structure modified by energetic particles and the mag-

netic field amplification.

V. SUMMARY AND CONCLUSIONS

In collisionless astrophysical plasmas, particle transport is

determined by charged particles interacting with magnetictur-

bulence and coherent magnetic structures over a broad wave-

length range. These interactions are essential for collisionless

shocks to form and accelerate particles to high energies. De-

tails of the wave-particle interactions will influence energetic

particles observed at Earth as well as radiative signaturesof

specific objects. While normal diffusion and advection have

been proven to determine the long-range particle transport

in quasi-homogeneous magnetic turbulence, studies both in

the laboratory and in space plasmas have revealed a variety

of sub- and super-diffusive regimes where particle transport

may significantly depart from standard diffusive propagation

for intermittent turbulence (e.g., during the growth of long-

wavelength magnetic fluctuations in shock precursors).

We have presented the first nonlinear calculation of efficient

Fermi shock acceleration that includes super-diffusion ina

consistent manner. The Monte Carlo simulation we use, since

it does not make a diffusion approximation, can model highly

anisotropic particle distributions and magnetic field amplifi-

cation and is well suited for these calculations. It includes

nonlinear effects from thermal particle injection, shock mod-

ification, the self-generation of magnetic turbulence, turbu-

lence cascade, and a consistently determined scattering cen-

ter speed. While we fully expect that future large-scale PIC

simulations will necessitate a refinement of our assumptions,
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accounting for important multi-dimensional effects is well be-

yond current PIC capabilities.

We show that super-diffusive particle transport in the

shock precursor produces specific, anisotropic EP distribu-

tions which are characterized by a pronounced quadrupole

anisotropy where the transverse particle pressure dominates

the parallel particle pressure. We show that this type of

anisotropy results in a mirror-like instability which is most

prominent when the shock accelerated spectrum isf(p) ∝
p−4 or harder near the maximum energy of the accelerated

particles (before the spectral break), as is expected for high

Mach number shocks. Magnetic field and plasma structures

produced by the mirror instability in cosmic plasmas were

observed in planetary magnetosheaths (e.g., [27]) and may

appear as well in high resolutionChandraimages of young

supernova remnants where synchrotron structures tracing the

magnetic fields are prominent [28].

Super-diffusion also results in a broadening of the spectrum

of EPs that escape from the shock precursor since there is a

significant probability that EPs can leave the shock from deep

inside the precursor. This broadening may impact models of

γ-ray production by shocks interacting with dense molecular

clouds and modify predictions for the integrated spectra of

energetic particles.
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Appendix A: Mirror instability of anisotropic EP distribut ions

As mentioned in§ IV C, the Monte Carlo method follows an

arbitrary angular distribution of accelerated particles and thus

can determine the second spherical harmonic,A2(z, p), of

the EP distribution at all positions across the nonlinear shock

structure. A non-zeroA2(z, p) indicates that there is a pres-

sure anisotropy and this may result in the growth of a firehose

or mirror instability depending on the ratio of partial pressures

along and transverse to the mean magnetic field [e.g., 29].

It has long been suggested that the mirror instability occurs

in Maxwellian plasmas when the transverse pressure domi-

nates the parallel pressure, as discussed by [27, 30–33], and

many others. Observational signatures of the mirror insta-

bility have been found in cosmic plasmas [e.g., 34] as well.

However, in highly nonthermal systems like the collisionless

shocks discussed in this paper the non-thermal relativistic par-

ticle pressure is important. In the downstream flow it is com-

parable to the thermal pressure and it can be well above the

thermal particle pressure in the shock precursor.

Therefore, consistent nonlinear shock solutions must deter-

mine the growth rate of the mirror instability, in the thermal

background plasma, driven by a superthermal particle pres-

sure anisotropy that occurs with super-diffusive transport. Our

derivation treats the accelerated particles, the source offree

energy for the mirror instability, kinetically, while the back-

ground plasma is described with an MHD approximation [e.g.,

5]. Since injection is a continuous process in the Monte Carlo

simulation, all particles that make at least one crossing ofthe

subshock (atz = 0) from downstream to upstream are in-

cluded as superthermal.

For the background plasma we have

ρ

(
∂u

∂t
+ (u∇)u

)
= −∇pg +

1

4π
(∇×B)×B−

−1

c
(jep − enepu)×B−

∫
pI[f ep]d3p , (A1)

whereρ, u, andpg are the background plasma density, macro-

scopic velocity, and pressure respectively. In addition, the

continuity equation is

∂ρ

∂t
+∇(ρu) = 0 , (A2)

the electric and magnetic fieldsE andB satisfy

∂B

∂t
= ∇× (u×B) , (A3)

and

∂f ep

∂t
+v · ∂f

ep

∂r
+eE · ∂f

ep

∂p
− ec

E B · Ôf ep = I[f ep] , (A4)

wheref ep, nep, andjep are the EP distribution function, EP

concentration, and electric current,E is the EP particle energy,

Ô = p× ∂

∂p
is the momentum rotation operator,c is the speed

of light, e is the particle charge, andΩ = eB0c/E is the EP

particle gyro-frequency.

The right-hand-side of Eq. (A4),I[f ep], is the collision op-

erator describing EP interactions with magnetic fluctuations

carried by the background plasma. In the background plasma

frame,

I[f ep] = −νc (f
ep − f ep

iso) , (A5)

wheref ep
iso is the isotropic part of the distribution function,

νc = ǫΩ is the EP scattering frequency by magnetic fluctua-

tions withǫ ≤ 1, and
∫
pI[f ep]d3p = −ǫB0j

ep/c in Eq. (A1).
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In the rest frame of the background plasma we impose small

perturbations of the local plasma parameters in Eq. (A1)–(A4)

asξ = ξ0+ δξ, with δξ ∝ exp(ikr− iωt). Assuming the adi-

abatic equation for the background plasma,∇δpg = a20∇δρ,

with a0 =
√
γgp0/ρ0, whereγg is the adiabatic index. Fur-

thermore, we defineez = B0/B0 as the parallel direction,ex

is the transverse direction, andk = k‖ez + k⊥ex.

Since we are only concerned here with instabilities due to

the anisotropic EP pressure (i.e., the quadrupole anisotropy of

the EP distribution), we consider the unperturbed EP distribu-

tion function with no mean electric current [see 2, 4, 5, for

discussions of the resonant and current driven instabilities].

With no mean current, the quadrupole anisotropy has the form

fep
0 (p, µ) =

nepN (p)

4π

[
1 +

χ

2

(
3µ2 − 1

)]
, (A6)

where
∫∞

0
N(p)p2dp = 1 andχ is a quadrupole anisotropy

parameter with|χ| < 1.

Keeping only linear responses to the perturbations in

Eq. (A1)–(A2), we obtain

(
ω4 − ω2

(
v2a + a20

)
k2 + v2aa

2
0k

2k2‖

)
δBx

=
(
ω2 − a20k

2
‖

)
i
B2

0k‖

cρ0

(
δjepy − ǫδjepx

)

−ia20k
2
‖

B2
0k⊥
cρ0

ǫδjepz , (A7)

and

(
ω2 − v2ak

2
‖

)
δBy = −i

B2
0k‖

cρ0

(
δjepx + ǫδjepy

)
, (A8)

whereva = B0/
√
4πρ0 is the Alfvén velocity. The linearized

Eq. (A4) has the form

[
νc + i

(
−ω + k‖v cos θ

)]
δfep + ik⊥v sin θ cosϕδf

ep −

−Ω
∂δfep

∂ϕ
= −eδE · ∂f

ep
0

∂p
+

ec

E δB · Ôfep
0 , (A9)

whereθ andϕ are the pitch and azimuthal angles between the

EP particle velocity and the directionez, correspondingly.

We first consider the weakly collisional case withǫ ≪ 1. In

the long-wavelength regime,k‖v/Ω ≪ 1, k⊥v/Ω ≪ 1, and

ω/Ω ≪ 1. Then one obtains the response of the superthermal

particle currentδjep on the magnetic field perturbationδB in

the form

δjepx =
πe

2B0

∫
dpp2

∫ 1

−1

dµv
(
1− µ2

) ∂fep
0 (p, µ)

∂µ
{
2δBx − 2i

k‖vµ

Ω
δBy

}
, (A10)

and

δjepy =
πe

2B0

∫
dpp2

∫ 1

−1

dµv
(
1− µ2

) ∂fep
0 (p, µ)

∂µ
{
2δBy + 2i

k‖vµ

Ω
δBx − i

k2⊥v
2
(
1− µ2

)

Ω
(
k‖vµ− ω

) δBx

}
. (A11)

Consider the brace in Eq. (A11). With the assumption for

the unperturbed quadrupole anisotropy given by Eq. (A6), the

second and third terms in the brace are of the same order of

magnitude. The second term gives the well known firehose

instability which grows ifχ > 0, while the third term results

in the mirror instability ifχ < 0. Using Eqs. (A6) and (25),

the parameterχ can be connected toA2(p) with A2(p) =

nepN(p)χ/5. Note that if the EP scattering rate by magnetic

turbulenceνc ∼ Ω, which may occur ifǫ ∼ 1, then the mirror

instability is suppressed.

Integrating Eq. (A11) overµ, with account taken of

Eq. (A6), one obtains

Amir(τ) =

∫ 1

−1

(
1− µ2

)2
µdµ

1− τµ
= − 16

15τ
+

10

3τ3
− 2

τ5
+

+
1

τ2

(
1− 1

τ2

)2

ln

∣∣∣∣
τ + 1

τ − 1

∣∣∣∣−

−iπ
1

τ2

(
1− 1

τ2

)2

Θ(|τ | − 1) , (A12)

whereτ = k‖v/ω andΘ(z) is the Heaviside step function.

The asymptotic form of Eq. (A12) forτ ≪ 1 is

Amir(τ) →
16

105
τ +O

(
τ3
)
, (A13)

while, for τ ≫ 1,

Amir(τ) → − 16

15τ
+O

(
1

τ2

)
. (A14)

The response of the electric current carried by the energetic

particles in these limits is

δjepx = −i
δByχnepk‖c

5B2
0

∫ ∞

0

vp3N (p) dp, (A15)
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and

δjepy = i
δBxχnepc

5B2
0

(
k‖ −

2k2⊥
k‖

)∫ ∞

0

vp3N (p) dp.

(A16)

Let us define the unperturbed pressure

P0 =
nep

3

∫ ∞

0

vp3N (p) dp , (A17)

and note that for the distribution function Eq. (A6),

P‖ =

∫
vpµ2fep

0 (p, µ)d3p = P0

(
1 +

2χ

5

)
, (A18)

P⊥ =

∫
vp

(
1− µ2

)
cos2 ϕfep

0 (p, µ)d3p

=

∫
vp

(
1− µ2

)
sin2 ϕfep

0 (p, µ) d3p

= P0

(
1− χ

5

)
, (A19)

and

δP = P‖ − P⊥ =
3χ

5
P0 . (A20)

Now, substituting Eqs. (A15) and (A16) into (A7) and (A8)

we obtain the dispersion relations

ω4 − ω2
(
v2a + a20

)
k2 + v2aa

2
0k

2k2‖

= −
(
ω2 − a20k

2
‖

) 3χP0

5ρ0

(
k2‖ − 2k2⊥

)
, (A21)

and

ω2 − v2ak
2
‖ = −3χP0

5ρ0
k2‖ . (A22)

The dispersion equation splits into two independent equations

where the mirror instability is determined by Eq. (A21) under

conditions2k2⊥ > k2‖ andχ < 0. For k2⊥ ≫ k2‖ Eq. (A21)

simplifies to

ω2 −
(
v2a + a20

)
k2 =

3χP0

5ρ0
2k2⊥, (A23)

Here the perturbation of the magnetic field is mostlyδBz

which are connected to the background plasma density varia-

tions byδρ ≈ ρ0
δBz

B0

.

Then from Eq. (A20), with account taken thatk ≈ k⊥, one

finally obtains

ω2
mir =

(
v2a + a20 + 2

δP

ρ0

)
k2. (A24)

Eq. (A24) shows that growing modes occur when(
v2a + a20 + 2 δP

ρ0

)
< 0, which may happen only if

δP ∝ χ < 0, i.e., the mirror instability is driven by

anisotropic EP pressure.


