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Fast collisionless shocks in cosmic plasmas convert thieatic energy flow into the hot downstream ther-
mal plasma with a substantial fraction of energy going inbv@ad spectrum of superthermal charged particles
and magnetic fluctuations. The superthermal particles eaetpate into the shock upstream region producing
an extended shock precursor. The cold upstream plasma fldeca&erated by the force provided by the su-
perthermal particle pressure gradient. In high Mach nunsb#isionless shocks, efficient particle acceleration
is likely coupled with turbulent magnetic field amplificati@MFA) generated by the anisotropic distribution of
accelerated particles. This anisotropy is determined byfdht particle transport making the problem strongly
nonlinear and multi-scale. Here, we present a nonlineart®@arlo model of collisionless shock structure
with super-diffusive propagation of high-energy Fermielecated particles coupled to particle acceleration and
MFA which affords a consistent description of strong shocksdistinctive feature of the Monte Carlo tech-
nique is that it includes the full angular anisotropy of tteetjzle distribution at all precursor positions. The
model reveals that the super-diffusive transport of ertergavrticles (i.e.Lévywalk propagation) generates a
strong quadruple anisotropy in the precursor particlgibistion. The resultant pressure anisotropy of the high-
energy particles produces a non-resonant mirror-typaliigyy which amplifies compressible wave modes with
wavelengths longer than the gyroradii of the highest enprgtons produced by the shock.

I. INTRODUCTION lows the nonthermal components — accelerated energetic par
ticles (EP) and magnetic turbulence —to be long-lived and dy
namically significant. Observations and theory both confirm

In contrast to collision-dominated shocks, strong calisi

less plasma shocks are capable of converting the kinetiepowthat particle acceleration can be efficient enough so the en-

of the upstream flow to both thermal and non-thermal com—ergetlc particles that penetrate into the shock precuraor ¢

ponents. The conversion process, in diffuse plasmas Whe%ow the bulk supersonic flow significantly before the vissou

Coulomb collisions are very infrequent, is due to highly fion subshock occurs. The viscous subshock is a small-length-

linear interactions between the particles and the backgtou scale collisionless shock of moderate Mach numbér The

magnetic turbulence utilizing the first-order Fermi medban subshock, which is directly observed in heliospheric skock

[1, 2]. While collisionless shocks are difficult to study et and particle-in-cell (PIC) simulations, involves mainhet-

laboratory, they are known to exist in cosmic plasmas ancﬁnal particles and is required to produce the entropy andgump

play a critical role in producing nonthermal particles alvsel in plasma density, temperature, and magnetic field needed

throughout the cosmos. The lack of Coulomb collisions al—to satisfy the Rankine-Hugoniot relations. The supertiaérm



precursor particles are highly anisotropic and drive a neimb spacecraft observations of heliospheric shocks for anausal
of plasma instabilities [e.g., 3-5] producing magnetibtur  diffusion where the mean-square-displacement grows non-
lence which interacts with the precursor particles prodgci linearly with time withb > 1 [14]. The effect of complex
the turbulence. Modeling strong collisionless shocks ignan  transport on EP propagation and acceleration was discussed
teresting multi-scale problem strictly from the point oéwi by [15-19].
of nonlinear plasma physics. Itis also fundamentally impor e consider Fermi acceleration in strong quasi-parallel
tant for understanding energetic particle populationgolesi  shocks where the average magnetic field direction upstréam o
in space. the shock s close to the shock normal, implicitly assumireg t
The fact that collisionless shocks accelerate ambieni-partmagnetic field at the subshock is turbulent enough so effects
cles in many locations ranging from the Earth bow shock tofrom perpendicular components of the field can be ignored
shocks in galactic clusters is widely accepted. While atgrege.g., 20]. An analysis of obliquity effects on particle pro
deal is known about the acceleration process, the most impoagation within the Monte Carlo model suggests that shocks
tant part—the collisionless wave-particle interactionsidg  can be considered “parallel” for angles up~tor /4 from the
particle isotropization—remains uncertain. In princj@eull shock normal. The shock produces anisotropic EP distribu-
description of the plasma interactions is obtainable with P tions in the shock precursor that result in strong non-atiab
simulations [e.g., 6]. However, PIC simulations are compu-amplification of irregular magnetic fields by EP-driven st
tationally expensive and results thus far are limited tola-re bilities [e.g., 2]. Magnetic field fluctuations present i tin-
tively narrow dynamical range which is particularly resting  terstellar medium are highly amplified by these instaliitas
for the modeling of nonrelativistic shocks such as thos@ seethey traverse the shock precursor.
in supernova remnants. An important characteristic of strong shocks undergoing ef
All collisionless shock calculations, other than PIC, mustficient Fermi acceleration is that the highest energy pagic
approximate particle transport and most models assume fagte distributed throughout the entire precursor while loeve
particles obey standard diffusion (in the local plasma reskrgy particles are concentrated close to the subshock. This

frame) where the mean-square-displacement is propottiongesults in a strong spatial dependence of the growth rate of

to time, i.e., magnetic fluctuations with a given wavenumber and may lead
, to super-diffusion in the outer precursor where the magneti
<A22> = Apt’, (1) ) ) o ) ) )
turbulence is growing and is likely highly intermittent.
with b = 1. This simple equation (even with= 1) hides a Here, we assume the intermittency of the turbulence dom-
great deal of complexity since the proportionality factdy,, inates the EP propagation in the super-diffusion region of

depends non-linearly on the details of the self-generasgtm the precursor before the growing turbulence saturates. The
netic turbulence and will vary with particle momentum, posi boundary of the super-diffusion region in the upstream is pa
tion relative to the subshock, and the Fermi acceleratitin ef rameterized by r which is the distance from the subshock.
ciency. This parameterization is needed since we use simplified mod-
Furthermore, there is no fundamental reason why 1 in  €ls for magnetic turbulence cascade, which deal only with
Eq. (1) and both superd (> 1) and sub-diffusivei{ < 1)  the spectrum of turbulence, while the intermittency reegiir
transport regimes are possible in complex nonlinear and ina more detailed description. This is discussed in more Idetai
termittent systems [e.g., 7-10]. Such non-standard diffus in Section II.
has been shown to be important in laboratory and fusion plas- Super-diffusive EP propagation has been seen at a few

mas [e.g., 11-13]. Furthermore, there is evidence fronitin-s gyro-rotation periods in magnetohydrodynamic (MHD) sim-
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ulations of the non-resonant EP-driven instability in [21] fects mentioned above have been consistently includedassu
where the EP current was fixed (i.e., without considerinfy sel ing standard diffusion. We now generalize the Monte Carlo
consistent EP evolution). However, the question whether EPnodel by explicitly including super-diffusion in the shock
transport is diffusive in the shock precursor when EP-drive precursor. Because the Monte Carlo model accounts for the
instabilities are rapidly growing has not yet been addmsse full anisotropic EP distribution functions, the dispersice-
The nonlinear backreaction of EPs on the shock structute willations we derive simultaneously include the EP-driveim+es
influence the EP transport and anisotropy making nonlineamant streaming instability, and the two EP-current driven i
calculations coupling EP production, shock structuretains stabilities: Bell’s short-wavelength instability, andetfong-
bility growth, and particle transport essential. While mnp ~ wavelength instability (see [4, 5]).
ciple, the full time-dependent picture can be modeled with Our nonlinear model shows two distinctive features. The
large-scale PIC simulations, such calculations are sél b first is that super-diffusion results in a highly amplifiecesp
yond current capabilities. Until these calculations beeom cific quadrupole anisotropy of EP particles. This anisogrop
available, the effect of non-diffusive propagation on monl produces a mirror instability that has not been previousty-c
ear Fermi shock acceleration can be studied with Monte Carlsidered in efficient shock acceleration. The mirror ingiigbi
simulations of particle transport by simply assuming tihat t contributes significantly to the generation of long-wawnein
EP transport in some regions of the shock precursor is nonmagnetic turbulence which, in principle, can be studiedwit
diffusive. direct measurements of heliospheric shocks and with iotire
An important distinction with Fermi shock acceleration analysis of the broadband synchrotron emission seen in-supe
models which are based on the advection-diffusion trarisponova remnants. The second feature is that super-diffusion i
equation is that they model only EP-current anisotropiée T the shock precursor results in a substantial broadeninigeof t
Monte Carlo model does not make a diffusion approxima-spectrum of energetic particles escaping the precursar-En
tion and thus can account for arbitrary angular anisotropygetic particles escaping the shock will undergo inelasilt-c
harmonics. We find that the inclusion of super-diffusionsions with surrounding matter and produce high-energyradi
from Lévywalk scattering-length distributions produces spe-tion. We quantify the mirror instability and escaping EPgwi
cific anisotropies in the particle distributions that drimsta- @ limited number of Monte Carlo examples.

bilities that do not occur with standard diffusion models.

When Fermi shock acceleration is efficient, particle || THE NONLINEAR MONTE CARLO SHOCK MODEL
transport, the shock structure, MFA, turbulence cascading

and thermal particle injection must all be calculated self- \We construct a steady-state model of a plane-parallel, non-

consistently. No technique, not even PIC simulations, canelativistic collisionless shock where the nonlinear shoc

currently do this full calculation from first principles ave  structure is determined iteratively. The shock is diredted

dynamic range sufficient to model EP production in SNRsthe —z-direction with a subshock at = 0 and an upstream

or other strong nonrelativistic shocks. While approximasi  free escape boundary (FEB) limiting Fermi acceleration at

must be made, much of the essential nonlinear physics can he= 5. For simplicity, we model only protons since they

modeled with Monte Carlo techniques. mainly determine the nonlinear shock structure and drige th
The Monte Carlo simulation we use couples analytic delong-wavelength instabilities we consider. Electrons ban

scriptions of resonant and non-resonant wave growth withincluded, as in [24], when radiation is calculated.

anisotropic particle transport in EP-dominated shocke [se The Monte Carlo shock model includes the following main

22, 23, and references therein]. All of the nonlinear ef-elements:



(1) Particle injection, which is self-consistently coupl®® by

Fermi acceleration where some fraction of shock-heated the

mal particles re-cross the subshock (assumed transparent) plz)u(z) = pouo @
gain additional energy, and enter the acceleration procesgherep(z) is the plasma density,(z) is the bulk flow speed,
Any particle that crosses from downstream back upstream aind the subscript “0” here and elsewhere indicates far up-
least once is termed energetic; stream values. We define the “shock structureii@s, where

(2) Shock-smoothing, where backpressure from supertierma is the distance measured from the subshock at0. The
particles slows and heats the precursor plasma upstredra of tmomentum flux conservation is determined by

viscous subshock in order to conserve momentum and energy;

) . . (I)part P, - &
(3) The self-consistent determination of the overall shock P (2) 4 Pulz) P )

compression ratioR..¢, taking into account escaping EPs, where®™™(2) is the particle momentum flux?,,(z) is the
magnetic pressure, and the modification of the equation ofomentum flux carried by the magnetic turbulence, @ng
state from the production of relativistic particles; is the far upstream momentum flux, i.e., upstream from the
(4) Fluctuating magnetic fields simultaneously calculatedree escape boundary where the interstellar magnetic eld i
from resonant, short-wavelength, long-wavelength, and mi g

ror instabilities generated from the EP current, and super- separating the contributions from the thermal and acceler-
diffusion pressure anisotropies in the shock precursor; ated particles we have

(5) Momentum and position dependent particle transport de-

2 _
termined from the self-generated magnetic turbulence; p(2)u”(2) + Pin(2) + Pep(2) + Pu(2) = @po,  (4)

(6) A determination of the local plasma scattering centeesp whereP,y, (=) is the thermal particle pressure aRg (z) is the
relative to the bulk plasma from energy conservation withou 5.celerated particle pressure. As mentioned above, algarti
assuming Alfvén waves; and, is “accelerated” if it has crossed the subshock more thea.onc
(7) Turbulence convection and compression, cascade, and dirpere is no other injection threshold and even though we use
sipation of wave energy into the background plasma. The ity o subscript “EP”, the vast majority of accelerated phtic
erative Monte Carlo approach allows all of these processeg;j| aiways be nonrelativistic. Of course, if the acceléatis

to be coupled and calculated simultaneously in a reasonablé(ﬁiciem, a large fraction of the pressure may be in relstivi

consistent fashion. particles.

The energy flux conservation law is

PP () + Fiu(2) = Py 5
lll. MASS-ENERGY-MOMENTUM CONSERVATION E () w(?) o ®)

where®?™*(z) and F,,(z) are the energy fluxes in particles
We determine the self-consistent shock structure withand magnetic field correspondingly, afd;, is the energy
an iterative procedure by forcing mass-energy-momenturflux far upstream. Taking into account particle escape at an
conservation. All particles—thermal and supertherma&-arypstream FEB, this can be re-written as

transported through the shock keeping full account of the p(2)(2)
+ Fth(z) + Fep(z) + EU(Z) + Qesc = ‘I)EO ) (6)

anisotropic particle distribution and the momentum and en- 2
ergy contributions from the magnetic fluctuations (see {@B] where Fy;, () is the internal energy flux of the background
full details). plasma/F,,(z) is the energy flux of accelerated particles, and

In the shock rest frame, the mass flow conservation is giveid).s. is the energy flux of particles that escape at the upstream



FEB (note that).s. is defined as positive even though EPsimate the turbulent energy cascade rate as

escape moving in the negativedirection). D , )
_ _ (s k) = —— 2% k3w (s L {W(z’ ’“)} )
The separation between “thermal” particles and “acceler- Vp(z) ok k

ated” particles in a shock undergoing diffusive shock azreel where Dx = 0.14 is the cascade constant which was cho-

ation is not necessarily well defined. Furthermore, the@ner o, 10 match the Kolmogorov constant. To study the effect

exchange between the thermal and superthermal populatiogs apisotropic turbulent cascade we simulated two regimes:

is certain to occur through non-trivial wave-particle e o assumes the turbulent energy cascade is given by Eq. (9),

tions. Nevertheless, the bulk of the plasma mass will alway$ne other assumes no cascade. The unperturbed spectrum

be in quasi-thermal background particles and the intemmal e ¢ ¢\ -bulence entering the free escape boundaryrat is

ergy flux of this background plasma can be expressed as  (a1en to be Kolmogorov, typically assumed for the intetatel

P (z medium. The incoming spectrum is normalized by
F(2) = u(x)2220) ™
Vg — 1 Kmax BQ
. o W (zrgsB, k)dk = =2 . (10)
wherey, = 5/3 is the adiabatic index of the background ther- Eunin 4m
mal plasma.
All of the quantities in Egs. (2)—(7) are directly measured B. Particle propagation model

in the Monte Carlo simulation. The magnetic turbulence, and

thereforeP,, (=) and F, (z), is determined from(=) and the With normal (i.e., non-évywalk) diffusion the Monte

analytic expressions for wave growth and cascading discuss Carlo simulation moves particles with a pitch-angle-siriiy

below. Once the assumptions for wave growth are made th%cheme that has been described in [22]. Briefly, after a time

equations for mass, momentum, and energy flux are over déSzf much less than a gyroperiod a particle scatters isofropi-

. . . . . cally and elastically in the local plasma frame through de&n
termined and a unique, nonlinear solution conserving mass, y y P 9 9

momentum, and energy flux in the shock rest frame can bée < 00max, Wheredd is chosen randomly between 0 and

found by iteratingu(z). In practice, a “consistent solution” 80msx- The maximum scattering angle is given by

is accepted when the momentum and energy fluxes are con- 50— \/W (11)

served to within a few percent at all
wheret, = Ao/uvps is the collision time \q(z, p) is the po-

sition and momentum dependent scattering lengthjs the

A. Turbulence cascade particle speed in the rest frame of scattering centeys=

pc/[eBis(z,p)] is the particle gyro-radius, anBl(z, p) is the
The magnetic turbulence energy flai, (z) in Eg. (6) is - o _ _

local amplified magnetic field determined by summing fluctu-
determined by the spectral energy density of the magnetic . ) )

ations with wavelengths larger thap [see Eq. (19) in refer-
fluctuationsV (z, k) (see [23] for details ) which obeys the . o

ence 23, for a full description]. In the normal scatteringjoa
equation

g we assume Bohm diffusion, i.8\g(z,p) = rq(z, p).

u(z)M + S (2, k) du(z) 4 Ol (2, k) _ 8) For nontévywalk scattering, particles always move a frac-
0z 2 ’ dz Ok

— G k) — L2, k), tion of A\o(z, p) in the time intervabt¢, where\(z, p) is the

mean free path a EP obtains scattering in the self-generated
wherell(z, k) is the flux of magnetic energyy(z, k) is the  magnetic turbulence. We use the same Monte Carlo model
spectral energy growth rate due to EP instabilities, &0d k) as described in earlier work (see e.g., Section 2.7 of [28]) t

is the turbulence dissipation rate. Following [25], we appr  calculate MFA and\(z, p) except we now include the super-



diffusion-induced mirror instability along with the resaomt Integrating Eq. (13) fromp to co we find the cumulative
and non-resonant instabilities. distribution function
2 A
F(ALp) = —arctan (ﬂ) , (14)
™ )\0

C. Super-diffusive EP propagation: theLévy-walk model
and the probability density function corresponding to Héd.)(

To model super-diffusive particle propagation we use as

(15)

ALr to determine the path length. The probability density Ao

Lévywalk model which assigns a random scattering length 9 [ (/\LF>Q]
1
function of theArr values has a power-law asymptotic form:
2. Lévy-type power-law distributions with< v < 3
U(ALr) o App for App(z,p) > Ao(z,p) . (12)

This density function produces so-called “heavy tails” for For2 < v < 3 the recipe is somewhat more complicated.

v < 3, wherev — 2 is the well known Cauchy distribu- The scattering length in theévywalk region of the shock

tion. We describe below the specific algorithms to generatéJreCursor where < zr, is given by

. . _ ) 9 _ 9
the random scattering lengthsr with the power-law prob Ap = Ao [ v(v—2)& 41|, & < Dy, (16)

(v-1)°
istribution i i i ) 2y —2 1 =
Cauchy distribution irg [1l C 1 noting that since we only con ALE = Ao [ (z/_ - ) { — ] 11
siderALr > 0, v = 2 in Eq. (12) gives the half-Cauchy dis- v v(l—&)
tribution. We further note that while Cauchy distributicare ~ WhereDy = (v—1) /v, and¢; are random numbers uniformly
used for mathematical convenience in semi-analytic calcul distributed over the interval [0,1). The correspondinggaro

tions, they have an infinite mean and variance. The flexybilit bility density function forA; p = ALr — Ao is

ability density functions. For completeness we discuss the

) £1>D05

of the Monte Carlo model (and the fact that particles always U () = %’ for AXip < As,
have a speed less thapallows us to derive a more general CO \ .
expression for the scattering length§itil C 2 for 2 < v < 3. U (ALp) = )\—V ( )\LF) , for Afp > A, (17)
0 *
We show examples with = 2.1 because this value gives a fi- where
nite mean yet produces results similar to well-studied Gguc
= 20” =2 and o, = =D g
ones. T YT 2w —-2)
[see 26, for a full discussion].
1. The half-Cauchy distribution The normalization and mean value are determined by
With v = 2 we assume the EP scattering length in the /0 T(A)dr=1 (19)
super-diffusive regionrgp < z < zLr is determined by and
T o0
ALr(z,p) = tan (%) Ao(z,p) for z<zip. (13) / AT (N dA = )\, (20)
0

Here &, are random numbers uniformly distributed over therespectively. While Eq. (16) applies fdr< v < 3, we restrict
interval [0,1), where the brackets indicate values up taotit  our calculations here to = 2.1 to ensure Eq. (20) yields a
including 1. Values of, ~ 1 give extremely long scattering finite mean.

lengths, forcing a modification of Eq. (11), whilgr ~ 0 for We implementévywalk transport in a piecewise continu-

& ~ 0. ous way. In the precursor, downstream from some precursor



positionzyr, particles propagate diffusively with a mean free curs with a well definedneanfree path and mean square dis-
pathArr(z,p) = Ao(z,p). Far upstream, betweenr and  placement{Az?) = Apt.
the FEB at:rrp, We assume EPs propagate super-diffusively. On the other hand, if Z v < 3 super-diffusive propaga-
Typically, zLr < —10%rg, wherer,o = myuoc/(eBy) isthe  tion occurs with(Az2) = Apt® whereb > 1. In this case
gyroradius of a proton with speed equal to the shock spged there is a non-negligible probability for the free path to be
in the far upstream magnetic fielsh. Forz < zir, a particle  much longer than the mean. Physically, such a situation can
is given a random scattering lengihr (2, p) generated with  pe expected near the FEB where strong, unsaturated EP driven
theLéevytype stable distribution described below. turbulence growth occurs. In this case, the turbulence-is ex
We restrict super-diffusive propagation to regions wel up pected to be intermittent and long-range correlations ate n
stream from the subshock where the self-generated turtellenimmediately destroyed. Closer to the subshock, nonlirmear i
has not reached saturation levels. Close to the FEB the-turbtieractions of strong magnetic fluctuations are likely to stho
lence is growing rapidly from the escaping EP flux and be-out the intermittency and the downstream turbulence igylike
ing convected downstream. Closer to the subshock (i.e., fai be statistically homogeneous. As a first approximation fo
z > z1r) the turbulence will be intense enough to destroy anythis complicated situation, we modegvywalk propagation
long-range correlations and Bohm-like diffusion is assdme in the precursor in a region away from the subshock between

to occur. Forz < zpr, we have a mixture of ballistic motion . andzyr. The effect of varying:r is examined.

and diffusion, as described below. Once a path length distribution is specified, as with
Eq. (17), the Monte Carlo algorithm determingaz?) (¢)

D. Particle propagation with Levy-walk without further assumptions. As an illustration, we show
in Fig. 1 Monte Carlo calculations with our algorithm of
The Monte Carlo method we employ numerically solves{Az?) (t) vs. t for two values ofv, as indicated. This cal-

a Boltzmann equation with a collision operator which is de-culation is done in 3D geometry and the projection onto one
termined by collision frequencies averaged over the selfaxis is plotted. The super-diffusive case with- 2.1 yields a
generated background turbulence. By replacing a “diffusio Slopeb ~ 1.76. We note that in this example we restrigtr to
approximation” with a collision operator we are able to mode be equal to or greater than the Bohm limit, i.e., to the irgerv
pitch-angle-scattering controlled by short-scale fludtwes  [Xo,oc). To test our Monte Carlo algorithm we performed the
on the order of the particle gyroradius with arbitrary pitch Simulation without this restriction, where the scatterieiggth
angle distributions. Therefore, particle transport is rest  is allowed to populate the intervél, co), and we obtained
stricted to standard diffusion and super-diffusive, ileyy b= 1.86 in good agreement with the scalihg= 4 — v = 1.9
walk, propagation can be directly modeled. All that is re-presented by [8] and [26]. The solid curve labeled- 4.5 is
quired for super-diffusion to be accurately modeled is to dealmost identical to the standard diffusion result showrhwit

fine a proper particle path length probability distribution dotted curve. For comparison we also show the ballistic case

If path lengths at a given position are determined by macroWwith b = 2.
scopic, long-range field correlations on scales larger than Particle transport with.évywalk is done in the following
EP particle gyroradius, or by highly intermittent turbuten  way. When a particle is at a position upstream fram a ran-
then super-diffusion will occur. In the case when the pathdom numbek; is chosen and the particle’s scattering length,
length distribution is Gaussian, or has a power-law index\pr(z, p), is found from Eq. (16). This determines the col-
v > 3, the probability of a EP having a free path that departdision time ¢, = Apr/vps. However, since\r,r depends on

widely from the mean value is small and normal diffusion oc-\o(p, z) and is position dependent in the nonlinear model, its



10° prer———— vy IV. RESULTS
F Ballistic motion ,’
o 404 L s
g 10 \/ ;
i e ] In most of the following examples we calculate magnetic
X L v =21 ,
‘31000 /// field amplification with super-diffusive EP propagation in
{ 100 L v=45 il 7 nonlinear shocks where the energy and momentum conserving
‘7\’ i shock structure has been determined self-consistentlyw-Ho
B i - y . . o
§ 10 s - ever, in order to isolate and highlight the effects of super-
3 Z Standard Diff. . . ) . .
L 2 ] diffusion, we discuss some unmodified (UM) shocks with
il " il " 11
! 100 1000 104 a discontinuous bulk-flow-velocity profile where energy and
Time, t (tg=No/Vgy) momentum are not conserved. For these unmodified shocks,

ALr(z,p) = Ao(p), i.e., spatially independent Bohm diffu-
FIG. 1. The mean square displaceméntz?) as a function of time . . . .
. P cat:") sion. These unmodified solutions are not, of course, int&énde
for a particle which is propagating with a probability diktrtion of )
) ) ) _ torepresent physical models.
scattering lengths as given by Eqg. (17). The displacemettias

projection on one coordinate for a full 3D propagation. Théds

In all cases, the shock speed = km s7!, the far
(red) line is the Monte Carlo result for = 2.1 which demonstrates peed 5000

(A2?) = Apt® with b ~ 1.76, i.e., super-diffusive propagation. upstream plasma density, = 0.3cm~?, the background
The solid (blue) line is the result far — 4.5. This is hardly dis- magnetic fieldB, = 3 .G, and we accelerate only protons.
tinguishable from the pure diffusion case (whére 1) shown bya 1he Fermi acceleration is limited by an upstream FEB at
dotted curve. The dashed (black) curve shows ballisticanatihere  zprp = —108 40, Whereryy = m,,ugc/(eBo) ~5.6x1077

b = 2. The curves are normalized fa\z*) at¢ = 50to, where  pc.

to = Xo/vpr anduys is the particle speed in the plasma frame. These

consistency checks were done usiifj = 7 /2 in the Monte Carlo As described irf; 111 C, EPs move super-diffusively in the

algorithm. For ther = 2.1 and 4.5 results|0® Monte Carlo parti- shock precursor betweesrps and 2 p with a scattering

cles of the same energy were propagated in a uniform upstieam length A\rr (=, p) given by theLevywalk probability distribu-

in order to check ouké Ik algorithm. . . - .
I oraerto check oukevywalk aigorthm tion Eq. (16) withr = 2.1. The specific valuer = 2.1 is
value can change during. To accommodate this we set the chosen because it is close to the Cauchy distribution and rep

L resents all of the features typical for prominent supefudife
time interval

propagation while having a finite scattering length.

_ Ag )\LF (Zv p)
6’Upf

ot(z,p) , (22)

We show examples withy = —10%, —10°, and—10° 7.
For z > zpp, including downstream from the subshock, the
during which the particle moves with a constant speed. AfEP scattering length is diffusive, i.e\pr(z,p) = Ao(2,p).
ter 6t(z,p), the particle scatters with a nel(z,p). The  For all nonlinear calculations)y(z,p) is determined with
value of¢; is kept fixed forNy..+ Scatterings wher&/s... is1  MFA from Bell's instability, the resonant streaming instab
plus the integer part dfr/A,)2. If a particle completedVy .. ity, the non-resonant long-wavelength instability, anel thir-
scatterings without escaping, the cycle is repeated witkva n ror instability described here for the first time. For thegrar
1. In the simulations presented below we set the parameteters used here, the differences)g(z, p) derived with the
A2 = 72 /2. This large-angle scattering value was justified inadditional mirror instability are modest except at the leigth

[22]. particle energies.
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T scattering assumptions describedgitl determine the frac-
tion of shock-heated particles that are injected into thenke

acceleration mechanism. This, in turn, influences the divera

acceleration efficiency in an internally self-consistestfion.

u(x) (units of ug)

1s / — 1 As is clear from the dashed curves in Fig. 2, the Monte
4 Subshock ]

Carlo injection model predicts efficiencies that do not con-

100 [ 1] serve energy and momentum in unmodified shocks. A con-
F - sistent solution can be found without modifying the injenti
10 _ p _ model by modifying the shock structure, as shown with the

/ solid black curves in Fig. 2. As mentioned{nll, the non-

Momentum Flux/UpS
N\

1 3 linear bulk flow speed (=) is determined by iteration and re-

bttt :: sults in momentum and energy conservation to within a few
—_—_—‘——; percent.
3 In this case, momentum and energy are conserved while
3 still having a large Fermi acceleration efficiency. We empha

size that regardless of the injection process, shock madific

Energy Flux/UpS

tion must occur if Fermi acceleration is efficient. Furtherm

W I T there must be a corresponding increase in the overall shock

=log,o (=%) x (units of "go) compression ratioRy.;, above the Rankine-Hugoniot value
of Ryt ~ 4 for high Mach number shocks. The compres-

FIG. 2. In all panels the dashed (red) curves show the refaulen  sjon ratio is determined by the ratio of specific heats and the

unmodified shock with.oc = 4. The solid (black) curves show  energy flux leaving the shock at the FEB. The distribution of

self-consistent results where the momentum and energysflare escaping EPs is

conserved across the shock including the total escapingeflex A
. . J(z
esc, 1-€., Qesc(p) SUmmed ovemp. For this example, where all Qesc(p) = —M, (22)
T CUQ
four instabilities are active, the self-consistent corspien ratio is

Riot ~ 7.2 and~ 20% of the energy flux is lost at the FEB at whereJ(zrgs, p) is the EP current atrpp measured in the

2 = —10°r4 ~ —0.56pc. The subshock wittRe., ~ 3 is indi- ~ UPstream rest frame. Using the full anisotropy information
cated in the upper right-hand panel. All quantities areest&d far ~ Provided by the Monte Carlo model, we define the position
upstream values and note the split log—linesaxis. and momentum dependent EP current as
) 1
A. Nonlinear shock structure
J(z,p) =2 / dpvpfof (2,0, 1) (23)
-1

In the top panels of Fig. 2 we show the nonlinear shockwhere fgl?(z,p,u) is the distribution function of acceler-
structure (solid black curve) in terms of the bulk plasma flowated particles, pedyu, in the local rest frame of the back-
speedu(x). The solid black curves in the middle and bot- ground plasmay = cosf, and 6 is the angle between a
tom panels show the momentum and energy fluxes for thearticle’s momentum and the-axis. The bottom panels in
self-consistent shock. For illustration, the dashed reges1  Fig. 2 show that~ 20% of the far upstream energy flux
show the corresponding quantities for an unmodified shockgese = [ J(zrgs, p)E(p)p*dp (Where E(p) is the particle
An important element of the Monte Carlo simulation is thatenergy) escapes at = zpgp and the plot foru(xz) shows

it contains a direct model of thermal leakage injection. TheR,, ~ 7.2. While Ry, increases above the test-particle
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10-3 i_ f(z,p) DS \ -i . R S e
f \M 10” -
1074 3 : 7.
i Qqec(P) ] - \ ]
-5 eac
O 107 L
1078 3 ;
3 UM
-7 ! ! W/

10 T t T t T 1073

107 ¢
E 10-6

S~—-o —_—-"

f(z.p) DS
1077 QgeclP) I

1074

p* f(z.p), Qgs.(P) (arbitrary units)

NL, without cascade /.

—_
9
(4]

10-8 1 N 1 N 1 N 1
-2 0 2 4 6
log;o P (units of mpc)

p* f(z.p), Q,..(p) (arbitrary units)

1078

FIG. 4. Same as bottom panel in Fig. 3 without turbulenceamesc

-7
10 In the nonlinear (NL)Lévyflight examples (solid and dashed black
curves), super-diffusive EP propagation occurs betweerF#B at
1078 ] . 1 . 1 N M zrEB = —10%7r,0 ~ 0.56pc andzir = —10%r4. The normal
-2 0 2 4 6

log,q P (units of mpc) diffusion cases are shown with dot-dashed red curves aneddoitie

curves.

FIG. 3. Shown are proton phase-space distributions messore B. Particle spectra
the shock rest frame. Downstream spectra are plotted, adisre

tributions of particles escaping at the upstream FEB (E€.,22), In Fig. 3 we show particle spectra measured downstream

as indicated. Spectra for unmodified (UM) shocks are in tipe to Lo
] ] ] ] (DS) from the subshock and at the upstream FEB as indi-
panel while those for consistent nonlinear (NL) shocks ratbe bot-

. Th nel show ra for unmodifi hock
tom panel and insert. All spectra are absolutely normalizéative cated e top panel shows spectra for unmodified shocks

to each other. In th&évyflight examples (solid and dashed black while spectra in the bottom panel are for self-consistean; n

curves), super-diffusive EP propagation occurs betweerF&B at  lin€ar shocks, both with the super-diffusion parameter

zpEB = —108740 ~ 0.56 pc andzLr = —10*ry. The normal dif- 2.1 in Eq. (16). The proton distributions are calculated for
fusion cases are shown with dot-dashed red curves and ddtted zpp = —10% r40 (black, solid and dashed curves) and without
curves. We have included turbulence cascade in the nonliesas.  |évyflight transport (red, dot-dashed and blue, dotted curves)
For the unmodified shocks, the scattering is uniform withoag- Super-diffusion is eliminated by placing » outside of the

netic field growth. FEB. In the unmodified examples, was assumed to be spa-

Rankine-Hugoniot value, the subshock (indicated in the topid!ly independentBohm diffusion. The examples in Fig.& ar
right-hand panel) must decrease below the test-partitleva calculated with cascading while those in Fig. 4 are caledlat
For the nonlinear shock in Fig. Reu, ~ 3. These modi- without cascading. We note that the statistical errors@s 3
fications to the shock structure from efficient diffusive sho @nd 4 are small. Except for the escaping particles, variatio
acceleration produce the non-power-law behavior in the non2'€ typically less than the line thickness.

linear distribution functions we discuss next. These examples show that super-diffusion produces a high-
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energy cutoff inf(z, p) that is broader than that for the dif- I ) ! ’ ’ !
fusive case and occurs at a lower momentum. This is clearly -
reflected in the escaping distributions where the blackehsh 0
curves are with super-diffusion and the dotted blue curves
are without. The broad cutoff results as particles with long
Lévywalk scattering lengths leave the FEB from deep within -0.01
the precursor. It is significant that the broadening, whilé s
present, is less in the self-consistent shocks. While nmwsh N
for clarity, we find that the cutoff is only weakly dependent o f
. 2
g 0
C. Particle anisotropy with super-diffusion .8
<
The energetic particle current anisotropl (=), is given —0.01
by
Ai(z)=N"1 /DO J(z,p)v"tpPdp . (24) I
’ -0,02 —4 L L L L L
The partial anisotropyd,(z, p), associated with the second -8 -7 ‘5_|°;5 (_;‘/"r )‘3 -2 -1
spherical harmonic of the particle distribution is defined a 10 %
Aa(ep) = 7 /1 (3,} - 1)f§f(z,p, W) dp (25) FIG. 5. Proton anisotropies, as defined in Egs. (24) and (?éme
-1 rest frame of the background plasma. The top panel, for uifradd
and integrating over momentum gives (UM) shocks, shows examples where super-diffusion with: 2.1
occurs between the FEB and the upstream posttign= —10* r 49
Ay(z)=N"1 /OO Ay (z,p)pdp , (26)  (black dashed curves}r = —10° 14 (green dot-dashed curves),
0 and zr = —10%r, (blue dotted curves). The bottom panel
where shows the anisotropy for nonlinear shocks with cascadihgg (kolid
>, 1 o curves) and without (black dashed curves)fgr = —10" 0. Re-
N = 2”/0 p dp/fl dp fpf (2P 1) - (27) sults with no super-diffusion are shown with cascading @etted

. . . . curves). The fluctuations in thé, results at lar are statistical
The anisotropies are both defined in the local plasma frame at ) ? 9|

all = errors from the Monte Carlo simulation.

In Fig. 5 we show dimensionles$; () and A,(z) for the ~ SPpeed relative to the bulk speed of the background plasrea (se
unmodified shocks (top panel) and nonlinear shocks (bottorﬁ IVE).
panel) discussed in Fig. 3. In the unmodified case, the bulk The important result here is that super-diffusive propaga-
velocity profile is fixed withRy.;, = 4 (see the dashed curves tion with aLévytype distribution of particle scattering lengths
in Fig. 2) and the magnetic fluctuations spectra are also fixedesults in second harmonics much stronger than producéd wit
are position independent, and assume a Bohm-type scattetiffusive propagation. The magnitude ofy(z) is within
ing length )\ o< p. The nonlinear shocks are fully consis- a factor of a few to that ofd;(z) in regions where super-
tent in shock structureR;.;, self-generated magnetic turbu- diffusion is acting, while it is orders of magnitude less@ r

lence, scattering length determination, and scatterimgece gions with only diffusive propagation.
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The second harmonids(z) is negative showing that the
magnetic field partial pressure transverse to the local mean
field is greater than the parallel partial pressure. This EP
anisotropy will drive the so-called mirror instability, age
describe in more detail in Appendix A. The mirror instabil-
ity is non-resonant where the growing magnetic fluctuations
are nearly transverse wavevectokis > kﬁ of scales larger
than the gyroradius of particle®,,, which are contributing

into the transverse pressure, i/e.,R,, < 1 butk, A(p) > 1.

The mirror mode is compressive and long-wavelength in the
sense that | R, < 1. This characteristic may help increase
the efficiency of scattering at the highest energy end of the
accelerated particle spectrum.

log, [k W(k)] (units of B,2/4m)

We note that even though we emphasize effects produced
for extremely efficient diffusive shock acceleration prohg

hard, concave spectra, as shown in Figs. 3 and 4, the growth

rates we derive can be applied to weaker shocks. The mir-

ror instability growth rate formulation can be applied teegt
spectra and non-power-laws.
FIG. 6. Spectral energy densities of the EP-driven magtikettu-

ations measured at three positions: (a) the FEBz(8) 0.01zrgs,

D. Magnetic field amplification and (c) in the downstream region. There is a strong effect on

kW (k) from turbulence cascade. For both of these nonlinear shocks
The energetic particle current and the quadrupolezLF — 10" ryo andy = 2.1.

anisotropy, demonstrated in Fig. 5, drive resonant, shartet
_ o o the downstream proton temperature.
long—wavelength instabilities, as well as the mirror ibdtey

) . . o _ . In Fig. 6 we show the self-generated magnetic turbulence
first discussed here. This MFA is included in our nonlinear

spectra, with and without cascading, at various positiehs r
model. The turbulence growth rates and the transport equa-

. , ) o , ative to the subshock at= 0. These models include super-
tions used were discussed in detail in sections 2.4 and 2.5 of o )
. ) ) » » diffusion beginning at,r = —10* r,. The top panel, with-
[23], while the growth rate for the mirror instability whigh

) ) , out cascade, shows a strong spike in wave power at long wave-
associated with the quadrupole anisotropy of EPs produged b

e . . . lengths resulting from super-diffusion. With cascades thi-
super-diffusive propagation is presented in Appendix A.

bulent energy is effectively shifted to shorter wavelesgth

The strong nonlinear aspects of MFA force a self-consistent
description of the energy exchange between the EPs and the
magnetic field, as well as with the bulk shock flow. We include E. Effective Scattering Center Velocity
the cascade of turbulence energy to shorter wavelengtimgtak
into account the energy dissipation and heating of the back- The magnetic fluctuations produced by EP-driven instabil-
ground plasma. For comparison, we include models withities in the shock precursor move relative to the bulk plasma
out turbulence cascade and show that cascading influereces tith a speedi...(z). This is a highly nonlinear effect since

magnetic fluctuation spectra, the total shock compresaimh, vt (2) directly influences the effective compression ratio for
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As is clear from Fig. 7,usat is different in magnitude
and spatial structure from,;. Near the FEBugeay > wvare
but closer to the subshoek..; can be orders of magnitude

smaller. It is important to note that even though.:(z) may

u(x) (units of ug)

be small relative to both the bulk flow speed, it has a strong

effect on the energy exchange between the accelerated parti

cles, the bulk shock flow, and the magnetic field amplifica-

£ tion. As in [23], vscat(2) is determined consistently with the
o 0.01 N \ shock structure modified by energetic particles and the mag-
b= ‘,'ulvm, No cas 3 L . .
S ; NOR netic field amplification.
Rl N ! y
§ F I Vscut cas ‘ \“ ]
] - N\,
> 1074L l Y __ V. SUMMARY AND CONCLUSIONS
NN
i I N T BN \.’\ T T
-8 -6 -4 -2 -10 1 2 In collisionless astrophysical plasmas, particle transiso
—log, (—2) z (units of rgo)

determined by charged particles interacting with magretic

FIG. 7. The bulk flow speed (top panel) and scattering cerercy bulence and coherent magnetic structures over a broad wave-

ity derived from the nonlinear Monte Carlo model (bottom @n length range. These interactions are essential for amtliess
with and without turbulent cascade, as indicated. Also shaw  Shocks to form and accelerate particles to high energies. De
the bottom panel is.i¢(Bs), the local Alfvén speed derived using tails of the wave-particle interactions will influence egetic
the amplified magnetic field (dashed curves). For these elesmp particles observed at Earth as well as radiative signatires
zur = —10% rgo. specific objects. While normal diffusion and advection have
diffusive shock acceleration which, in turn, determines th been proven to determine the long-range particle transport
Fermi acceleration efficiency and the MFA. While virtually a in quasi-homogeneous magnetic turbulence, studies both in
work on diffusive shock acceleration attempting to conséle the laboratory and in space plasmas have revealed a variety
finite vycat (2) @assume it is some function of the Alfvén speed,of sub- and super-diffusive regimes where particle trartspo
vait, there is no justification for this assumption other thanmay significantly depart from standard diffusive propagati
ease of computation. A linear analysis of the four instéiegi  for intermittent turbulence (e.g., during the growth of gen
included in our model shows a vast variety of phase velociwavelength magnetic fluctuations in shock precursors).
ties. Significantly, even though the fastest growing ERetri We have presented the first nonlinear calculation of efftcien
modes are highly anisotropic, the non-resonant Bell mosle, aFermi shock acceleration that includes super-diffusiom in
well as the long-wavelength and mirror modes, have phaseonsistent manner. The Monte Carlo simulation we use, since
speeds that are typically well below the local Alfvén speedit does not make a diffusion approximation, can model highly
calculated with the local amplified large-scale magnetid fie anisotropic particle distributions and magnetic field afipl
[see Fig. 18 in 23]. cation and is well suited for these calculations. It inclide
The flexibility of the Monte Carlo method allows us to de- nonlinear effects from thermal particle injection, shockdn
termineuvscat (z) from macroscopic energy conservation with- ification, the self-generation of magnetic turbulencebtur
out making any assumptions regarding the amplified field. Inence cascade, and a consistently determined scattenmg ce
Fig. 7 (bottom panels) we show... (z) for the nonlinear cas- ter speed. While we fully expect that future large-scale PIC

cade and non-cascade cases shown in Fig. 6. simulations will necessitate a refinement of our assumption
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accounting for important multi-dimensional effects isMped- ~ supernova remnants where synchrotron structures traloeng t

yond current PIC capabilities. magnetic fields are prominent [28].
Super-diffusion also results in a broadening of the spettru
We show that super-diffusive particle transport in theof EPs that escape from the shock precursor since there is a
shock precursor produces specific, anisotropic EP distribusignificant probability that EPs can leave the shock fronpdee
tions which are characterized by a pronounced quadrupoli@side the precursor. This broadening may impact models of
anisotropy where the transverse particle pressure doesinat~y-ray production by shocks interacting with dense molecular
the parallel particle pressure. We show that this type oftlouds and modify predictions for the integrated spectra of
anisotropy results in a mirror-like instability which is sto energetic particles.
prominent when the shock accelerated spectrurfi(is o
p~% or harder near the maximum energy of the accelerateACKNOWLEDGMENTS A.M.Bykov and S.M.Osipov ac-
particles (before the spectral break), as is expected fgr hi knowledge support from RSF grant 16-12-10225. D.C.Ellison
Mach number shocks. Magnetic field and plasma structureacknowledges support from NASA grant NNX11AEOQ3G.
produced by the mirror instability in cosmic plasmas wereDiscussions concerning this work were held at the Aspen
observed in planetary magnetosheaths (e.g., [27]) and mayenter for Physics which is supported by National Science

appear as well in high resolutioBhandramages of young Foundation grant PHY-1066293.
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Appendix A: Mirror instability of anisotropic EP distribut ions

As mentioned iry IV C, the Monte Carlo method follows an
arbitrary angular distribution of accelerated particled thus
can determine the second spherical harmodig(z, p), of
the EP distribution at all positions across the nonlinearckh

structure. A non-zerols(z,p) indicates that there is a pres-

For the background plasma we have

Ou
P\ ot

1 se e :
L7 = engpu) x B~ [ pIfIEp

wherep, u, andp, are the background plasma density, macro-

1
+ (uV)u) =—Vp, + E(V x B) x B —

(A1)

scopic velocity, and pressure respectively. In additibre, t
continuity equation is
dp
“F = A2
5 T V(w) =0, (A2)
the electric and magnetic fiel#andB satisfy
%—?:Vx(uxB), (A3)
and
ofer afep ofr ec ~
~ 4V E- ——B-Of = J[fP], (Ad
StV HeB = B OST =[] (A9)

where f°P, n,, andj? are the EP distribution function, EP

sure anisotropy and this may result in the growth of a firehosgoncentration, and electric curreitis the EP particle energy,

or mirror instability depending on the ratio of partial psases

along and transverse to the mean magnetic field [e.g., 29].

~

O =px

Jop
of light, e is the particle charge, ard = eByc/€ is the EP

is the momentum rotation operateis the speed

It has long been suggested that the mirror instability CECUN harticle gyro-frequency.

in Maxwellian plasmas when the transverse pressure domi- The right-hand-side of Eq. (A4)[°P], is the collision op-
nates the parallel pressure, as discussed by [27, 30-38], aRrat0r describing EP interactions with magnetic fluctuztio

many others. Observational signatures of the mirror instagz, rieq by the background plasma. In the background plasma
bility have been found in cosmic plasmas [e.g., 34] as Wellfame

However, in highly nonthermal systems like the collisi@sle

shocks discussed in this paper the non-thermal relatipsti-

ticle pressure is important. In the downstream flow it is com-where

15%] = v (F £

) 3

is the isotropic part of the distribution function,

(A5)

ep
iso

parable to the thermal pressure and it can be well above the. = € is the EP scattering frequency by magnetic fluctua-

thermal particle pressure in the shock precursor.

tions withe < 1,and [ pI[f°P]d3p = —eB,j°?/cin Eq. (AL).
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In the rest frame of the background plasma we impose smathe form
perturbations of the local plasma parameters in Eq. (A13}(A o OFP (p, 1)
as¢ = & + 0¢, with 6¢ o< exp(ikr — iwt). Assuming the adi- e QB /dpp /, dpo (1= 45%)  op
abatic equation for the background plas®ap, = aZVp, {25337 _ 2z'k”v“53y} , (A10)
with ag = /74p0/po, Where, is the adiabatic index. Fur- @

thermore, we define, = By /B, as the parallel directiom, ~ 2Nd
is the transverse direction, akd= ke, + k. e,. /dpp / d;w 8 (p i)
Since we are only concerned here with instabilities due to 8“
the anisotropic EP pressure (i.e., the quadrupole anjsptb 20B,, + 2i il ”53 - k v? (1-4?) 5Bm} . (A11)
Q Q (k”vu — o.))

the EP distribution), we consider the unperturbed EP 8igtri
tion function with no mean electric current [see 2, 4, 5, for Consider the brace in Eq. (A11). With the assumption for
discussions of the resonant and current driven instasliti  the unperturbed quadrupole anisotropy given by Eq. (A®&), th

With no mean current, the quadrupole anisotropy has the forriécond and third terms in the brace are of the same order of

magnitude. The second term gives the well known firehose
P ( )_M 1_|__(3 2_1) (AB) . - . . . .
o \P )= g \WH ’ instability which grows ify > 0, while the third term results

00 . . in the mirror instability ify < 0. Using Egs. (A6) and (25),
where [ N(p)p*dp = 1 andx is a quadrupole anisotropy yiix g Eas. (A6) (25)
. the parameter can be connected td,(p) with As(p) =
parameter withx| < 1.

, ) ) . nep N (p)x/5. Note that if the EP scattering rate by magnetic

Keeping only linear responses to the perturbations in
. turbulencer. ~ 2, which may occur it ~ 1, then the mirror

Eg. (A1)-(A2), we obtain

instability is suppressed.

(w4 —w® (07 + ag) K + v agk? ki )5B Integrating Eq. (A11) overu, with account taken of
2L . . Eqg. (A6), one obtains
= (w? - aBrp) =1L (57 — eajer) 2
! (1 —MQ) udu 16 10 2
B k -e mir = - — — =
—iaghi = L6532‘”, a7y Al /_1 [ I T A
NEA 21 T+1
and 2 i B P
B 1 1\°
2 2 Dol ‘e :

(w — 2k ) 5By =i (05 +edj?) . (A8)  —imm (1 - §> o (] - 1), (A12)
wherev, = By/\/4mpy is the Alfvén velocity. The linearized wherer = kjv/w and©(z) is the Heaviside step function.
Eq. (A4) has the form The asymptotic form of Eq. (A12) for < 1is

) . . 16 3
[z/c—f—z(—o.}—i—kuvcosG)] 0f°P 4+ ik, vsinfcospd fP — Apir(7) — TwT—f—O(T ) ) (A13)
asfr 8f

0, T T + g 0B OfT A9 while, forr > 1,
wheref andy are the pitch and azimuthal angles between the Apie(7) — 16 ) (%) . (A14)
EP particle velocity and the directien, correspondingly. 157 T

We first consider the weakly collisional case witk 1. In The response of the electric current carried by the energeti
the long-wavelength regiméyv/Q < 1, k1 v/Q < 1,and  particles in these limits is
w/Q < 1. Then one obtains the response of the superthermal 5B L

. o o gjep = — S2uXeRBINC [ 3 () dp (A15)
particle currentj°P on the magnetic field perturbatioiB in 582 0 ’



and

e OB XxNepC 2k2
5.]2}27 = Z# <k” ) / ’Up3N (p) dp.

5B2 k|
(A16)
Let us define the unperturbed pressure
Nep [ 4
Py="2 [N (), (A17)
0

and note that for the distribution function Eq. (A6),

P||=/vpuf (p,p)d p=Po<1+%X>, (A18)

Py = [ vp(1—p?)cos® ofs? (p,p) d®p
= /vp (1= p?) sin® o fs? (p, ) dp
:%@_gy (A19)
and
§P=P —P = %XPO . (A20)

17
we obtain the dispersion relations

w —w? (v?, +ad) k* + v?agkzk‘ﬁ

_ _( kH) 3xPo (kH Qki) . (A21)

and
k” (A22)

The dispersion equation splits into two independent eqoati
where the mirror instability is determined by Eq. (A21) unde
conditions2k? > ki andx < 0. Fork} > ki Eq. (A21)
simplifies to

3XP0
900

w® — (v2+ad) k* = 2k7 (A23)

Here the perturbation of the magnetic field is mostig,
which are connected to the background plasma density varia-
. 0B,
tions bydp ~ Pog -
0
Then from Eq. (A20), with account taken thats & , one

finally obtains

0
w2 = <v +ag + 2—) k2.
Po

Eqg. (A24) shows that growing modes occur when

(A24)

(v2+a§+2‘;—f) < 0, which may happen only if

0P o« x < 0, i.e., the mirror instability is driven by

Now, substituting Egs. (A15) and (A16) into (A7) and (A8) anisotropic EP pressure.



