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Turbulent flows preferentially concentrate inertial particles depending on their stopping time
or Stokes number, which can lead to significant spatial variations in the particle concentration.
Cascade models are one way to describe this process in statistical terms. Here, we use a direct
numerical simulation (DNS) dataset of homogeneous, isotropic turbulence to determine probability
distribution functions (PDFs) for cascade multipliers, which determine the ratio by which a property
is partitioned into sub-volumes as an eddy is envisioned to decay into smaller eddies. We present a
technique for correcting effects of small particle numbers in the statistics. We determine multiplier
PDFs for particle number, flow dissipation, and enstrophy, all of which are shown to be scale
dependent. However, the particle multiplier PDFs collapse when scaled with an appropriately
defined local Stokes number. As anticipated from earlier works, dissipation and enstrophy multiplier
PDFs reach an asymptote for sufficiently small spatial scales. From the DNS measurements, we
derive a cascade model that is used it to make predictions for the radial distribution function (RDF)
for arbitrarily high Reynolds numbers, Re, finding good agreement with the asymptotic, infinite Re
inertial range theory of Zaichik & Alipchenkov [New Journal of Physics 11, 103018 (2009)]. We
discuss implications of these results for the statistical modeling of the turbulent clustering process
in the inertial range for high Reynolds numbers inaccessible to numerical simulations.

I. BACKGROUND AND INTRODUCTION

Clustering of inertial (finite-stopping-time) particles
into dense zones in fluid turbulence has applications in
many fields [for a general review see 1]. A number of
recent papers have focussed on understanding the basic
mechanisms responsible for this effect; several of these [2–
5] provide thorough reviews and comparisons of previous
studies dating back to the early work of Maxey [6] and
Squires and Eaton [7] which we will only sketch briefly.
The early work emphasized the role of centrifugation of
finite-inertia particles out of vortical structures in turbu-
lence. More recent evidence that clustering arises even
in random, irrotational flows suggests that, while vortic-
ity still plays a role, the dominant role is played by so-
called “history effects”, in which inertial particle velocity
dispersions at any location carry a memory of particle
encounters with more remote flow regimes which have
larger characteristic velocity differences [8–10]. These
history effects lead to spatial gradients in particle random
relative velocities, and these gradients in turn generate
systematic flows or currents which can outweigh disper-
sive effects and produce zones of highly variable particle
concentration [2–4, 11].
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To date, by far the most attention regarding particle
clustering in turbulence has been devoted to very small
spatial scales r < η or even r � η, where η is the
Kolmogorov scale, partly because it is on these scales
that particle collisions occur and partly because numeri-
cal simulations to date have produced only very limited
inertial ranges, at best [see however 12, 13]. Theories
by Zaichik and Alipchenkov [11] et seq., and Pan and
Padoan [8] et seq. have been shown to be promising in
explaining the cause of particle clustering in terms of
history effects, with helpful contributions from the tra-
ditional local centrifugation mechanism [2, 4, 10, 13]. A
thorough review of the effects of clustering and relative
velocity effects on particle collisions, emphasizing the as-
tronomical literature, can be found in Pan and Padoan
[14, 15].

Our focus is on clustering at larger scales in the in-
ertial range η < r < L, where L is the integral scale.
Inertial range clustering has important applications for
remote sensing of terrestrial clouds [16], the formation
of primitive planetesimals (asteroids and comets) in the
early solar nebula [17–22], and even the structure of the
interstellar medium [23]. While little studied in the con-
text of particle clustering, inertial range scaling is known
to have different properties than seen in the dissipation
range r < η [24, 25]. Only limited predictions have been
made of its scaling properties at very high Reynolds num-
ber Re [2, 11].

In the inertial range, so-called cascade models which
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reproduce the statistics of fluid behavior, even if not re-
alistic flow structures, may be valuable for modeling high
Reynolds number (Re) regimes too demanding for direct
numerical simulations. Their application is quite gen-
eral [26–31, see [32] for more references]. We and others
have used cascades to model particle clustering in turbu-
lence in the astronomical applications mentioned above.

Cascade models operate by simply applying a parti-
tion function or multiplier 0 ≤ m ≤ 1 to any property P
in some given volume of the flow, thus determining the
ratio by which the property (dissipation, particle density,
etc.) is partitioned into sub-volumes as an eddy is envi-
sioned to decay into smaller eddies. The most common
treatment is a binary cascade, in which P is partitioned
into two equal subvolumes; however the approach can be
applied to arbitrary numbers of subvolumes [30]. The
binary cascade operates on each volume of space, parti-
tioning P into two equal subvolumes by multipliersm and
1 −m, with the multiplier m at each bifurcation drawn
from a probability distribution function (PDF) of multi-
pliers P (m). If P (m) = δ(m− 0.5), where δ is the delta
function, the cascade has no effect because the property
P is evenly divided, and remains constant per unit vol-
ume. On the other hand, broad P (m) functions generate
highly intermittent spatial distributions in which P has
a wide range of values, fluctuating dramatically on small
scales such as seen in dissipation [27, 31] (figure 1b).

The dissipation range, a range of small scales ap-
proaching the Kolmogorov scale η, is found where r <
20− 30η [33, 34]; in this range, where viscosity is impor-
tant, the equations of motion are no longer completely
scale-free, and fluid scaling properties differ from those
in the inertial range. The properties of particle clus-
tering do seem to be scale independent in this region,
however [24, 25], and one expects this regime to be flow-
independent for high Re. There is also a range of large
scales near the integral scale L, over which deviation from
scale invariance surely occurs, but this range has not been
well studied and is surely flow-dependent. The applica-
tion to planetesimal formation has become focussed on
particle concentration at scales much larger than the Kol-
mogorov scale [17, 18] because large clumps are needed
for sufficiently rapid gravitational collapse. In previous
particle clustering cascade models, Hogan and Cuzzi [32]
determined the multiplier PDFs for particle concentra-
tion and fluid enstrophy at small spatial scales, not too
far from η (to obtain better statistics), and applied them
across all scales ranging up to the integral scale (see
section V.1 for more discussion). Realizing the risks in
this, they performed tests which seemed to validate the
approach. However, discrepancies between Hogan and
Cuzzi [32] and Pan et al. [20] at the low probabilities of
interest for the planetesimal problem [18] have led us to
explore the scale dependence of P (m) in more detail, in
order to improve the fidelity of the cascade models.

It is worth noting at this point that it is not a re-
quirement of cascade models that the PDFs be scale-
independent; it is merely the first and most obvious

assumption. In this paper we present evidence that
the multiplier PDFs for particle concentration are scale-
dependent and present simple guidelines for how this
scale-dependence can be included in cascades. Multiplier
PDFs can also be conditioned on local properties [31],
and indeed were treated this way in our previous work to
allow for particle mass-loading on the process [32]. Scale-
dependence per se is, however, a different effect than local
conditioning, and in this paper we do not address local
conditioning.

Before describing our own work, we review some ex-
perimental results on high-Reynolds number atmospheric
boundary layer turbulence, which provide a useful back-
ground in scale invariance and complement the more typ-
ical, but lower-Re, numerical simulations. Studies of the
properties of turbulence in atmospheric boundary layer
flows have been conducted by Kholmyanskiy [35], van
Atta and Yeh [36] and Meneveau and Sreenivasan [37];
further analysis of the Meneveau and Sreenivasan [37]
data was done by Chhabra et al. [28].[38] The best ref-
erence for the basic experimental data is Meneveau and
Sreenivasan [37, see their Table 1], who conducted an
experiment on boundary layer turbulence using a sensor
mounted 2 m above the flat roof of a four story building.
The Reynolds number for the flow is calculated using the
free stream velocity U = 6 m/s and the height h = 2 m
of the sensor above the roof: Re = Uh/ν = 8 × 105

where the kinematic viscosity is 1.5× 10−5 m2/sec, con-
sistent with tabulated values in Meneveau and Sreeni-
vasan [37] of the Taylor scale Reynolds number Reλ, and
its characteristic lengthscale λ and velocity u′. Mene-
veau and Sreenivasan [37] give the Kolmogorov scale as
η = 7× 10−4 m (we retain their preferred units). Analy-
ses of flow structures by Chhabra et al. [28] (their figure
5 and our figure 2) show fairly well-behaved power law
scaling of dissipation for weightings which suppress re-
gions that are strongly anomalous (panels g and h), i.e.
strongly differing from the mean, to almost r ∼ 1.8×104 η
= 12.6 m � h, suggesting an extensive inertial range.
The large or integral scale L, which contains the energy in
this flow, is thus apparently much larger than the vertical
distance of the sensor from the boundary (h = 2 m) and
plausibly the same as the longitudinal integral scale given
as L = 180 m [37], see also Hunt and Morrison [39], and
thus L/η ∼ 2× 105. However, when the role of strongly
anomalous regions is emphasized (panels i through l of
figure 2) the scalable inertial range contracts.

In cascade applications, it may be more meaningful to
assess the scale dependence of P (m) at large scales not in
terms of multiples of η as in Sreenivasan and Stolovitzky
[31] and most other work [e.g., 24], but in terms of frac-
tions of L which more closely connects to causality and
energy flow. We will also express scale fractions r/L in
terms of cascade bifurcation levels N needed to achieve
cubes r on a side:

r/L = 2−N/3. (1.1)

For example, Sreenivasan and Stolovitzky [31] com-
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FIG. 1. (a) The second order structure function for particle velocity for the DNS data we analyze. Statistics are obtained
over the trajectories of particles of di↵erent St, from figure 2 of Bec et al. [12]. In particular circles and downward facing
triangles refer to tracer-like particles that more faithfully follow the fluid flow. Dotted power laws labeled “2” and “2/3” are
the theoretical expectations for the flow velocity structure function in the viscous range and the inertial range, respectively.
The bottom axis is labeled as in Bec et al. [12] by r/⌘, and also by us (in green) with our estimated values for r/L, where
L is the integral scale, and also by the cascade level N that gives equidimensional volumes of side r. Extending out the top
of the plot is an o↵set blue short-dashed line indicating the expected structure function for the high-Re atmospheric flow
of Meneveau and Sreenivasan [35], analyzed by Chhabra et al. [28] and Sreenivasan and Stolovitzky [31], with integral scale
which we estimate as L ⇠ 2 ⇥ 105⌘. We have attempted to place a corresponding scale of r/L and N on the top axis (in blue).
(b) Scale-independent multiplier PDFs for dissipation ✏ as determined by Sreenivasan and Stolovitzky [31] in the atmospheric
boundary layer, connected to the left panel by dotted arrows indicating where those measurements lie on the structure function
(300-3000 ⌘, well away from both L and ⌘). It is our expectation that the scale-independent �-distribution with � ⇠ 3 (see
equation 3.4) observed by Sreenivasan and Stolovitzky [31] (smooth curve in right panel) continues at least to the start of the
viscous range at about 30⌘. Our analyses of the DNS dataset are binned on scales between r = 12⌘ � 512⌘, corresponding to
r ⇠ L/2 to L/86 on the lower scale as discussed in in section I.

terms of cascade bifurcation levels N needed to achieve
cubes r on a side:

r/L = 2�N/3
. (1.1)

For example, Sreenivasan and Stolovitzky [31] com-
pared multiplier PDFs for dissipation in the atmospheric
boundary layer over a range of scales (see figure 1b) and
showed that P (m) is highly scale independent over a wide
range of scales: 372⌘ � 3072⌘, or 372⌘ to L/86 [see also
29]. Dissipation depends on higher-order moments of the
velocity gradients, so we are drawn for guidance to the
behavior seen in the higher-order moments (larger |q|) in
figure 2 [28]. The results of Sreenivasan and Stolovitzky
[31] are consistent with the generally power law behav-
ior seen for 25⌘ � 10000⌘ (roughly 25⌘ to L/26) in fig-
ure 2. That is, one might infer from where the plots
in Chhabra et al. [28] deviate from power law behav-
ior, that the scale-free behavior demonstrated by Sreeni-
vasan and Stolovitzky [31] (figure 1b) might carry on to
larger sizes than they actually presented, possibly until
r ⇠ L/26 or 10000⌘, but deviate noticeably for scales
larger than r ⇠ L/15 (and at the smaller end below
25⌘). Moreover, we can conclude from these compar-
isons that the scale-free behavior seen by Sreenivasan

and Stolovitzky [31] was safely out of the viscous range,
and continued through the inertial range at scales up to
L/86 < L/10.

The goal of this paper is to use DNS data to derive
probability distribution functions for cascade multipli-
ers and construct a cascade model that can be used for
modeling higher Re-number flows not accessible to di-
rect numerical simulations. The paper is organized as
follows: section II describes the DNS dataset used in this
study; section III describes the data analysis including a
novel technique for correcting the e↵ects of small particle
number statistics, and presents results for the multiplier
PDFs for particle concentration, dissipation and enstro-
phy; section IV presents predictions of the new cascade
model and comparison with DNS data at two di↵erent
Re; and section V discusses the results and their impli-
cations. A summary and conclusions are given in sec-
tion VI.

II. DATASET

In this paper, we use data from the direct numerical
simulations of Bec et al. [12]; see also Arnèodo et al. [40]
and [41]. The simulation computes forced, homogenous

FIG. 1. (a) The second order structure function for particle velocity for the DNS data we analyze. Statistics are obtained
over the trajectories of particles of different St, from figure 2 of Bec et al. [12]. In particular circles and downward facing
triangles refer to tracer-like particles that more faithfully follow the fluid flow. Dotted power laws labeled “2” and “2/3” are
the theoretical expectations for the flow velocity structure function in the viscous range and the inertial range, respectively.
The bottom axis is labeled as in Bec et al. [12] by r/η, and also by us (in green) with our estimated values for r/L, where
L is the integral scale, and also by the cascade level N that gives equidimensional volumes of side r. Extending out the top
of the plot is an offset blue short-dashed line indicating the expected structure function for the high-Re atmospheric flow
of Meneveau and Sreenivasan [37], analyzed by Chhabra et al. [28] and Sreenivasan and Stolovitzky [31], with integral scale
which we estimate as L ∼ 2× 105η. We have attempted to place a corresponding scale of r/L and N on the top axis (in blue).
(b) Scale-independent multiplier PDFs for dissipation ε as determined by Sreenivasan and Stolovitzky [31] in the atmospheric
boundary layer, connected to the left panel by dotted arrows indicating where those measurements lie on the structure function
(300-3000 η, well away from both L and η). It is our expectation that the scale-independent β-distribution with β ∼ 3 (see
equation 3.4) observed by Sreenivasan and Stolovitzky [31] (smooth curve in right panel) continues at least to the start of the
viscous range at about 30η. Our analyses of the DNS dataset are binned on scales between r = 12η − 512η, corresponding to
r ∼ L/2 to L/86 on the lower scale as discussed in in section I.

pared multiplier PDFs for dissipation in the atmospheric
boundary layer over a range of scales (see figure 1b) and
showed that P (m) is highly scale independent over a wide
range of scales: 372η − 3072η, or 372η to L/86 [see also
29]. Dissipation depends on higher-order moments of the
velocity gradients, so we are drawn for guidance to the
behavior seen in the higher-order moments (larger |q|) in
figure 2 [28]. The results of Sreenivasan and Stolovitzky
[31] are consistent with the generally power law behav-
ior seen for 25η − 10000η (roughly 25η to L/26) in fig-
ure 2. That is, one might infer from where the plots
in Chhabra et al. [28] deviate from power law behav-
ior, that the scale-free behavior demonstrated by Sreeni-
vasan and Stolovitzky [31] (figure 1b) might carry on to
larger sizes than they actually presented, possibly until
r ∼ L/26 or 10000η, but deviate noticeably for scales
larger than r ∼ L/15 (and at the smaller end below
25η). Moreover, we can conclude from these compar-
isons that the scale-free behavior seen by Sreenivasan
and Stolovitzky [31] was safely out of the viscous range,
and continued through the inertial range at scales up to
L/86 < L/10.

The goal of this paper is to use DNS data to derive
probability distribution functions for cascade multipli-
ers and construct a cascade model that can be used for
modeling higher Re-number flows not accessible to di-

rect numerical simulations. The paper is organized as
follows: section II describes the DNS dataset used in this
study; section III describes the data analysis including a
novel technique for correcting the effects of small particle
number statistics, and presents results for the multiplier
PDFs for particle concentration, dissipation and enstro-
phy; section IV presents predictions of the new cascade
model and comparison with DNS data at two different
Re; and section V discusses the results and their impli-
cations. A summary and conclusions are given in sec-
tion VI.

II. DATASET

In this paper, we use data from the direct numerical
simulations of Bec et al. [12]; see also Arnèodo et al. [40]
and [41]. The simulation computes forced, homogenous
and isotropic turbulence in an incompressible fluid, and
the dynamics of inertial particles suspended in the flow.
The fluid flow is solved on a 20483 Cartesian grid with
a grid spacing that is approximately the Kolmogorov
length scale η ≈ ∆x = ∆y = ∆z. Tracer and inertial
particles are introduced into the flow and their trajecto-
ries are tracked. Particles are considered point particles
and are dragged with the flow by viscous forces only;
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p, , (q, l) =(E, )f'/g(E, )~~,
J

where, again, the sum in the denominator is evaluated
over all the boxes j of size l. According to Eqs. (6)
and (7), plots of g; p; (q, l)log, o(E, ), versus log, o(1)
will have slopes equal to a(q), whereas plots of
g;p, (q, l)log, o[p;(q, l)] versus log, o(l) will yield slopes
equal to f (q).
We first analyze the data from the laboratory boundary

layer at a Reynolds number of about (Rz—110). Figures
2(a)—2(1) show the linear scaling obtained by computing
g, itt, (q, l)log, o(E&), versus log, o(1). (In all the figures, the
box size I will be normalized by the Kolmogorov scale g.
Such a normalization only causes a translation of
the abscissa and does not aff'ect the exponents. ) Simi-
larly, Figs. 3(a)—3(1) show the scaling behavior of
g;p, (q, l)logic(p, ) versus logic(l) for various values of q.
The scaling range is a function of the Reynolds number
and at this Reynolds number is not large. The linear
scaling for positive q is shown as solid lines calculated by
least-squares error fits in a range indicated by the vertical
error bars, which for positive q is slightly more than one
decade. One must take note of two aspects for negative q
plots. These are discussed in Refs. 20 and 35 and Appen-
dix A. Briefly, these correspond to regions of low dissipa-
tion and thus the results are more likely to be corrupted
by noise in the data. In addition, there is another source
of error in this region because of occasional nonturbulent
portions of Quid. This has an effect of creating boxes
with spuriously low values of dissipation in them, which
are emphasized when the probability in each box is raised
to a negative q value. These spurious contributions can
degrade the true scaling of the data for q ( j. .
In Fig. 4 we compare the f (a) curve generated by this

method with those of previous results generated by
Legendre transforming the measured r(q) curve. There is
good agreement between the two curves. Since the latter
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curve is the Legendre transformation of an average of
several r(q) curves, accurate estimation of error bars is
difficult. Nevertheless, it appears that it yields adequate
results in the present instance.
We now analyze data corresponding to the dissipation

field of the atmospheric surface layer. Figures 5(a)—
5(1) show the linear scaling obtained by compu-
ting g, p, (q, l)logio(E&); versus log&o(l). Similarly, Figs.
6(a)—6(1) show the linear scaling obtained by computing
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Flax. 4. Comparison of the f(a) curve of the dissipation field
of one-dimensional sections of the How in a laboratory boundary
layer, using the (canonical) direct method discussed in Sec. II
(circles) and from Legendre transforming several averaged ~(q)
curves (solid lines). The agreement between the two curves is
quite good.

FIG. 5. (a)—(f) Plots of g, iM;lq, l)log«(Ei); vs log, o(l) for pos-
itive values of q for the atmospheric boundary-layer Aow. The
slopes of these graphs are a(q). The scaling range indicated by
vertical bars is about three decades. Oscillations are visible for
high values of 1q1. (g)—(1) Plots of (the internal energy)
g, iM;{q, l)log, o(E, ); vs log, o(1) for negative values of q for the at-
mospheric boundary-layer How. The slopes of these graphs are
a(q). The scaling range indicated by vertical bars is the same as
that in (a)—(f). Oscillations are visible for high values of rqr.

FIG. 1. Plot of a family of normalized q-th moments of the
dissipation El, as averaged over binning lengthscale l, plotted
against l/⌘. The quantity µi(q, l) ⌘ (El)

q
i /⌃j(El)

q
j , and (El)i

is the dissipation in the ith bin of size l. Large negative
values of q select for regions of anomalously low turbulent
dissipation, and abrupt changes in the slope of these plots
(most obvious for large |q|) might indicate departure from the
true scale-free inertial range, both in the dissipation range at
< 30⌘, and at very large scales where vortex stretching has
yet to become e↵ective (section ??) (taken from figure 5b
of [5].

is calculated using the free stream velocity U = 6 m/s
and the height h = 2 m of the sensor above the roof:
Re = Uh/⌫ = 8 ⇥ 105 where the kinematic viscosity is
1.5⇥10�5 m2/sec, consistent with tabulated values in [2]
of the Taylor scale Reynolds number Re�, and its char-
acteristic lengthscale � and velocity u

0. [2] give the Kol-
mogorov scale as ⌘ = 7⇥10�4 m (we retain their preferred
units). Analyses of flow structures by [5] (their figure 5
and our Figure 1) show fairly well-behaved powerlaw
scaling of flow properties for weightings which suggest
strongly anomalous regions (panels g and h) to almost
r ⇠ 1.8 ⇥ 104

⌘ = 12.6 m � h, suggesting an exten-
sive inertial range. The large or integral scale L, which
contains the energy in this flow, is thus apparently much
larger than the vertical distance of the sensor from the
boundary (h = 2 m) and plausibly the same as the longi-

tudinal integral scale given as L = 180 m [2], see also [13],
thus L/⌘ ⇡ 105.

In cascade applications, it may be more meaningful to
assess the scale dependence of p(m) at large scales not in
terms of multiples of ⌘ as in [8] and most other work [e.g.,
20], but in terms of fractions of L. We will also express
scale fractions l/L in terms of cascade bifurcation levels

N needed to achieve equidimensional volumes l on a side:
l/L = 2�N/3 = 10�(N log 2)/3 ⇡ 10�N/10.

For example, [8] compared actual multiplier pdfs for
dissipation over a range of scales (see Figure 2, right
panel) and showed that p(m) is essentially scale inde-
pendent over a wide range of scales: 30 � 3000⌘, or 30⌘

to L/86 check on the 30 eta scale, my plot just shows

300; see also [6]. Dissipation depends on higher-order
moments of the velocity gradients, so we are drawn for
guidance to the behavior seen in the higher-order mo-
ments (larger magnitudes of q) seen in Figure 1 [5].
The [8] results are consistent with the generally pow-
erlaw behavior seen for 25⌘ � 10000⌘ (roughly 25⌘ to
L/26) in Figure 1. That is, one might infer from where
the plots in [5] deviate from powerlaw behavior, that the
scale-free behavior demonstrated by [8] might carry on
to larger sizes than they actually presented, possibly un-
til l ⇠ L/26 or 10000⌘, but deviate noticeably for scales
larger than l ⇠ L/15.

The rest of the paper is organized as follows: In sec-
tion II we describe the DNS dataset used in this study,
section III describes the data analysis and presents the
major results, and section IV discusses the results and
its implications. A summary and conclusions are given
in section V.

II. DATASET

In this paper, we use data from the direct numeri-
cal simulations of [21], see also [22, 23]. Specifically, we
use their high Reynolds number case with a Taylor-scale
Reynolds number of Re� ⇡ 400 computed on a 20483

grid. The simulation computes homogenous and isotropic
turbulence in an incompressible fluid and the dynamics
of inertial particles suspended in the flow. The fluid flow
is solved on a Cartesian grid with an equal number of grid
points in all directions and a grid spacing that is approxi-
mately the Kolmogorov length scale ⌘ ⇡ �x = �y = �z.
The flow is forced at a large eddy scale L approximately
half the domain size, L ⇡ 1024⌘. Tracer and inertial
particles are introduced into the flow and their trajecto-
ries are tracked. Particles are considered point particles
and are dragged with the flow by viscous forces only and
there is no back-reaction to the flow. Particles of di↵er-
ent Stokes numbers St = ⌧s/⌧⌘ are considered, where ⌧s

is the aerodynamic stopping time of the particle and ⌧⌘

is the Kolmogorov time.
Data from this simulation is available publicly on-

line [24], and we have downloaded and analyzed all of
the publicly available data in the present work. This
data consists of the entire flow field sampled at 13 in-
stances of times, and particle trajectories sampled at
4,720 equidistant times, both covering about 6 large eddy
time scales ⌧L. All flow components and their first deriva-
tives are available at the particle locations. In total
there are 3*64 files of particle trajectories each containing
3,184 particles (a total of Np ⇡ 600k particles) for each
St = 0, 0.16, 0.6 and 1.0, and 64 files containing 3,184
particles each (i.e., a total of Np ⇡ 200k particles) for

-10

-5

-10

-5

-10

-5

1 32 4 5 1 32 4 5
log10(r/η) log10(r/η)

Σ i
 μ

i(q
,r)

 lo
g 1

0(
E r

) i
(g)

q = 0.0
(h)

q = -0.5

(i)
q = -1.0

(j)
q = -1.5

(k)
q = -2.0

(l)
q = -2.5

FIG. 2. Plot of a family of normalized q-th moments of the
dissipation Er in an atmospheric boundary layer, as averaged
over binning lengthscale r, plotted against r/⌘ (taken from
figure 5b of Chhabra et al. [28]). The quantity µi(q, l) ⌘
(Er)

q
i /⌃j(Er)

q
j , where (Er)i is the dissipation in the ith bin

of size r. Smaller |q| values suppress the e↵ect of strongly
anomalous regions, while large negative values of q select for
regions of anomalously low turbulent dissipation. Abrupt
changes in the slope of these plots (most obvious for large
|q|) might indicate departure from the true scale-free inertial
range, both in the dissipation range at < 20�30⌘, and at very
large scales where vortex stretching has yet to become e↵ec-
tive. Vertical arrows on horizontal axis are the authors [28]
estimate of the inertial scaling range, but the scaling range is
narrower for larger |q|.

and isotropic turbulence in an incompressible fluid, and
the dynamics of inertial particles suspended in the flow.
The fluid flow is solved on a 20483 Cartesian grid with
a grid spacing that is approximately the Kolmogorov
length scale ⌘ ⇡ �x = �y = �z. Tracer and inertial
particles are introduced into the flow and their trajecto-
ries are tracked. Particles are considered point particles
and are dragged with the flow by viscous forces only;
there is no back-reaction on the flow. Particles of di↵er-
ent Stokes numbers St ⌘ ⌧s/⌧⌘ are considered, where ⌧s

is the aerodynamic stopping time of the particle (⌧s = 0
for tracers) and ⌧⌘ is the Kolmogorov time.

Figure 1a shows the second order structure function
for particle velocity for this numerical flow [taken along
trajectories of di↵erent St particles, from figure 2 of 42],
as a function of normalized scale r/⌘. While the struc-
ture function seems to show an inertial range to several
thousand ⌘, in reality the integral eddy scale for this
simulation seems to be about half the computational box
size, L ⇠ 1024⌘, and for this flow Re� ⇡ 4(L/⌘)2/3 ⇠
400 [table 1 of 42]. In blue-green below the horizontal

axis we indicate the corresponding values for r/L, and
the corresponding cascade level N . The blue dashed line
indicates the expected inertial range for the atmospheric
flow of Meneveau and Sreenivasan [35], with correspond-
ing values of r/L and N also indicated in blue above the
figure. Note that the range where P (m) for dissipation
was observed to be scale independent by Sreenivasan and
Stolovitzky [31] corresponds roughly to the scale range
L/860 � L/86, well below the expected integral scale for
that flow and well above the viscous subrange.

Data from this simulation are available publicly on-
line [43], and we have downloaded and analyzed all of
the publicly available data in the present work. This
data consists of the entire flow field sampled at 13 in-
stances in time, and particle trajectories sampled at 4,720
equidistant times, both covering about 6 large-eddy time
scales ⌧L. All flow components and their first derivatives
are available at the particle locations. In total there
are 3 ⇥ 64 files of particle trajectories each containing
3,184 particles (a total of Np ⇡ 600k particles) for each
St = 0, 0.16, 0.6 and 1.0, and 64 files containing 3,184
particles each (i.e., a total of Np ⇡ 200k particles) for
each St = 2, 3, 5, 10, 20, 30, 40, 50, and 70.

III. ANALYSIS

Determining concentration multipliers amounts to
counting particles in cubic sub-volumes of size r

3 and cal-
culating the fraction of particles falling in each half of the
sampling box. We bisect each cube in all three orthogo-
nal directions x, y, and z each yielding 2 multiplier values
totaling 6 multiplier values for r

3 cube. The available tra-
jectory data is highly resolved in time (4,720 instances of
time over approximately 6 large eddy times ⌧L), much
more than what is needed for this analysis. The num-
ber of snapshots required for good statistics depends on
the scale of interest since structures at large scale evolve
more slowly than structures at small scale (and contain
more particles), and therefore can be sampled less often.
We choose to sample the particle data with a tempo-
ral spacing of ⌧sample ⇡ 0.55 ⌧r where ⌧r is the charac-
teristic eddy life time at spatial scale r estimated using
Kolomogorov 1941 arguments as ⌧r = ⌧L(r/L)2/3. For
the box sizes considered, 512⌘, 256⌘, 128⌘, 64⌘, 45⌘,
32⌘, 24⌘, 16⌘ and 12⌘, this results in sampling inter-
vals of 0.34⌧L, 0.22⌧L, 0.14⌧L, 0.086⌧L, 0.067⌧L, 0.055⌧L,
0.044⌧L, 0.034⌧L and 0.028⌧L, respectively. We popu-
late the sample volume using the positions of all particles
from the high-resolution trajectory files at these various
discrete times.

FIG. 2. Plot of a family of normalized q-th moments of the
dissipation Er in an atmospheric boundary layer, as averaged
over binning lengthscale r, plotted against r/η (taken from
figure 5b of Chhabra et al. [28]). The quantity µi(q, l) ≡
(Er)

q
i /Σj(Er)

q
j , where (Er)i is the dissipation in the ith bin

of size r. Smaller |q| values suppress the effect of strongly
anomalous regions, while large negative values of q select for
regions of anomalously low turbulent dissipation. Abrupt
changes in the slope of these plots (most obvious for large
|q|) might indicate departure from the true scale-free inertial
range, both in the dissipation range at < 20−30η, and at very
large scales where vortex stretching has yet to become effec-
tive. Vertical arrows on horizontal axis are the authors [28]
estimate of the inertial scaling range, but the scaling range is
narrower for larger |q|.

there is no back-reaction on the flow. Particles of differ-
ent Stokes numbers St ≡ τs/τη are considered, where τs
is the aerodynamic stopping time of the particle (τs = 0
for tracers) and τη is the Kolmogorov time.

Figure 1a shows the second order structure function
for particle velocity for this numerical flow [taken along
trajectories of different St particles, from figure 2 of 42],
as a function of normalized scale r/η. While the struc-
ture function seems to show an inertial range to several
thousand η, in reality the integral eddy scale for this
simulation seems to be about half the computational box
size, L ∼ 1024η, and for this flow Reλ ≈ 4(L/η)2/3 ∼
400 [table 1 of 42]. In blue-green below the horizontal
axis we indicate the corresponding values for r/L, and
the corresponding cascade level N . The blue dashed line
indicates the expected inertial range for the atmospheric
flow of Meneveau and Sreenivasan [37], with correspond-
ing values of r/L and N also indicated in blue above the
figure. Note that the range where P (m) for dissipation
was observed to be scale independent by Sreenivasan and
Stolovitzky [31] corresponds roughly to the scale range
L/860− L/86, well below the expected integral scale for

that flow and well above the viscous subrange.

Data from this simulation are available publicly on-
line [43], and we have downloaded and analyzed all of
the publicly available data in the present work. This
data consists of the entire flow field sampled at 13 in-
stances in time, and particle trajectories sampled at 4,720
equidistant times, both covering about 6 large-eddy time
scales τL. All flow components and their first derivatives
are available at the particle locations. In total there
are 3 × 64 files of particle trajectories each containing
3,184 particles (a total of Np ≈ 600k particles) for each
St = 0, 0.16, 0.6 and 1.0, and 64 files containing 3,184
particles each (i.e., a total of Np ≈ 200k particles) for
each St = 2, 3, 5, 10, 20, 30, 40, 50, and 70.

III. ANALYSIS

Determining concentration multipliers amounts to
counting particles in cubic sub-volumes of size r3 and cal-
culating the fraction of particles falling in each half of the
sampling box. We bisect each cube in all three orthogo-
nal directions x, y, and z each yielding 2 multiplier values
totaling 6 multiplier values for r3 cube. The available tra-
jectory data is highly resolved in time (4,720 instances of
time over approximately 6 large eddy times τL), much
more than what is needed for this analysis. The num-
ber of snapshots required for good statistics depends on
the scale of interest since structures at large scale evolve
more slowly than structures at small scale (and contain
more particles), and therefore can be sampled less often.
We choose to sample the particle data with a tempo-
ral spacing of τsample ≈ 0.55 τr where τr is the charac-
teristic eddy life time at spatial scale r estimated using
Kolomogorov 1941 arguments as τr = τL(r/L)2/3. For
the box sizes considered, 512η, 256η, 128η, 64η, 45η,
32η, 24η, 16η and 12η, this results in sampling inter-
vals of 0.34τL, 0.22τL, 0.14τL, 0.086τL, 0.067τL, 0.055τL,
0.044τL, 0.034τL and 0.028τL, respectively. We popu-
late the sample volume using the positions of all particles
from the high-resolution trajectory files at these various
discrete times.

III.1. Tracer particles

First, we will look at the tracer particles (Stokes num-
ber St = 0) which follow the flow exactly. Particles are
initially homogeneously distributed, and since the flow is
incompressible, will stay that way on the average, with
particle multiplier distributions given by a delta func-
tion at m = 0.5. However, the observed distributions
will only approach this behavior for very large number
of particles; otherwise, effects of small number statistics
complicate matters. The simulation dataset at hand has
Np ≈ 6 × 105 particles with St = 0, and this is small



5
5

(a) (b)

FIG. 3. (a) Probability distribution functions (PDFs) of the particle concentration itself for tracer particles (St = 0) from the
simulation dataset, compared to Poisson distributions, for box sizes of r = 512⌘, 256⌘, 128⌘, and 64⌘. (b) PDFs of the particle
concentration multipliers for St = 0 particles computed from the simulation dataset, and the analytical Poisson/Binomial
model from equation (3.3).

III.1. Tracer particles

First, we will look at the tracer particles (Stokes num-
ber St = 0) which follow the flow exactly. Particles are
initially homogeneously distributed, and since the flow is
incompressible, will stay that way on the average, with
particle multiplier distributions given by a delta func-
tion at m = 0.5. However, the observed distributions
will only approach this behavior for very large number
of particles; otherwise, e↵ects of small number statistics
complicate matters. The simulation dataset at hand has
Np ⇡ 6 ⇥ 105 particles with St = 0, and this is small
enough to cause significant deviations from ideal behav-
ior at small scales.

For St = 0 particles, we can quantify these small-
number e↵ects analytically. First, the probability of find-
ing n particles in a given box of size r is governed by a
Poisson distribution

PP (n; n̄) =
n̄

n
e

�n̄

n!
(3.1)

with the expectation value E(n) = n̄(r), which is here
the average number of particles in a box of size r, that is
n̄(r) = Npr

3
/L3, and where L is the size of the simulation

domain. This probability is also the probability of finding
a concentration C = n/n̄. A comparison of the observed
probability distribution functions with equation (3.1) is
shown in figure 3a.

Then, for a given box with exactly n particles, consider
the particles one at a time and ask if they fall into one
half of the box, say the left half, or the other, right half.
For tracer particles, the probability to fall into the left
side is the same as falling into the right side of the box,
i.e. pleft = pright = p = 0.5, and the probability of having
exactly k particles fall into one side of the box is then

given by a binomial distribution with the probability

PB(k; n, p) =

✓
n

k

◆
p

n(1 � p)n�k
. (3.2)

This is then also the probability of finding a multiplier
m = k/n in a box of n particles.

By combining the probabilities (3.1) and (3.2), we see
that the probability of finding a multiplier m in the entire
simulation domain is

P (m; n̄, p) =
X

n

PP (n; n̄)PB(k = mn; n, p). (3.3)

A comparison of this analytical relation with the multi-
plier PDFs computed from the tracer particle trajecto-
ries in the simulation is shown in figure 3b. It shows that
equation (3.3) models the observed distributions very ac-
curately, and also that the distributions become rather
wide at small scales even though the underlying proba-
bility distributions are delta functions at m = 0.5. This
e↵ect is a kind of “false intermittency” due to small-
number statistics alone.

III.2. Particle multipliers for non-zero Stokes
numbers

Correcting for finite particle numbers

As we have seen in the previous section, the number
of particles in the dataset is small enough to significantly
a↵ect the observed multiplier distributions. In the follow-
ing we will describe how we can account for these e↵ects
and estimate what the underlying PDFs would be, given
infinite particle numbers. The goal is to separate the
finite-particle number e↵ects, which may be important
in many applications, from the e↵ects of the turbulent

FIG. 3. (a) Probability distribution functions (PDFs) of the particle concentration itself for tracer particles (St = 0) from the
simulation dataset, compared to Poisson distributions, for box sizes of r = 512η, 256η, 128η, and 64η. (b) PDFs of the particle
concentration multipliers for St = 0 particles computed from the simulation dataset, and the analytical Poisson/Binomial
model from equation (3.3).

enough to cause significant deviations from ideal behav-
ior at small scales.

For St = 0 particles, we can quantify these small-
number effects analytically. First, the probability of find-
ing n particles in a given box of size r is governed by a
Poisson distribution

PP (n; n̄) =
n̄ne−n̄

n!
(3.1)

with the expectation value E(n) = n̄(r), which is here
the average number of particles in a box of size r, that is
n̄(r) = Npr

3/L3, and where L is the size of the simulation
domain. This probability is also the probability of finding
a concentration C = n/n̄. A comparison of the observed
probability distribution functions with equation (3.1) is
shown in figure 3a.

Then, for a given box with exactly n particles, consider
the particles one at a time and ask if they fall into one
half of the box, say the left half, or the other, right half.
For tracer particles, the probability to fall into the left
side is the same as falling into the right side of the box,
i.e. pleft = pright = p = 0.5, and the probability of having
exactly k particles fall into one side of the box is then
given by a binomial distribution with the probability

PB(k;n, p) =

(
n

k

)
pn(1− p)n−k. (3.2)

This is then also the probability of finding a multiplier
m = k/n in a box of n particles.

By combining the probabilities (3.1) and (3.2), we see
that the probability of finding a multiplier m in the entire
simulation domain is

P (m; n̄, p) =
∑
n

PP (n; n̄)PB(k = mn;n, p). (3.3)

A comparison of this analytical relation with the multi-
plier PDFs computed from the tracer particle trajecto-
ries in the simulation is shown in figure 3b. It shows that

equation (3.3) models the observed distributions very ac-
curately, and also that the distributions become rather
wide at small scales even though the underlying proba-
bility distributions are delta functions at m = 0.5. This
effect is a kind of “false intermittency” due to small-
number statistics alone.

III.2. Particle multipliers for non-zero Stokes
numbers

Correcting for finite particle numbers

As we have seen in the previous section, the number
of particles in the dataset is small enough to significantly
affect the observed multiplier distributions. In the follow-
ing we will describe how we can account for these effects
and estimate what the underlying PDFs would be, given
infinite particle numbers. The goal is to separate the
finite-particle number effects, which may be important
in many applications, from the effects of the turbulent
concentration process. The finite-particle-number effects
in a specific application can always be added back into
our model later (see, e.g., section IV.2).

For the following analysis, we will assume a shape for
these PDFs. It has been suggested that, at least in the
atmospheric context [31], symmetric beta-distributions
provide a good approximation for multiplier distributions
of dissipation. Such distributions have also been used in
previous studies of particle concentrations [e.g., 32] and
are defined by

f(m;β) =
(
m−m2

)β−1 Γ(2β)

2Γ(β)
(3.4)

with Γ being the Gamma function. The parameter β de-
termines the width of the distribution with small values
of β corresponding to wide, i.e. more intermittent, dis-
tributions. The width of the β distribution (its standard



6

deviation) is given by

σ(β) =

√
1

4 (2β + 1)
. (3.5)

However, similarly to the tracers, the observed distribu-
tion width, σ0(β), will not only depend on the under-
lying β value but also on the number of particles in a
given sample, n, and the number of samples, Ns, used
to compute the distribution. In order to characterize
this dependence, we have conducted Monte-Carlo exper-
iments. They mimic the finite-particle-number effects in
the DNS under the assumption that the underlying prob-
ability distributions are β distributions. The procedure
works in the following way: First, for a given value of
β, we draw a random multiplier m from the β distribu-
tion. Given the number of particles n in a sample vol-
ume (a given box), this corresponds to a partition into
nleft = mn and nright = (1 − m)n particles for the two
halves of the sample volume, where nleft and nright are
non-integers in general. Then, we draw a random par-
ticle number kleft from the corresponding Poisson dis-
tribution with expectation value E(kleft) = nleft. This
value (and kright = n− kleft) represent one random sam-
ple of the number of particles found in two halves of
a box, and correspond to “observed” multiplier values
mleft = kleft/n and mright = kright/n. We repeat the pro-
cedure many times and compute the standard deviation
σ from all random samples mleft and mright combined (Ns
total number of samples). The result is a random sam-
ple of the “observed” distribution width given n, Ns, and
the true underlying value of β. Figure 4 shows the results
from such experiments for selected parameters n, Ns. As
one would expect, the scatter is large for a small num-
ber of samples, Ns, and becomes smaller with increasing
Ns. Also, one can see that a small number of particles
per box, n, causes the observed distribution width to be
systematically larger than the value from equation (3.5)
(red and green symbols), but approaches the exact value
as the number of particles gets large (blue and orange
symbols).

Now that we understand how we can model the small-
number statistics effects, we can proceed to correct the
observations. Given values of n and Ns, we conduct the
above described Monte-Carlo experiments for many ran-
dom values of β, and find the value of β that results
in a distribution width closest to an observed width σ0.
This gives us an estimate of the true underlying β value.
In practice, we consider random values of β between 1
and ∞ by drawing samples with equal probability with
respect to their true width σ(β) (equation 3.5). Once
we have accumulated at least 100 samples resulting in
distribution widths falling in a tolerance range between
σ0(1 + ∆)−1 and σ0(1 + ∆), we compute the appropri-
ate mean and standard deviation of those β values. Ini-
tially, a large value of ∆ is chosen, but as more and
more samples are accumulated, ∆ is reduced step by
step by factors of 2 until the standard deviation con-
verges, i.e. does not change significantly if ∆ is reduced
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concentration process. The finite-particle-number e↵ects
in a specific application can always be added back into
our model later (see, e.g., section IV.2).

For the following analysis, we will assume a shape for
these PDFs. It has been suggested that, at least in the
atmospheric context [31], symmetric beta-distributions
provide a good approximation for multiplier distributions
of dissipation. Such distributions have also been used in
previous studies of particle concentrations [e.g., 32] and
are defined by

f(m; �) =
�
m � m

2
���1 �(2�)

2�(�)
(3.4)

with � being the Gamma function. The parameter � de-
termines the width of the distribution with small values
of � corresponding to wide, i.e. more intermittent, dis-
tributions. The width of the � distribution (its standard
deviation) is given by

�(�) =

s
1

4 (2� + 1)
. (3.5)

However, similarly to the tracers, the observed distribu-
tion width, �0(�), will not only depend on the under-
lying � value but also on the number of particles in a
given sample, n, and the number of samples, Ns, used
to compute the distribution. In order to characterize
this dependence, we have conducted Monte-Carlo exper-
iments. They mimic the finite-particle-number e↵ects in
the DNS under the assumption that the underlying prob-
ability distributions are � distributions. The procedure
works in the following way: First, for a given value of
�, we draw a random multiplier m from the � distribu-
tion. Given the number of particles n in a sample vol-
ume (a given box), this corresponds to a partition into
nleft = mn and nright = (1 � m)n particles for the two
halves of the sample volume, where nleft and nright are
non-integers in general. Then, we draw a random par-
ticle number kleft from the corresponding Poisson dis-
tribution with expectation value E(kleft) = nleft. This
value (and kright = n � kleft) represent one random sam-
ple of the number of particles found in two halves of
a box, and correspond to “observed” multiplier values
mleft = kleft/n and mright = kright/n. We repeat the pro-
cedure many times and compute the standard deviation
� from all random samples mleft and mright combined (Ns

total number of samples). The result is a random sam-
ple of the “observed” distribution width given n, Ns, and
the true underlying value of �. Figure 4 shows the results
from such experiments for selected parameters n, Ns. As
one would expect, the scatter is large for a small num-
ber of samples, Ns, and becomes smaller with increasing
Ns. Also, one can see that a small number of particles
per box, n, causes the observed distribution width to be
systematically larger than the value from equation (3.5)
(red and green symbols), but approaches the exact value

FIG. 4. Symbols: Randomly sampled distribution widths for
4 sets of parameters Ns, n as a function of �. For each pa-
rameter combination, 50 random samples are plotted. Smooth

curve: �(�) given by equation (3.5).

as the number of particles gets large (blue and orange
symbols).

Now that we understand how we can model the small-
number statistics e↵ects, we can proceed to correct the
observations. Given values of n and Ns, we conduct the
above described Monte-Carlo experiments for many ran-
dom values of �, and find the value of � that results
in a distribution width closest to an observed width �0.
This gives us an estimate of the true underlying � value.
In practice, we consider random values of � between 1
and 1 by drawing samples with equal probability with
respect to their true width �(�) (equation 3.5). Once
we have accumulated at least 100 samples resulting in
distribution widths falling in a tolerance range between
�0(1 + �)�1 and �0(1 + �), we compute the appropri-
ate mean and standard deviation of those � values. Ini-
tially, a large value of � is chosen, but as more and
more samples are accumulated, � is reduced step by
step by factors of 2 until the standard deviation con-
verges, i.e. does not change significantly if � is reduced
further. We also require that the final � is no more
than 0.01 (the width is matched to within at least 1%
of the measured width). To speed up the process, once
�  0.1, we restrict the range of � samples drawn to val-

ues between �̄e

�2
p

VAR(ln �̄) and �̄e

2
p

VAR(ln �̄) where �̄

and
p

VAR(ln �) are the mean value and standard devia-
tion of � in the tolerance range. Specifically, we define �̄

as the � value of the distribution whose variance (width
squared) is the same as the arithmetic mean of the indi-
vidual variances, i.e.

�̄ = �(�̄) (3.6)

with

�̄

2 =
1

M

MX

i=1

�(�i)
2 (3.7)

FIG. 4. Symbols: Randomly sampled distribution widths for
4 sets of parameters Ns, n as a function of β. For each pa-
rameter combination, 50 random samples are plotted. Smooth
curve: β(σ) given by equation (3.5).

further. We also require that the final ∆ is no more
than 0.01 (the width is matched to within at least 1%
of the measured width). To speed up the process, once
∆ ≤ 0.1, we restrict the range of β samples drawn to val-

ues between β̄e−2
√

VAR(ln β̄) and β̄e2
√

VAR(ln β̄) where β̄
and

√
VAR(lnβ) are the mean value and standard devia-

tion of β in the tolerance range. Specifically, we define β̄
as the β value of the distribution whose variance (width
squared) is the same as the arithmetic mean of the indi-
vidual variances, i.e.

β̄ = β(σ̄) (3.6)

with

σ̄2 =
1

M

M∑
i=1

σ(βi)
2 (3.7)

using equation (3.5) and its inverse β(σ2) = (8σ2)−1− 1
2 ,

and where βi are the β values of all the samples hav-
ing widths within the tolerance range around σ0. The
uncertainty in β̄ is measured by its variance:

VAR(ln β̄) =
VAR(β̄)

β̄
≈(

∂β

∂σ2
(σ̄2)

)2

VAR(σ̄2) =
VAR(σ̄2)

64σ̄4
, (3.8)

following non-linear uncertainty propagation truncating
the series after the first order, and where the variance of
σ̄2 is computed by:

VAR(σ̄2) =
1

M

M∑
i=1

(
σ̄2 − σ(βi)

2
)2
. (3.9)

Once converged, the final values of β̄ and VAR(ln β̄) are
estimates of the true β value corrected for finite-particle-
number effects, and an estimate of its uncertainty.
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Volume-averaged β-distributions

Now that we know how to remove the effects that a
finite number of particles has on the multiplier distribu-
tions for a given box size or scale, we compute corrected
volume averages of the β values for any given spatial
scale and Stokes number. Specifically, at any given scale
r, we first compute the multiplier values for all the sam-
pling boxes. We then compute the distribution widths
σ0,j from each subset of boxes having the same number
of particles nj . This width is then used to derive a cor-
rected β value, which corresponds to a corrected width σj
(through equation 3.5). We then combine all results by
summing the square of these corrected σj values weighted
with the fractional volume that the boxes with nj par-
ticles occupy. The final, combined β value is then given
by this average width through the inverse of (3.5).

Figure 5a shows the combined concentration multiplier
β values for all Stokes numbers and all spatial scales con-
sidered. We did not consider scales smaller than 12η since
the number of particles in such small boxes is too small
to make reliable statistical inferences, even with our cor-
rection procedure. From the results, it is very apparent
that the concentration multiplier distributions are not
only functions of St, as has been known, but are also
very much scale dependent. It seems intuitive, however,
that at any given scale, the multipliers may depend only
on the ratio of the particle stopping time and the dynam-
ical time at that spatial scale. An effect of this sort was
seen in particle concentration PDFs by Bec et al. [24].
Along these lines, we construct a local Stokes number

Str ≡
τs
τr

= St

(
r

η

)−2/3

, (3.10)

where we have assumed that the dynamical time at scale
r is given by

τr = τη

(
r

η

)2/3

(3.11)

following Kolmogorov [44]. By plotting the multiplier β
results against the rescaled Stokes number, the curves
approximately collapse into one (figure 5b), at least for
scales not too close to the integral scale. This means that
when local scale and stopping time are accounted for, the
scaled multiplier β curves are cascade level independent
for scales r < L/10 or so, and are thus highly amenable
to cascade models at, in principle, arbitrarily large Re at
least within the inertial range. For some caveats about
Re-dependence however, see section V.

Also note that Str can be written in terms of an
integral-scale Stokes number StL:

Str = 22N/9StL, (3.12)

where

StL ≡
τs
τL

= St

(
L

η

)−2/3

(3.13)

using the same Kolmogorov scaling as in equation (3.11).
Equation (3.12) separates terms that depend only on cas-
cade level (first term), and particle properties (second
term), and indicates that particles in different flows be-
have the same (have the same statistical cascade) if they
have the same integral-scale Stokes number StL. We will
use this fact later in section IV.2 when we compare the
cascade with DNS results from two different simulations
at different Re.

It should be noted our observed r−2/3-scaling seems
to contradict the scaling found by Bec et al. [24] for
“quasi-Lagrangian” probability distribution functions of
the mass density. Following an idea by Maxey [6], they
approximated the dynamics of inertial particle by those
of tracers in an appropriate synthetic compressible veloc-
ity field and derived a scaling for the rate at which an
r-sized “blob” of particles contracts. They argued that
the scaling of the contraction rate relates to the scaling
of the pressure field, give the contraction rate as being
proportional to r−5/3 for the Re of their simulation [45],
and find that their density PDFs collapse when scaled
with this contraction rate.

Composite PDFs

Combining the statistics from boxes with different par-
ticle number to form a single β-distribution that repre-
sents the concentration multipliers assumes that multi-
plier distributions are the same for all concentrations.
Since the particles are independent, that is, they do not
feel the presence of each other, one would assume that
there is no such concentration dependence. However,
particles concentrate in particular regions of the flow,
and therefore flow properties differ in regions of different
particle density and so the multiplier distributions may
also be different. We can relax the assumption of equal
multiplier distributions and compute a composite multi-
plier distribution by first computing β-distributions for
each particle concentration separately, and then summing
these distributions weighted with the fractional volume
that the boxes with the particular density occupy. These
composite distributions are shown in figures 6, 7 and 8.

The following observations can be made: First, com-
posite and mean β-distributions may differ in shape, al-
though by construction they have identical widths (sec-
ond moments). That is, in general, the composite β-
distribution is itself not a β-distribution. At large spa-
tial scales, flat or exponential tails are apparent in the
composite PDFs; these do not have the same shape as
any β-distribution. At small scales, however, differences
disappear within the margin of accuracy. Also, at the
largest scale (512η) there are enough particles such that
finite-particle-number effects are small and the raw PDFs
(shown in green) are essentially identical to the compos-
ite PDFs (shown in black). However, the importance of
correcting for sampling effects becomes apparent as we
look at smaller scales where fewer particles cause spuri-
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FIG. 5. Concentration multiplier distribution � values corrected for finite-particle number sampling e↵ect as a function of the
ordinary Stokes number St (a), and in terms of the local Stokes number Str (b). Solid lines connect results for the same binning
scale for guiding the eye.

feel the presence of each other, one would assume that
there is no such concentration dependence. However,
particles concentrate in particular regions of the flow,
and therefore flow properties di↵er in regions of di↵erent
particle density and so the multiplier distributions may
also be di↵erent. We can relax the assumption of equal
multiplier distributions and compute a composite multi-
plier distribution by first computing �-distributions for
each particle concentration separately, and then summing
these distributions weighted with the fractional volume
that the boxes with the particular density occupy. These
composite distributions are shown in figures 6, 7 and 8.

The following observations can be made: First, com-
posite and mean �-distributions may di↵er in shape, al-
though by construction they have identical widths (sec-
ond moments). That is, in general, the composite �-
distribution is itself not a �-distribution. At large spa-
tial scales, flat or exponential tails are apparent in the
composite PDFs; these do not have the same shape as
any �-distribution. At small scales, however, di↵erences
disappear within the margin of accuracy. Also, at the
largest scale (512⌘) there are enough particles such that
finite-particle-number e↵ects are small and the raw PDFs
(shown in green) are essentially identical to the compos-
ite PDFs (shown in black). However, the importance of
correcting for sampling e↵ects becomes apparent as we
look at smaller scales where fewer particles cause spuri-
ous widening of the raw distributions or “false intermit-
tency.” Finally, we should mention that at the smallest
scales, the number of particles is so small that we are
only measuring multipliers in high-concentration regions,
which causes a sampling bias since particles are known to
avoid vorticity, and such regions may produce more inter-
mittency or broader multiplier PDFs. For instance, the

average number of particles in a 32⌘ box, for the Stokes
numbers for which we have a total of 6 ⇥ 105 particles
(see section II) is only (32⌘/2048⌘)3 Np ⇡ 0.44. The situ-
ation is even worse for, say, r = 12⌘ and a case with only
2⇥105 total particles. The average is then only 0.04 par-
ticles per sampling box. Multipliers are measured only in
regions with a particle concentration that is at least 100
times larger than the mean concentrations since we can
only reasonably measure multipliers if we have at least
several particles in a sampling box.

III.3. Dissipation and enstrophy multiplier
distributions

We also calculated the multipliers for fluid dissipation
and enstrophy. The rate of turbulent dissipation is given
by

✏ = 2⌫SijSij = ⌫ [(@iuj)(@iuj) + (@iuj)(@jui)] , (3.14)

where Sij and ui are the strain rate tensor and the com-
ponents of the velocity field, respectively, and where we
use the Einstein summation convention. The enstrophy
on the other hand is defined as the square of the vorticity:

E = |r ⇥ ~u|2 = (@iuj)(@iuj) � (@iuj)(@jui). (3.15)

All of these flow velocity derivatives are available in the
dataset, both in the particle trajectory data files and in
the flow snapshots. We have computed multiplier distri-
bution � values for ✏ and E (�✏ and �E) from the tra-
jectory of tracer particles (as they sample the flow more
homogeneously than non-zero Stokes number particles),
and from the full resolution flow snapshots. The results

FIG. 5. Concentration multiplier distribution β values corrected for finite-particle number sampling effect as a function of the
ordinary Stokes number St (a), and in terms of the local Stokes number Str (b). Solid lines connect results for the same binning
scale for guiding the eye.

ous widening of the raw distributions or “false intermit-
tency.” Finally, we should mention that at the smallest
scales, the number of particles is so small that we are
only measuring multipliers in high-concentration regions,
which causes a sampling bias since particles are known to
avoid vorticity, and such regions may produce more inter-
mittency or broader multiplier PDFs. For instance, the
average number of particles in a 32η box, for the Stokes
numbers for which we have a total of 6 × 105 particles
(see section II) is only (32η/2048η)

3
Np ≈ 0.44. The situ-

ation is even worse for, say, r = 12η and a case with only
2×105 total particles. The average is then only 0.04 par-
ticles per sampling box. Multipliers are measured only in
regions with a particle concentration that is at least 100
times larger than the mean concentrations since we can
only reasonably measure multipliers if we have at least
several particles in a sampling box.

III.3. Dissipation and enstrophy multiplier
distributions

We also calculated the multipliers for fluid dissipation
and enstrophy. The rate of turbulent dissipation is given
by

ε = 2νSijSij = ν [(∂iuj)(∂iuj) + (∂iuj)(∂jui)] , (3.14)

where Sij and ui are the strain rate tensor and the com-
ponents of the velocity field, respectively, and where we
use the Einstein summation convention. The enstrophy
on the other hand is defined as the square of the vorticity:

E = |∇ × ~u|2 = (∂iuj)(∂iuj)− (∂iuj)(∂jui). (3.15)

All of these flow velocity derivatives are available in the
dataset, both in the particle trajectory data files and in

the flow snapshots. We have computed multiplier distri-
bution β values for ε and E (βε and βE) from the tra-
jectory of tracer particles (as they sample the flow more
homogeneously than non-zero Stokes number particles),
and from the full resolution flow snapshots. The results
are shown in figure 9, although the tracer data is only
shown for the largest spatial scales since it also suffers
from finite-particle effects (not corrected here).

Note the presence of asymptotes for r . 20η (perhaps
better thought of as r . L/50, see figure 14) for both,
as anticipated [31]. Enstrophy is shown to have wider
multiplier distributions (smaller β values) than dissipa-
tion, and is therefore more intermittent. This is con-
sistent with the findings of Meneveau et al. [46] in sev-
eral flows including atmospheric flow, and in numerical
simulations [e.g., 47, 48]. For a review, see Sreenivasan
and Antonia [49]. Also, we note that even for the small-
est spatial scales considered, still well within the inertial
range, the dissipation rate multiplier β does not reach
the atmospheric flow values of βε ∼ 3 [31]. See section V
for more discussion.

IV. NEW CASCADE MODEL WITH
LEVEL-DEPENDENT MULTIPLIERS

IV.1. Cascade simulations

From the collapsed β(Str) curves (figure 5b), we can
build an empirical model for the particle multiplier dis-
tributions. A sum of two power laws approximates the
curves for fixed scale r well:

β(Str) ≈ βmin

((
Str
a1

)b1
+

(
Str
a2

)b2)
, (4.1)
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FIG. 6. Probability distribution functions (PDFs) of particle multipliers measured from DNS particle trajectories for di↵erent
Stokes numbers and a box size of r = 512⌘ (a through l) and 256⌘ (m through x). Shown are the volume-averaged, mean
�-distributions (red dashed curves) as described in section III.2, the composite PDFs (black dashed curves) as defined in
section III.2, and raw multiplier histograms uncorrected for finite-particle-number e↵ects (green curves). Corresponding shading
in red and grey shows the uncertainty in the measured PDFs (plus/minus one standard deviation).

FIG. 6. Probability distribution functions (PDFs) of particle multipliers measured from DNS particle trajectories for different
Stokes numbers and a box size of r = 512η (a through l) and 256η (m through x). Shown are the volume-averaged, mean
β-distributions (red dashed curves) as described in section III.2, the composite PDFs (black dashed curves) as defined in
section III.2, and raw multiplier histograms uncorrected for finite-particle-number effects (green curves). Corresponding shading
in red and grey shows the uncertainty in the measured PDFs (plus/minus one standard deviation).
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FIG. 7. Same as figure 6 but for box sizes r = 128⌘ (a through l) and 64⌘ (m through x).FIG. 7. Same as figure 6 but for box sizes r = 128η (a through l) and 64η (m through x).
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FIG. 8. Same as figure 6 but for box sizes r = 45⌘ (a through l) and 32⌘ (m through x).FIG. 8. Same as figure 6 but for box sizes r = 45η (a through l) and 32η (m through x).
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FIG. 9. Dissipation and enstrophy multiplier distribution �-
values as a function of spatial scale computed from the flow
data and from tracer particle trajectories (St = 0). Results
from tracer particles are only shown for large spatial scales
since at smaller scales not enough particles are available for a
reasonable estimation of the multiplier distributions.

are shown in figure 9, although the tracer data is only
shown for the largest spatial scales since it also su↵ers
from finite-particle e↵ects (not corrected here).

Note the presence of asymptotes for r . 20⌘ (perhaps
better thought of as r . L/50, see figure 14) for both,
as anticipated [31]. Enstrophy is shown to have wider
multiplier distributions (smaller � values) than dissipa-
tion, and is therefore more intermittent. This is con-
sistent with the findings of Meneveau et al. [46] in sev-
eral flows including atmospheric flow, and in numerical
simulations [e.g., 47, 48]. For a review, see Sreenivasan
and Antonia [49]. Also, we note that even for the small-
est spatial scales considered, still well within the inertial
range, the dissipation rate multiplier � does not reach
the atmospheric flow values of �✏ ⇠ 3 [31]. See section V
for more discussion.

IV. NEW CASCADE MODEL WITH
LEVEL-DEPENDENT MULTIPLIERS

IV.1. Cascade simulations

From the collapsed �(Str) curves (figure 5b), we can
build an empirical model for the particle multiplier dis-
tributions. A sum of two power laws approximates the
curves for fixed scale r well:

�(Str) ⇡ �min

 ✓
Str

a1

◆b1

+

✓
Str

a2

◆b2
!

, (4.1)

with parameters a1, a2, b1, b2 determining the slopes
and positions of the exponentials, respectively, and �min

FIG. 10. Beta values of the cascade model following equa-
tions (4.1) and (4.2) (dashed lines). Results from the present
DNS data are shown for comparison (solid lines), they are
the same curves as in figure 5 except that the symbols have
been suppressed here for legibility. Spatial scales, r, are dif-
ferentiated by color (see figure legend).

setting the minimum � value. From the figure it is evi-
dent that there is some residual scale dependence – the
curves for di↵erent spatial scales don’t overlap exactly.
The following parameterization approximates this resid-
ual dependence:
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where erf and ln are the error function and the natural
logarithm. The parameters asymptote for small r/L .
3 ⇥ 10�3 (or large cascade level N & 25) to:

a1 = 0.15, a2 = 0.45,

b1 = �1.2, b2 = 1.55, �min = 4. (4.3)

The model is shown in figure 10 compared to the DNS
results. An even simpler model could probably be con-
structed using a single average curve of all r

L  1
8 .

With this model for the particle multiplier distribu-
tions, we can perform statistical cascade simulations to
predict the probability distribution function for the par-
ticle concentration. We start at cascade level 0 with a
single concentration value of C

(0) = 1.0. At every cas-
cade level N , we then draw a random multiplier value
m

(N) from the corresponding distribution with a � value
given by the model (equation 4.2), and split the con-
centration value from the previous level into two values

FIG. 9. Dissipation and enstrophy multiplier distribution
β-values as a function of spatial scale computed from the flow
data and from tracer particle trajectories (St = 0). Results
from tracer particles are only shown for large spatial scales
since at smaller scales not enough particles are available for a
reasonable estimation of the multiplier distributions.

with parameters a1, a2, b1, b2 determining the slopes
and positions of the exponentials, respectively, and βmin

setting the minimum β value. From the figure it is evi-
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where erf and ln are the error function and the natural
logarithm. The parameters asymptote for small r/L .
3× 10−3 (or large cascade level N & 25) to:

a1 = 0.15, a2 = 0.45,

b1 = −1.2, b2 = 1.55, βmin = 4. (4.3)

The model is shown in figure 10 compared to the DNS
results. An even simpler model could probably be con-
structed using a single average curve of all r
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With this model for the particle multiplier distribu-
tions, we can perform statistical cascade simulations to
predict the probability distribution function for the par-
ticle concentration. We start at cascade level 0 with a
single concentration value of C(0) = 1.0. At every cas-
cade level N , we then draw a random multiplier value
m(N) from the corresponding distribution with a β value
given by the model (equation 4.2), and split the con-
centration value from the previous level into two values
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FIG. 9. Dissipation and enstrophy multiplier distribution �-
values as a function of spatial scale computed from the flow
data and from tracer particle trajectories (St = 0). Results
from tracer particles are only shown for large spatial scales
since at smaller scales not enough particles are available for a
reasonable estimation of the multiplier distributions.

are shown in figure 9, although the tracer data is only
shown for the largest spatial scales since it also su↵ers
from finite-particle e↵ects (not corrected here).

Note the presence of asymptotes for r . 20⌘ (perhaps
better thought of as r . L/50, see figure 14) for both,
as anticipated [31]. Enstrophy is shown to have wider
multiplier distributions (smaller � values) than dissipa-
tion, and is therefore more intermittent. This is con-
sistent with the findings of Meneveau et al. [46] in sev-
eral flows including atmospheric flow, and in numerical
simulations [e.g., 47, 48]. For a review, see Sreenivasan
and Antonia [49]. Also, we note that even for the small-
est spatial scales considered, still well within the inertial
range, the dissipation rate multiplier � does not reach
the atmospheric flow values of �✏ ⇠ 3 [31]. See section V
for more discussion.

IV. NEW CASCADE MODEL WITH
LEVEL-DEPENDENT MULTIPLIERS

IV.1. Cascade simulations

From the collapsed �(Str) curves (figure 5b), we can
build an empirical model for the particle multiplier dis-
tributions. A sum of two power laws approximates the
curves for fixed scale r well:
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FIG. 10. Beta values of the cascade model following equa-
tions (4.1) and (4.2) (dashed lines). Results from the present
DNS data are shown for comparison (solid lines), they are
the same curves as in figure 5 except that the symbols have
been suppressed here for legibility. Spatial scales, r, are dif-
ferentiated by color (see figure legend).
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The model is shown in figure 10 compared to the DNS
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structed using a single average curve of all r
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With this model for the particle multiplier distribu-
tions, we can perform statistical cascade simulations to
predict the probability distribution function for the par-
ticle concentration. We start at cascade level 0 with a
single concentration value of C

(0) = 1.0. At every cas-
cade level N , we then draw a random multiplier value
m

(N) from the corresponding distribution with a � value
given by the model (equation 4.2), and split the con-
centration value from the previous level into two values

FIG. 10. Beta values of the cascade model following equa-
tions (4.1) and (4.2) (dashed lines). Results from the present
DNS data are shown for comparison (solid lines), they are
the same curves as in figure 5 except that the symbols have
been suppressed here for legibility. Spatial scales, r, are dif-
ferentiated by color (see figure legend).

C
(N)
left = 2C(N−1)m(N) and C

(N)
right = 2C(N−1)(1 −m(N)).

The factor 2 here comes from the fact that the concen-
tration is the ratio of the particle number in a half box
and the mean number in a half box (which itself is one
half of the mean number of particles in full box). Such a
cascade produces 2N random samples of concentrations
values at each cascade level N which we use to compute
concentration PDFs. For good statistics, however, we
need many more samples, and for the predictions shown
in the following section we computed 50,000 such cascade
simulations.

IV.2. Level-dependent cascade predictions
compared to DNS at two different Re

In order to demonstrate and assess the cascade pre-
dictions, we compare the probability distribution func-
tions of the concentration factor generated by the cascade
model with those measured directly from DNS datasets.
In order to do so, we need to account for the small-
number effects present in the DNS results which, as we
have seen before, can cause observed distributions to be
significantly widened relative to ideal ones that the cas-
cade produces. Instead of correcting the DNS PDFs as
we have done before for the measured multiplier distribu-
tions, we will degrade the cascade PDFs for this purpose
by introducing finite-particle-number effects into them.

For motivating the procedure, let us imagine a hy-
pothetical simulation H with a number of particles so
large that finite-particle-number effects are negligible,
and let n̄∞(r) be the average number of particles in
a sampling box at length scale r in that simulation.
Our present dataset, in comparison, has on average only
n̄(r) = Npr

3/L3 particles in a box of scale r, where as
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FIG. 11. Cumulative probability distribution functions for the concentration factor C, for di↵erent Stokes numbers, comparing
the DNS measurements (solid curves) with the cascade predictions, degraded to account for finite-particle-number e↵ects (dotted
curves).

with an important di↵erence: we are here interested in
the spatial distribution of the concentration, which then
can be used to compute the RDF.

Our cascade model, however, only describes the par-
ticle multiplier PDF as a function of cascade level, and
does not explicitly contain information about spatial cor-

relations. There is therefore some ambiguity in how to
compute concentration fields from the cascade model.
We have explored three di↵erent methods to assess the
range of possible solutions. Starting at the largest scale,
we divide a cube of space in half along each spatial direc-
tion. This results in eight sub-cubes with half the linear
size. In order to solve for the concentrations in these
sub-cubes uniquely, we need eight equations. The first
method – method A – makes the following choice: one
constraint it given by the fact that the average of the con-
centrations over all eight sub-cubes is equal to the mean
concentration, and seven additional constraints are given
by relating the concentration in seven sets of neighboring
sub-cubes through multipliers chosen randomly from the
cascade model. The specific choice of equations is given
in appendix A. Solving for concentrations to ever smaller
cubes until some small cuto↵ length scale (r/L)min then

yields a statistical realization of the concentration field
that can be used to compute the RDF. The probability
of finding two particles at a given distance is simply the
product of the concentrations at the two points in space a
given distance apart, averaged over the whole domain. If
we start with a unit concentration at the largest scale, the
normalization, that is the probability for homogeneously
distributed particles, is simply 1. In order to reduce the
computational cost and storage requirements to trackable
amounts, we do not follow all sub-cubes to ever smaller
scale but only a random selection of them. One half of
sub-cubes are followed at each cascade level. Two more
methods are obtained by relating the concentrations in
the two half-cubes, for each direction separately, through
a random multiplier. This set of equations is underde-
termined. For method B we pick one particular solution,
while for method C we use a least-square solver to deter-
mine the minimum-norm solution. For specifics, again,
we refer to appendix A. Conceptually, it is clear that
the three methods allow for di↵erent amounts of spatial
randomness. Method A clearly maximizes intermittency
while method C leads to the least spatially intermittent
solution.

FIG. 11. Cumulative probability distribution functions for the concentration factor C, for different Stokes numbers, comparing
the DNS measurements (solid curves) with the cascade predictions, degraded to account for finite-particle-number effects (dotted
curves).

before Np is the total number of particles in the dataset
with a given Stokes number, and L is the linear extent
of the simulation domain, respectively. One can think of
our current dataset as a randomly selected subset of the
hypothetical simulation H, generated by retaining parti-
cles from H with a probability of p(r) = n̄(r)/n̄∞(r). For
brevity, we will suppress the r below. Specifically, let’s
say some sampling box in H has n∞ particles in it (and
therefore a concentration factor C∞ = n∞/n̄∞). From
these, we select particles with a probability of p, retain-
ing in total n particles, where n is an integer random
number with an expectation value of E(n) = C∞n̄. For
n̄∞ → ∞, this is a Poisson process and n is a random
number with a probability mass function

PP (n;C∞n̄) =
(C∞n̄)ne−C∞n̄

n!
. (4.4)

Using this idea, the recipe for introducing finite-
particle-number effects into the cascade PDFs is as fol-
lows: First, we draw a random sample C∞ from a
cascade-derived concentration PDF. Second, we draw a
random sample n from a Poisson distribution with the
corresponding expectation value E(n) = C∞n̄, where n̄
is again the average number of particles at the spatial
scale of interest in the DNS data we want to compare.
The (integer) particle number n corresponds to a dis-

crete concentration factor C = n/n̄. By repeating the
procedure Ns times, we can build from the samples a dis-
crete probability distribution function of C. It accounts
for the finite-particle-number effects and can be directly
compared to PDFs measured from the DNS dataset.

Figure 11 shows, for different Stokes numbers, a com-
parison between the PDFs predicted by the cascade
model, and degraded in this way using Ns = 107, with
those calculated directly from the DNS dataset we ana-
lyzed in this paper [43].

Under the assumption that the collapsed multiplier β
curve is universal and does not depend on Reynolds num-
ber, we can use cascade simulation to model conditions
at different Reynolds numbers. For caveats to this and
a suggestion regarding plausible Re dependence, see the
discussion in section V. It follows from equation (3.12)
that particles of different Re flows behave the same and
have the same cascade statistics, if they have identical
integral-scale Stokes numbers StL.

Here, we compare our cascade with Pan et al. [20] who
performed direct numerical simulation of a compressible
flow with suspended initial particles. Their simulation is
on a 5123 Cartesian grid with an estimated L/η ∼ 200
(compared to L/η ∼ 1024 in the dataset we used here),
and contains 8.6×106 particles per Stokes number. Initial
comparison of their uncorrected multiplier PDFs with
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FIG. 12. Cumulative probability distribution functions for
the concentration factor C, for di↵erent cascade levels com-
paring DNS results from figure 8 of Pan et al. [20] with an
estimated Stokes number St ⇡ 1.2 or StL ⇡ 3.5 ⇥ 10�2 (solid
curves) with the prediction of our cascade model degraded
to account for the finite-particle-number e↵ects in Pan’s DNS
dataset (dotted curves). For our cascade, we have used our
St = 5 model with a StL ⇡ 5⇥10�2 close to the value of Pan.

Figure 13 shows RDFs predicted by our cascade model
simulations down to cascade level 72 (spatial scales of
(r/L)min ⇡ 6⇥10�8). All methods give qualitatively the
same results, all in good agreement with the Zaichik and
Alipchenkov [2] asymptotic Re = 1 analytical solution,
especially regarding the shape and the active range of
scales. In fact, the magnitudes are even close enough,
within a factor of order unity. RDFs for di↵erent StL

computed using method A are plotted in figure 13a as a

function of the scaled distance St

�3/2
L r/L, and are shown

to collapse for small StL . 10�2. E↵ectively, the scal-
ing behavior of the multiplier PDFs (figure 5) is carried

over to the RDF. At large scales, St

�3/2
L r/L & 102, the

RDF has a value of 1, that is, particles are homoge-
neously distributed, and over an active range of scales,

10�2 & St

�3/2
L r/L & 102, it rises and reaches an asymp-

tote, g0. For larger StL in our sample, however, the ac-
tive range is shortened by being too close to the integral
scale L, and g(r) asymptotes at smaller values that are
StL-dependent. The theory of Zaichik and Alipchenkov
[2] predicts a very similar behavior and their curve for
infinite Reynolds number, e↵ectively for infinitely small
StL, is also shown in figure 13.

In figure 13b, we compare RDFs from the di↵erent

Simulation / Model g0

Cascade simulation – Method A 13

Cascade simulation – Method B 5.9

Cascade simulation – Method C 3.9

Zaichik and Alipchenkov [2], figure 3 3.9

TABLE I. RDF asymptotic values, g0, for St�3/2
L r/L ⌧ 1

and StL ⌧ 1 for the di↵erent cascade simulation methods,
and the Zaichik and Alipchenkov [2] model.

methods and the Zaichik and Alipchenkov [2] model by
scaling them with their respective g0. The curves are
nearly identical. Method A produces the highest RDF
values, i.e. the most intermittent concentration distribu-
tions, and method C, as it is biased towards lower in-
termittency, results in the smallest asymptotic value (see
table I) for values of g0. Interestingly, g0 for method C is
the same as for the Zaichik and Alipchenkov [2] theory.
Zaichik and Alipchenkov [2] use various approximations
in their derivation. Among them, they model the turbu-
lence by a Gaussian process which would underestimate
the tails of their probability distributions and therefore
underestimate intermittency.

V. DISCUSSION

V.1. The nature of scale-dependent particle
concentration

As described in section I, the traditional explanation
of clustering in terms of centrifugation of particles from
eddies has been replaced with a somewhat more com-
plicated and nuanced combination of physical processes
[3, 4]. We believe that our results (figures 5 (right)
and 10), stripped of their minor variations, represent a
kind of universal curve (“U-curve”) for �(Str) that can
be interpreted in terms of these di↵erent processes acting
on a particle of some St over a range of scales r.

In the Str < 0.1 regime, the e↵ect is dominated by
centrifugation, which weakens as Str decreases [50, and
others]; thus � increases (the multiplier PDF narrows)
with decreasing Str in this regime. As Str increases be-
yond 1, the concentration e↵ect is weakened by the de-
creasing sensitivity of particles to perturbations of any
kind by eddies with timescales much shorter than their
stopping times, so � again increases. This e↵ect, which
could be thought of as an inertia impedance mismatch,
has been described in terms of response functions [51–
55], but see Pan and Padoan [9], Bec et al. [42], Hubbard
[56] and Hopkins [21] for other more recent and more
sophisticated analyses.

The strongest clustering e↵ect is produced (the multi-
plier PDF has the lowest �) across perhaps one or two

FIG. 12. Cumulative probability distribution functions for
the concentration factor C, for different cascade levels com-
paring DNS results from figure 8 of Pan et al. [20] with an
estimated Stokes number St ≈ 1.2 or StL ≈ 3.5× 10−2 (solid
curves) with the prediction of our cascade model degraded
to account for the finite-particle-number effects in Pan’s DNS
dataset (dotted curves). For our cascade, we have used our
St = 5 model with a StL ≈ 5×10−2 close to the value of Pan.

ours showed a clear disagreement but most of that dis-
agreement disappears once we take into account finite-
particle number effects. Figure 12 shows a comparison
of cumulative PDFs of the concentration between Pan
et al. [20] and our cascade model showing reasonable
agreement, bearing in mind that the inviscid simulations
of Pan et al. [20] leave a little uncertainty about the value
of St.

IV.3. Model prediction for the radial distribution
function

In many applications, e.g. in terrestrial clouds, par-
ticle collisions play an important role, and it is there-
fore of great interest to model this process. The rate
of collisions depends on two statistical quantities: the
radial relative velocity between particles, and the radial
distribution function (RDF), g(r), defined as the proba-
bility of finding two particles at a given separation nor-
malized with respect to homogeneously distributed par-
ticles [3, 20]. Relative velocities are beyond the scope of
the present model, but the cascade model can be used to
make predictions for the RDF. For this purpose, we per-
formed statistical simulations similar to section IV.1 but
with an important difference: we are here interested in
the spatial distribution of the concentration, which then

can be used to compute the RDF.

Our cascade model, however, only describes the par-
ticle multiplier PDF as a function of cascade level, and
does not explicitly contain information about spatial cor-
relations. There is therefore some ambiguity in how to
compute concentration fields from the cascade model.
We have explored three different methods to assess the
range of possible solutions. Starting at the largest scale,
we divide a cube of space in half along each spatial direc-
tion. This results in eight sub-cubes with half the linear
size. In order to solve for the concentrations in these
sub-cubes uniquely, we need eight equations. The first
method – method A – makes the following choice: one
constraint it given by the fact that the average of the con-
centrations over all eight sub-cubes is equal to the mean
concentration, and seven additional constraints are given
by relating the concentration in seven sets of neighboring
sub-cubes through multipliers chosen randomly from the
cascade model. The specific choice of equations is given
in appendix A. Solving for concentrations to ever smaller
cubes until some small cutoff length scale (r/L)min then
yields a statistical realization of the concentration field
that can be used to compute the RDF. The probability
of finding two particles at a given distance is simply the
product of the concentrations at the two points in space a
given distance apart, averaged over the whole domain. If
we start with a unit concentration at the largest scale, the
normalization, that is the probability for homogeneously
distributed particles, is simply 1. In order to reduce the
computational cost and storage requirements to trackable
amounts, we do not follow all sub-cubes to ever smaller
scale but only a random selection of them. One half of
sub-cubes are followed at each cascade level. Two more
methods are obtained by relating the concentrations in
the two half-cubes, for each direction separately, through
a random multiplier. This set of equations is underde-
termined. For method B we pick one particular solution,
while for method C we use a least-square solver to deter-
mine the minimum-norm solution. For specifics, again,
we refer to appendix A. Conceptually, it is clear that
the three methods allow for different amounts of spatial
randomness. Method A clearly maximizes intermittency
while method C leads to the least spatially intermittent
solution.

Figure 13 shows RDFs predicted by our cascade model
simulations down to cascade level 72 (spatial scales of
(r/L)min ≈ 6×10−8). All methods give qualitatively the
same results, all in good agreement with the Zaichik and
Alipchenkov [2] asymptotic Re = ∞ analytical solution,
especially regarding the shape and the active range of
scales. In fact, the magnitudes are even close enough,
within a factor of order unity. RDFs for different StL
computed using method A are plotted in figure 13a as a

function of the scaled distance St
−3/2
L r/L, and are shown

to collapse for small StL . 10−2. Effectively, the scal-
ing behavior of the multiplier PDFs (figure 5) is carried

over to the RDF. At large scales, St
−3/2
L r/L & 102, the

RDF has a value of 1, that is, particles are homoge-
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Simulation / Model g0

Cascade simulation – Method A 13

Cascade simulation – Method B 5.9

Cascade simulation – Method C 3.9

Zaichik and Alipchenkov [2], figure 3 3.9

TABLE I. RDF asymptotic values, g0, for St
−3/2
L r/L � 1

and StL � 1 for the different cascade simulation methods,
and the Zaichik and Alipchenkov [2] model.

neously distributed, and over an active range of scales,

10−2 & St
−3/2
L r/L & 102, it rises and reaches an asymp-

tote, g0. For larger StL in our sample, however, the ac-
tive range is shortened by being too close to the integral
scale L, and g(r) asymptotes at smaller values that are
StL-dependent. The theory of Zaichik and Alipchenkov
[2] predicts a very similar behavior and their curve for
infinite Reynolds number, effectively for infinitely small
StL, is also shown in figure 13.

In figure 13b, we compare RDFs from the different
methods and the Zaichik and Alipchenkov [2] model by
scaling them with their respective g0. The curves are
nearly identical. Method A produces the highest RDF
values, i.e. the most intermittent concentration distribu-
tions, and method C, as it is biased towards lower in-
termittency, results in the smallest asymptotic value (see
table I) for values of g0. Interestingly, g0 for method C is
the same as for the Zaichik and Alipchenkov [2] theory.
Zaichik and Alipchenkov [2] use various approximations
in their derivation. Among them, they model the turbu-
lence by a Gaussian process which would underestimate
the tails of their probability distributions and therefore
underestimate intermittency.

V. DISCUSSION

V.1. The nature of scale-dependent particle
concentration

As described in section I, the traditional explanation
of clustering in terms of centrifugation of particles from
eddies has been replaced with a somewhat more com-
plicated and nuanced combination of physical processes
[3, 4]. We believe that our results (figures 5 (right)
and 10), stripped of their minor variations, represent a
kind of universal curve (“U-curve”) for β(Str) that can
be interpreted in terms of these different processes acting
on a particle of some St over a range of scales r.

In the Str < 0.1 regime, the effect is dominated by
centrifugation, which weakens as Str decreases [50, and
others]; thus β increases (the multiplier PDF narrows)
with decreasing Str in this regime. As Str increases be-
yond 1, the concentration effect is weakened by the de-
creasing sensitivity of particles to perturbations of any

kind by eddies with timescales much shorter than their
stopping times, so β again increases. This effect, which
could be thought of as an inertia impedance mismatch,
has been described in terms of response functions [51–
55], but see Pan and Padoan [9], Bec et al. [42], Hubbard
[56] and Hopkins [21] for other more recent and more
sophisticated analyses.

The strongest clustering effect is produced (the multi-
plier PDF has the lowest β) across perhaps one or two
decades of eddy scale r for a given St, centered on the
combined parameter Str ∼ 0.3, presumably the regime
where history effects in particle velocities play the dom-
inant role. While our results support the idea that con-
centration is generically due to “eddies on the scale of

ηSt
3/2
η ..” [13, 24], we think a more refined description

one could infer from the U-curve is that clustering is the
cumulative result of a history of interactions with the
flow of energy as it cascades over eddies ranging over two
decades in size, driving particles ever deeper into a con-
centration “attractor” even in the inertial range [1, 3, 4].
The other “universal curve” of Zaichik and Alipchenkov
[11] (their figure 1) and their improved model [2, their fig-
ure 3] reproduced in figure 13 also has this sense. That
is, we see a parallel based on causality, between time-
asymmetrical “history effects” on particles of some St
as they are affected by energy flowing down the cascade
through eddies of different scale, and a trajectory down
one side and then back up the other side of our U-curve.
Such a picture would lead the particle concentration as a
function of spatial binning scale to increase sharply over
some particular range of scales r/L or r/η related only
to St (the active range), and then remain constant to-
wards smaller scales where eddy perturbations are felt
only weakly because of, essentially, the poor impedance
match with the particle stopping time.

A natural prediction of this model is thus that, at in-
finite Re where energy is available on all timescales, far
from the dissipation range, and in the absence of com-
plications such as gravitational settling or fragmentation
limits, the maximum particle concentration should not

only arise over a similar range of scales near r ∼ ηSt
3/2
η

[2, 11, 13, 24], but also should have a “saturation” am-
plitude that is St-independent. Indeed this would seem
to be the prediction of Zaichik and Alipchenkov [2, their
figure 3]. In current simulations [2, 13], as well in simula-
tions we have conducted using the cascade, the clustering
of larger St particles (StL & 0.03) asymptotes at smaller
values of the RDF than seen for smaller particles (fig-
ure 13). We expect this is because the scale at which
the larger particles reach Str ∼ 0.3 is too close to the
integral scale, so their potentially two-decade-wide range
of interest, that our U-curve indicates is needed to reach
a true asymptote, is truncated at large scales.

Within the dissipation range at r < 20 − 30η, the en-
ergy spectrum of the flow changes as a result of the now-
fixed eddy timescale tr = tη [25]. Particles of Stη ∼ 1
are now unique in that they do not experience the usual
impedance mismatch with faster eddy forcing going to
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(a) (b)

FIG. 13. (a) Radial distribution function (RDF) g(r) for various values of StL (coloured solid lines) determined from cascade
model simulations using method A with the asymptotic RDF value, g0, indicated by an arrow. For comparison, the model
of Zaichik and Alipchenkov [2] from their figure 3 for infinite Reynolds number (black dashed line) is also shown. (b) RDFs
for StL = 3 ⇥ 10�3 for the di↵erent cascade simulation methods, and the Zaichik and Alipchenkov [2] model, scaled by their
respective asymptotic value, g0, given in table I.

decades of eddy scale r for a given St, centered on the
combined parameter Str ⇠ 0.3, presumably the regime
where history e↵ects in particle velocities play the dom-
inant role. While our results support the idea that con-
centration is generically due to “eddies on the scale of

⌘St

3/2
⌘ ..” [13, 24], we think a more refined description

one could infer from the U-curve is that clustering is the
cumulative result of a history of interactions with the
flow of energy as it cascades over eddies ranging over two
decades in size, driving particles ever deeper into a con-
centration “attractor” even in the inertial range [1, 3, 4].
The other “universal curve” of Zaichik and Alipchenkov
[11] (their figure 1) and their improved model [2, their fig-
ure 3] reproduced in figure 13 also has this sense. That
is, we see a parallel based on causality, between time-
asymmetrical “history e↵ects” on particles of some St

as they are a↵ected by energy flowing down the cascade
through eddies of di↵erent scale, and a trajectory down
one side and then back up the other side of our U-curve.
Such a picture would lead the particle concentration as a
function of spatial binning scale to increase sharply over
some particular range of scales r/L or r/⌘ related only
to St (the active range), and then remain constant to-
wards smaller scales where eddy perturbations are felt
only weakly because of, essentially, the poor impedance
match with the particle stopping time.

A natural prediction of this model is thus that, at in-
finite Re where energy is available on all timescales, far
from the dissipation range, and in the absence of com-
plications such as gravitational settling or fragmentation
limits, the maximum particle concentration should not

only arise over a similar range of scales near r ⇠ ⌘St

3/2
⌘

[2, 11, 13, 24], but also should have a “saturation” am-
plitude that is St-independent. Indeed this would seem

to be the prediction of Zaichik and Alipchenkov [2, their
figure 3]. In current simulations [2, 13], as well in simula-
tions we have conducted using the cascade, the clustering
of larger St particles (StL & 0.03) asymptotes at smaller
values of the RDF than seen for smaller particles (fig-
ure 13). We expect this is because the scale at which
the larger particles reach Str ⇠ 0.3 is too close to the
integral scale, so their potentially two-decade-wide range
of interest, that our U-curve indicates is needed to reach
a true asymptote, is truncated at large scales.

Within the dissipation range at r < 20 � 30⌘, the en-
ergy spectrum of the flow changes as a result of the now-
fixed eddy timescale tr = t⌘ [25]. Particles of St⌘ ⇠ 1
are now unique in that they do not experience the usual
impedance mismatch with faster eddy forcing going to
smaller spatial scales, so can continue to increase in con-
centration going to smaller scales. As noted by Bragg
et al. [25] the question remains as to whether there is any
sort of rollover at r ⌧ ⌘ in the RDF of St⌘=1 particles,
or whether an actual singularity would exist for point
particles. In terrestrial applications, finite particle sizes
comparable to ⌘ preclude unlimited singular behavior;
however, in protoplanetary nebula applications [8, 9, 22],
particle sizes of interest (submillimeter to dm) are orders
of magnitude smaller than the Kolmogorov scale (km) so
this is a question of significant interest.

Bec et al. [24] explicitly described the dissipation
regime as characterized by an “attractor” having frac-
tal properties, and indeed multifractal properties were
demonstrated by Hogan et al (1999) for clustering in this
regime. It is known that cascades lead to fractal and
multifractal spatial distributions [31, 46, and references
therein]. We now suspect that the cascade of Hogan and
Cuzzi [32], in which the multiplier distributions do seem

FIG. 13. (a) Radial distribution function (RDF) g(r) for various values of StL (coloured solid lines) determined from cascade
model simulations using method A with the asymptotic RDF value, g0, indicated by an arrow. For comparison, the model
of Zaichik and Alipchenkov [2] from their figure 3 for infinite Reynolds number (black dashed line) is also shown. (b) RDFs
for StL = 3× 10−3 for the different cascade simulation methods, and the Zaichik and Alipchenkov [2] model, scaled by their
respective asymptotic value, g0, given in table I.

smaller spatial scales, so can continue to increase in con-
centration going to smaller scales. As noted by Bragg
et al. [25] the question remains as to whether there is any
sort of rollover at r � η in the RDF of Stη=1 particles,
or whether an actual singularity would exist for point
particles. In terrestrial applications, finite particle sizes
comparable to η preclude unlimited singular behavior;
however, in protoplanetary nebula applications [8, 9, 22],
particle sizes of interest (submillimeter to dm) are orders
of magnitude smaller than the Kolmogorov scale (km) so
this is a question of significant interest.

Bec et al. [24] explicitly described the dissipation
regime as characterized by an “attractor” having frac-
tal properties, and indeed multifractal properties were
demonstrated by Hogan et al (1999) for clustering in this
regime. It is known that cascades lead to fractal and
multifractal spatial distributions [31, 46, and references
therein]. We now suspect that the cascade of Hogan and
Cuzzi [32], in which the multiplier distributions do seem
to obey level-independent scaling, were effectively dissi-
pation range cascades. Tests by Hogan and Cuzzi [32]
showed good agreement between their level-independent
cascade model and DNS. However, the multiplier PDFs
were determined at 3η and all their DNS results were for
low-to-moderate Reλ < 140 such that the integral scales
were 14η, 24η, 45η, and 86η. At least the first three of
these runs lie mostly within the dissipation range, where
scaling does support level independence [24, 25]. It might
be worth exploring the use of dissipation range cascades
further from the standpoint of modeling fractal structure
or to study higher moments of the particle density PDF.
Indeed Bec and Chétrite [57] present what is, essentially,
a cascade model that reproduces aspects of the particle
concentration PDF.

Moreover, to our knowledge, while fractal/multifractal
behavior has been shown for particle clustering within

the dissipation regime, either at scales of a few to tens
of η [58], or scales smaller than η [59, 60], no explicit
study of this property in the inertial range has been
done. It would be of interest to find whether the inertial
range cascade as described by the U-function (figure 5),
which is level-dependent but in a predictable way that
is level-independent, would also produce such a distribu-
tion, when suitably scaled for St. This could be of use in
modeling radiative transfer properties [16].

V.2. Dissipation, enstrophy, and Re-dependence

As mentioned earlier in section III.3, our dissipation
multiplier PDFs have larger β (are narrower) than the
expected βε ∼ 3 for all binning sizes we could usefully
study, reaching an asymptote of βε ∼ 8 at r . L/86.
Based on the very extensive inertial range manifested in
figure 1 [42], apparently extending up to > 2000η, we
had expected to find scale-free behavior in the dissipation
multiplier PDF over most of this range. However, recall-
ing figure 2, especially as selected by larger |q|, which
more strongly weight the structures where most dissipa-
tion occurs, the properties of dissipation are not invariant
over as wide a range as is the second order velocity struc-
ture function that defines the inertial range in Bec et al.
[42].

Figure 14 summarizes the overall scale variation of β
for dissipation and enstrophy, showing the spatial scale
both in terms of η and L following figure 1. At large
scales, the PDF is narrow for both (large β) but widens
with decreasing scale. At scales of ∼ 12η (∼ L/86) it
asymptotes at a value which seems to remain scale-free to
smaller scales. Our new asymptotic values do not agree
with values (βE ∼ 10 for enstrophy) found in Hogan and
Cuzzi [32], or (βε ∼ 3 for dissipation) in Sreenivasan and
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Stolovitzky [31]. It may be that the Hogan and Cuzzi [32]
βE is more properly associated with the dissipation range,
but the discrepancy in βε alone merits some discussion.

We hypothesize that at much higher Re than we can
study here, the scale-dependence of βε morphs in a
fashion so as to be consistent with Chhabra et al. [28]
and Sreenivasan and Stolovitzky [31]; that is, has a scale-
free βε ∼ 3 for all scales less than at least 3000η (based
on Chhabra et al. [28]) and probably less than L/16
(based on Chhabra et al. [28] and Chhabra and Jensen
[61]). At larger scales we expect β must increase in some
smooth fashion similar to ours, with an overall behavior
schematically shown by the red dotted line in figure 14.
Meanwhile, by the logic that enstrophy E is always more
intermittent (has smaller β) than dissipation, we then
also hypothesize that βE varies as suggested by the blue
dotted line.

We suspect that our observed βε and βE asymptote
(for r . L/86) at larger values than would be true for
much higher Re, because the viscous or dissipation range,
which bounds the inertial range on its small-scale end and
extends to 20-30η in general, here impinges on the small-
scale end of the nascent inertial range, and may prevent
the dissipation and enstrophy from ever fully realizing
their high-Re intermittency. In contrast, at high atmo-
spheric Re, the large-scale onset of the inertial range, at
3000−104η based on Chhabra et al. [28] and Sreenivasan
and Stolovitzky [31], is completely isolated from the vis-
cous range, as indicated in figure 1 by the blue axis labels
on the upper horizontal axis.

The scale-dependence and asymptotic value of βE is
important, because the process of particle concentration
may track the properties of E rather than those of ε based
on the physics involved (section V.1). While it may be
coincidental, in our DNS results, the β for inertial parti-
cles minimizes at a value very close to our value for βE ,
and considerably smaller (more intermittent) than our
value of βε. A secondary, related hypothesis is that the
particle concentration multipliers may track the behav-
ior of enstrophy (if velocities and accelerations are domi-
nated by vorticity), and the minima seen in the collapsed
curves of figure 5, which now never fall below 3.0, might
drop to significantly lower values, making the particle
concentration field more intermittent. For this reason,
cascades developed using our current collapsed β(Str)
curves may underestimate the abundance of zones of high
concentration at high Re to some degree. A better un-
derstanding of this Re-dependence will be needed to put
cascade modeling of particle concentration on quantita-
tively solid ground. The original dataset of Sreenivasan
and Stolovitzky [31] probably contains enough informa-
tion to assess the validity of these hypotheses regarding
dissipation, but not for enstrophy.
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FIG. 14. Hypothetical scaling behavior of dissipation and
enstrophy: The solid red and blue symbols, as in figure 9,
are those we calculate from the numerical flow at Re� = 400.
Dotted lines are hypothetical values at very high Re. High-Re
atmospheric dissipation [31] is scale-free at � ⇡ 3 at least be-
tween L/86�L/860; it is interesting that whatever changes af-
fect the weighted quantities in figure 2 and the structure func-
tion in figure 1, the � values for dissipation and enstropy do
not seem to vary through the viscous (dissipation) subrange
r/⌘ < 20. It is plausible and expected that enstrophy will
always be more intermittent than dissipation (have smaller
� values). The atmospheric (high-Re) value for the scale-
free asymptote for dissipation is roughly �=3 (black dotted
line). We hypothesize that � values at high Re follow trajec-
tories similar to the red and blue dotted lines for dissipation
and enstrophy respectively. That is, the observed behaviors
(symbols) is the e↵ect of an incompletely developed inertial
range.

ations in microwave opacity). There are several reasons
to expect di↵erent behavior in the dissipation range.

Recalling, however, our numerical discrepancy
with Sreenivasan and Stolovitzky [31] and others re-
garding the asymptotic value of � for dissipation, we
think the possibility of Re-dependence of even our
collapsed �(Str) might imply that our results (and other
inertial range results at low Re) underestimate e↵ects
of concentration, in the sense that at higher Re, the
minimum in the universal curve would move to lower �

(more intermittency and higher concentrations). One
might speculate that the minimum � for particles should
track the � for enstrophy instead of for dissipation.

In the application to planetesimal formation proposed
by Cuzzi et al. [18], it is necessary to create a joint PDF
of particle concentration and enstrophy. This motivates
a better understanding of high Re behavior of � for both
particles and enstrophy.

VI. CONCLUSIONS

Our results indicate that the multiplier PDFs for par-
ticle concentration (section III.2), dissipation, and en-
strophy (section III.3) vary with scale, at least over the
largest decade of spatial scales. We also find that the
multiplier PDFs for particle concentration have two com-
ponents: a traditional “�-function” component, and an
exponential-tail component (section III.2). We find that
the concentration multiplier � values collapse to a scale-
independent universal curve when plotted against an ap-
propriately scaled local Stokes number Str = St(r/⌘)�2/3

(section III.2, in particular equation (3.10) and figure 5),
allowing the cascade model to be used for modeling
higher Re conditions not accessible to numerical simu-
lation.

For dissipation, the “� ⇠ 3” asymptotic behavior
of Sreenivasan and Stolovitzky [31] in high Re atmo-
spheric flows probably appears at around r ⇠ L/30 or
L/40, and remains constant to smaller scales, at least to
r ⇠ 20 � 30⌘ where the dissipation range begins. In the
present simulation, the integral scale and the dissipation
range are not separated far enough for the dissipation �✏

to reach such low values, and instead it asymptotes for
scales below r ⇠ 20⌘ to a value of �✏ ⇠ 8. Enstrophy,
believed to be always more intermittent (smaller �) than
dissipation, asymptotes in the DNS to a value of �E ⇠ 3.
In light of the connection between vorticity and the ac-
celeration, centrifuging and concentrating of particles, it
may not be surprising that this value coincides with the
minimum � value for particle concentration multipliers
at the optimal Str.

Given that dissipation, and presumably enstrophy,
have not reached their scale-independent, asymptotic val-
ues seen in very highRe atmospheric flows, it could be ex-
pected that our collapsed particle multiplier �(Str) curve
is also Re dependent. Analyses of this sort for DNS of
particle-laden flows at significantly higher Reynolds num-
ber are therefore highly desirable, as are measurements
of enstrophy multipliers in very high Reynolds number
flows such as atmospheric flows.

We have also found that the cascade model can be used
to construct a spatial distribution of particle concentra-
tion, that can be carried to arbitrarily high Reynolds
numbers, and has a very good resemblance to the ana-
lytical theory of Zaichik and Alipchenkov [2]. More work
is needed to assess the asymptotic level of maximum con-
centration for particles of any size (which we find, as did
Zaichik and Alipchenkov [2], is size invariant, in the infi-
nite Re limit).
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(more intermittency and higher concentrations). One
might speculate that the minimum β for particles should
track the β for enstrophy instead of for dissipation.
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VI. CONCLUSIONS
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(section III.2, in particular equation (3.10) and figure 5),
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may not be surprising that this value coincides with the
minimum β value for particle concentration multipliers
at the optimal Str.

Given that dissipation, and presumably enstrophy,
have not reached their scale-independent, asymptotic val-
ues seen in very highRe atmospheric flows, it could be ex-
pected that our collapsed particle multiplier β(Str) curve
is also Re dependent. Analyses of this sort for DNS of
particle-laden flows at significantly higher Reynolds num-
ber are therefore highly desirable, as are measurements
of enstrophy multipliers in very high Reynolds number
flows such as atmospheric flows.

We have also found that the cascade model can be used
to construct a spatial distribution of particle concentra-
tion, that can be carried to arbitrarily high Reynolds
numbers, and has a very good resemblance to the ana-
lytical theory of Zaichik and Alipchenkov [2]. More work
is needed to assess the asymptotic level of maximum con-
centration for particles of any size (which we find, as did

Zaichik and Alipchenkov [2], is size invariant, in the infi-
nite Re limit).
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Appendix A: Three methods for computing the
spatial distribution of concentrations

We here provide more details about the three methods
for computing spatial concentration fields from multiplier
distributions that we used in section IV.3 for computing
radial distribution functions.

Let us consider a cube of size r/L = 2−N/3 (cascade
level N) having a concentration C(N), initially we start
with a cascade level 0 cube having a unit concentration
C(0) = 1, and divide it in half along each spatial direc-
tion. This results in eight sub-cubes with half the linear
size which correspond to a cascade level of N + 3 (equa-
tion 1.1). We denote the concentrations in these sub-

cubes as C
(N+3)
ijk , where i, j, k ∈ [1, 2] are indices denot-

ing the left (1) or right (2) sub-cube in the three spatial
directions. Since there are eight unknowns, we need eight
equations to uniquely determine the concentrations.

The first method – method A – makes the following
choice: One constraint is given by the fact that the aver-
age of the concentrations over all eight sub-cubes is equal
to the mean concentration, that is∑

i,j,k

1

8
C

(N+3)
ijk = C(N). (A.1)

We get seven more constraints by relating the concen-
tration of neighboring sub-cubes to multipliers that are
chosen randomly from the cascade model. A possible
choice are the combinations

(C
(N+3)
111 + C

(N+3)
211 )m

(N+3)
1 = C

(N+3)
111 ,

(C
(N+3)
112 + C

(N+3)
212 )m

(N+3)
3 = C

(N+3)
112 ,

(C
(N+3)
111 + C

(N+3)
121 )m

(N+3)
5 = C

(N+3)
111 ,

(C
(N+3)
112 + C

(N+3)
122 )m

(N+3)
7 = C

(N+3)
112 ,

(C
(N+3)
121 + C

(N+3)
221 )m

(N+3)
2 = C

(N+3)
221 ,

(C
(N+3)
122 + C

(N+3)
222 )m

(N+3)
4 = C

(N+3)
122 ,

C
(N+3)
121 + C

(N+3)
112 )m

(N+3)
6 = C

(N+3)
121 , (A.2)
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where m
(N+3)
i with i ∈ [1, ..., 7] are seven random multi-

plier values at cascade level N + 3. Equations (A.1) and
(A.2) are linearly independent and can be solved directly.
Applying this procedure recursively to ever smaller cubes
until some small cutoff length scale (r/L)min yields one
statistical realization of the concentration field.

The two other methods are obtained by relating the
concentrations in the two half-cubes, for each direction
separately, through a random multiplier, that is

∑
j,k

C
(N+3)
1ik = 2CNm

(N+1)
1 ,

∑
i,k

C
(N+3)
i1k = 2CNm

(N+1)
2 ,

∑
i,j

C
(N+3)
ij1 = 2CNm

(N+1)
3 , (A.3)

where m
(N+1)
i with i ∈ [1, ..., 3] are multipliers randomly

drawn from the level N + 1 cascade model. Since these
are only three equations, the linear system is underdeter-
mined.

For method B we choose one particular solution to

equations (A.3), namely
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CN
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(
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(
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(
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(
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(N+3)
212

CN
=
(
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1

)(
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)(
1−m(N+1)

3

)
,

C
(N+3)
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CN
=
(

m
(N+1)
1

)(
1−m(N+1)
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)(
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,
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CN
=
(

1−m(N+1)
1
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2

)(
1−m(N+1)
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)
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(A.4)

There is an ambiguity, of course, as to whether multiplier

m
(N+1)
i is applied to the “left” or “right” half of each box,

but since the multipliers m
(N+1)
i and (1−m(N+1)

i ) have
equal probability, either choice would be paired with the
opposite given enough random samples (and we do av-
erage many random samples to construct each cascade).
The eight sub-cubes from each large box have the iden-
tical concentrations, just differently distributed, for each

set of m
(N+1)
i , i ∈ [1, ..., 3] whether m

(N+1)
i goes to the

left or right box in each case.
For the third and final method, method C, we use a

least-square solver to determine the minimum-norm solu-
tion of (A.3), that is the solution that is closest to equally
distributed concentrations. Clearly, this causes a bias
towards the least intermittent spatial distribution. For
strongly intermittent multipliers, this method can even
lead to negative concentrations in one of the sub-cubes.
Such solutions have to be discarded, and this further bi-
ases method C towards minimal intermittency.
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[40] A. Arnèodo, R. Benzi, J. Berg, L. Biferale, E. Bo-
denschatz, A. Busse, E. Calzavarini, B. Castaing,
M. Cencini, L. Chevillard, R. T. Fisher, R. Grauer,
H. Homann, D. Lamb, A. S. Lanotte, E. Lévèque,
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