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Abstract

In this work, we experimentally examine the resonance of a sessile drop with a square

footprint (square drop) on a flat plate. Two families of modal behaviors are reported. One

family is identified with the modes of sessile drops with circular footprints (circular drop),

denoted as ‘spherical modes’. The other family is associated with Faraday waves on a

square liquid bath (square Faraday waves), denoted as ‘grid modes’. The two families are

distinguished based on their dispersion behaviors. By comparing the occurrence of the

modes, we recognize spherical modes as the characteristic of sessile drops and grid modes

as the constrained response. Within a broader context, we further discuss the resonance

modes of circular sessile drops and free spherical drops, and we recognize various modal

behaviors as surface waves under different extents of constraint. From these, we conclude

that sessile drops resonate according to how wavenumber selection by footprint geometry

and capillarity compete. For square drops, a dominant effect of footprint constraint leads

to grid modes; otherwise the drops exhibit spherical modes, the characteristic of sessile

drops on flat plates.

∗cc836@cornell.edu
†sd386@cornell.edu
‡phs7@cornell.edu

1



Square Drop Resonance February 21, 2017 Chang, Daniel, Steen

1 Introduction

Dynamics of sessile drops attracts much scientific interest for its significance in various ap-

plications [1–7]. Thanks to the progress in surface engineering, surfaces can now be treated

with wetting patterns of great specificity, sharp contrast and excellent resolution [8–10]. This

opens the door for greater droplet control in microfluidic and low-gravity applications. Here we

investigate the fundamental dynamics of vibrated sessile drops, and we examine the influence

of geometrical footprint constraint on the influence of sessile drop resonance.

The studies of resonating sessile drops on flat plates [11, 12] and Faraday waves [13] are

similar in many aspects. For both, typical observables are mode shapes [11, 14–32], resonance

frequencies [11, 14–32], and the evolution of surface waves with forcing amplitude [18, 23, 29–

31, 33–35]. The free surface waves oscillate at the forcing frequency (harmonically) when the

forcing acceleration is low. However, an elevated acceleration triggers modes which oscillate

at half the forcing frequency [15, 18, 19, 21, 30–32], called half-frequency subharmonic modes.

This has been identified as a parametric response, often modeled by the Mathieu-Hill equation

[15, 18, 19, 25, 31, 32, 36, 37]. These common features apparently imply that resonance of drops

and Faraday waves are closely related, although they have been separate studies in the literature

mostly.

For resonating sessile drops, the dynamics of surface deflection has been modeled as the

small-amplitude free response of a drop of ideal liquid with inertia distorting and capillarity

restoring. Motions satisfy a Bernoulli equation in the bulk with kinematic and pressure condi-

tions on the deformable surface. Using the boundary-integral approach the problem is mapped

to the surface domain of a spherical cap rest state. On that domain, deflection curvature is

related to pressure by the standard normal stress condition (Young-Laplace). Constant sur-

face tension is assumed. An integro-differential operator equation results that represents the

competition between liquid inertia and capillarity. This is a wave equation. The dispersive

part involves a Laplace-Beltrami operator, essentially a surface Laplacian with non-constant

coefficients that encode the rest-state curvatures. (For a planar rest state, the Laplace-Beltrami

operator reduces to the classical Laplace operator.) This model has proved successful in captur-

ing resonant frequencies for driven sessile drops that are not too flat [12,21,22]. These standing

waves, pinned along circular footprints, are therefore classified using the spherical harmonic
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symmetries inherited from free spherical drop oscillations [38,39]. We shall refer to these waves

as Rayleigh capillary waves. The resonant response can either be harmonic or subharmonic.

For Faraday waves, the Benjamin-Ursell model [37] introduces the driving displacement as

a periodic acceleration appearing in the body force term. The resulting equation is a modified

wave equation with time-dependent coefficients - leading to the Mathieu-Hill model upon re-

duction. Later, Kumar and Tuckerman [40] perform a linear stability analysis of the weakly

viscous problem. Zhang and Vañils [41] derive the quasi-potential equations for the weakly

nonlinear problem and solve for the pattern selection near onset. The extents of validity in

assuming weak viscosity and weak nonlinearity are recently examined [42, 43]. Additionally,

the Faraday problem is placed in a nonlinear context and the rest state is shown to be stable

for forcing of small enough amplitude. As forcing amplitude increases, the free surface wave

bifurcates to subharmonic temporal behavior [44]. The nature of the bifurcation depends on

the depth of the liquid bath [44]. Our interest here is in how Faraday waves change to Rayleigh

capillary waves as droplet depth (volume) and footprint geometry are varied. We shall distin-

guish families of modal behaviors using traditional dispersion relationship tests, and we report

experimental results.

The scopes of Rayleigh and Faraday studies are somewhat different. For example, Faraday

waves have been examined for flat free surfaces in containers with circular and square footprints,

conforming to cylindrical and rectangular coordinate geometries. As figure 1 summarizes, the

corresponding eigenmodes are Bessel-Fourier and 2D Fourier series, respectively [37]. For sessile

drops, published works typically utilize homogeneous flat substrates [15–17, 19, 21], on which

a drop forms a spherical cap with a circular footprint. For such capillary spherical caps, the

only known family of eigenmodes consists of those related to spherical harmonics [12]. For

Faraday waves, varying the boundary geometry of the liquid bath changes the eigenmodes from

Bessel-Fourier to 2D Fourier series. A curious question is then raised: how does a sessile drop

resonate if its contact line is constrained to be square but its free surface curves somewhat like

a spherical cap? More fundamentally, how do the effects of footprint geometry and free-surface

curvature compete to determine the drop’s resonance behavior?

In this work, we experimentally investigate the forced resonance of sessile drops with a

square footprint (square drops). We constrain a sessile drop’s footprint to be square on a flat

3



Square Drop Resonance February 21, 2017 Chang, Daniel, Steen

drop

bath

circular square
boundary

Bessel-Fourier 2D Fourier

Legendre-Fourier what modes?

Figure 1: (Color online) Modes on the free surfaces of liquid baths and sessile drops for circular
and square boundary symmetries. Motivating question of this work: What are the modes of a
vibrated sessile drop with a square footprint?

plate, mechanically oscillate the plate, and observe the drop’s resonance through high-speed

imaging. The observations are compared to studies of sessile drops with a circular footprint

(circular drop) and Faraday waves with a square boundary (square Faraday wave). It turns

out that a square drop can exhibit two distinct families of modes depending on its volume:

spherical and grid modes. In what follows, shape and frequency responses of the modes are

presented first. Then a discussion on how dispersion distinguishes the modes of the two families

follows. Finally, the natures of the different families of modes are identified.

2 Experimental Setup

Square and circular drops are tested with the same approach as in our previous works [21,22].

Figure 2 shows our oscillation platform and observation apparatus. In experiments, our sessile

drops are vertically oscillated by single-frequency sine waves on a VTS-100 mechanical vibrator

(by Vibration Testing Systems, Aurora, OH, USA). Each sine wave is generated by an Agi-

lent 33220A function generator (Agilent Technologies, SantaClara,CA) and then amplified by a

Crown CE2000 power amplifier (Crown Audio, Elkhart, IN) before sending to the mechanical

vibrator. Mirrors are installed to visualize drop motion using one high-speed camera (RedLake

HG-XL, by Integrated Design Tools, Inc., Tallahassee, FL, USA). A woven metal mesh (prod-

uct # 85385T875, from McMaster-Carr, Elmhurst, IL, USA) is sandwiched under the solid

substrate that holds the drop. The wires of the mesh are approximately 60µm in diameter,

and the openings are about 110 µm by 110 µm. Light is projected directly from underneath
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Figure 2: (Color online) Schematic of our experimental platform [21, 22]. Shown in the red
(rightmost) box are the key components: mesh pattern and LED light source under the drop.
Light rays from LEDs are refracted by the drop’s deforming surface, reflected into the high-
speed camera by mirrors A, B, and C, and convey a deformed mesh pattern to the computer,
thereby visualizing the deformation of the drop’s surface. A signal generator (not shown)
oscillates the surface sinusoidally in the direction perpendicular to the plane of the surface.

the mesh. The drop surface refracts the light according to how the surface deforms and the

so-deformed mesh is viewed from the top. The optics provides spatial resolutions of 10µm/pixel

at 5000 frames per second and 15µm/pixel at 10470 frames per second. Features down to 40µm

can be clearly resolved on the platform. Further detail may be found in [21].

For the experiments, each glass substrate is prepared with a relatively hydrophilic pinning

footprint to constrain the footprint of a sessile drop. The relative hydrophilicity of a pinning

footprint makes our drops stay pinned within the footprint area. Two glass substrates are

prepared, one with a circular pinning footprint and the other a square one. The circular

pinning footprint is 5 mm in diameter, and the square one has the same area as the circular

one. Having the same wetted areas enables direct comparison of observations for drops of the

same volume. Pure water drops of 10 - 30 µL are tested. The volume increment is 2 µL.

The range of volumes ensures that our square drops fully cover the pinning footprint and stay

pinned. In this work, each reported test is repeated at least 3 times to ensure reproducibility.

In what follows, a square, circular or sessile drop is termed large if it is larger than 20 µL,

small if smaller than 16 µL, and medium if between 16 and 20 µL. For circular drops, the

contact angle is 42◦ at 10µL, 60◦ at 16µL, 70◦ at 20µL and 86◦ at 30µL. Once deposited, a

drop is mechanically oscillated and observed through high-speed imaging.
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Figure 3: Examples of a zonal, a sectoral and two tesseral modes identified by their number
of layer(s) n and number of sector(s) l [22]. For each mode, the side-view profile on the upper
right and the top-view surface on the lower right are predicted by Bostwick-Steen theory [12].
The image on the lower left is experimental top-view snapshot of the mode [22].

3 Spherical Modes

Our large and medium square drops (subscript s) resonate like circular drops. For circular

drops, our prior work has identified the first 37 modes according to their numbers of layers and

sectors [22]. As figure 3 shows, layers and sectors are most recognizable in side and top views,

respectively. Zonal modes consist of n ≥ 2 axisymmetric layers. Axisymmetry means l = 0

sectors. For example, the illustrated (n, l) = (4, 0) mode has four layers and no longitudinal

variation. Sectoral modes have n = 1 layer with l sectors. As an example, the (1, 6) mode

exhibits n = 1 layer with l = 6 sectors. Finally, tesseral modes possess some (l > 0) longitudinal

variation in multiple (n > 1) layers. The (2, 4) mode possesses n = 2 layers from the side view

and l = 4 sectors from the top view. Likewise, n = 3 and l = 2 can be deduced from the

side and top views of the (3, 2) mode. These are natural modes on spherical caps [12] and

are denoted as spherical modes. In what follows, we present the features common to large and

medium square drops. Then we identify these observed modes with spherical modes on circular

drops.

Figure 4 shows the spherical modes examined in our experiments. A video of these modes is

supplied in our supplementary materials [45]. The top row of figure 4 shows 3 spherical modes

on circular drops. The modes are (1, 2), (1, 3) and (1, 4) according to our layer-sector naming

convention [22]. A (1, 2) has 2 rotationally symmetric sectors in one layer. The bar shape of the

(1, 2) is clearly recognizable as indicated by the solid line. A (1, 3) exhibits three rotationally

symmetric sectors in one layer and appears like a ∆ (or a ▽). Finally, a (1, 4) possesses four

sectors in one layer. The four-fold symmetry makes its pattern resemble a diamond, a square
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(1, 2) (1, 3) (1, 4)

(1, 2) (1, 3) (1, 4)

s s s

mode (1, 2) (1, 2)s (1, 3) (1, 3)s (1, 4) (1, 4)s
volume (µL) 20 24 22 24 16 20
frequency(Hz) 135 103 184 177 269 248
acceleration(g) 3 2.5 5 4 7 6

Figure 4: (Color online) Top-view snapshots of circular footprint (top row) and square footprint
(bottom row) mode shapes, with two columns per mode comparing full-period and half-period
shapes. The represented modes are (1, 2), (1, 2)s, (1, 3), (1, 3)s, (1, 4) and (1, 4)s. Corre-
sponding forcing frequencies and accelerations in table below. As a guide to the eye, yellow
bars superimposed to highlight symmetry of mode shapes. The footprints of circular drops are
5mm in diameter. Each edge of a square drop’s footprint is 4.43mm. A video of these modes
is supplied in the supplementary materials [45].

or a cross.

Large and medium square drops exhibit similar mode shapes. In figure 4, (1, 2)s exhibits a

diagonal, bar-shaped ridge which is identical to the pattern of a (1, 2). With a (1, 4)s, a square

drop shows either a diamond-shaped pattern or a cross. In either case, the four-fold symmetry

of (1, 4)s resembles the pattern of a (1, 4). For (1, 3)s, the Λ-shaped (or V-shaped) pattern is

missing a third ridge to complete a ∆ (or a ▽). The third ridge is suspected to submerge close

to the drop’s bottom (top) edge, and the pinning at the drop’s edge presumably inhibits its

appearance. Hence, on the basis of figure 4 alone, an association of (1, 3) and (1, 3)s is unclear.

To make a positive association of these two modes, one needs to inspect their frequency bands,

introduced below.

A difference between (1, 2), (1, 3), (1, 4) and (1, 2)s, (1, 3)s, (1, 4)s is how these modes can

orient their patterns. This is perhaps not obvious from figure 4, as we have chosen snapshots of

modes with similar orientations to demonstrate their shape similarity. For (1, 2), (1, 3) and (1,

4), we see almost any orientation of the patterns. However, the patterns of (1, 2)s, (1, 3)s and
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Figure 5: (Color online) Measured frequency bands of circular and square footprint modes as
volume varies: (1, 2), (1, 2)s, (1, 3), (1, 3)s, (1, 4) and (1, 4)s modes.

(1, 4)s are fixed. In experiments, the bar-shaped ridges of (1, 2)s are always diagonal. For (1,

3)s, the tip of its Λ (or V) always lies in the middle of an edge. That is, a (1, 3)s always ‘rocks’

parallel to edges of the footprint, not diagonally. Finally, the diamond pattern of a (1, 4)s in

the left snapshot always differs from the footprint by 45◦, and the cross in the right snapshot

must match the footprint’s both diagonals. Apparently the orientations of (1, 2)s, (1, 3)s and

(1, 4)s are constrained by the symmetry of the drop’s square footprint.

Figure 5 shows the frequency bands of the modes in figure 4. In experiments, the modes

appear within a finite window of frequencies. Outside this window, mode shapes are not

observed. Therefore, we probe the lower and upper observed frequencies. These are the upper

and lower limits of the frequency bands in figure 5. For example, (1, 3)s oscillates between

80 and 86 Hz on a 28µL square drop, and (1, 3) between 97 and 103 Hz on an 18 µL square

drop. The maximum volume of our drops is constrained by apparatus to 30 µL. The minimum

volume below which modes cease to appear depends on the mode. The bands terminate at

different volumes. Importantly, we probed the frequencies of all six modes for drops down to

10µL. However, (1, 2)s is observed only for drops at least 18µL, whereas (1, 2) appears only

for drops at least 14 µL.

From figure 5, the bands of (1, 4)s and (1, 4) obviously overlap, as do those of (1, 3)s and

(1, 3). Although the bands of (1, 2)s and (1, 2) only partially overlap, the overlap increases

with the volume of drops. This is presumably because the larger a square drop is, the more it

resembles a spherical cap, and hence the closer a square (1, 2)s behaves like a circular (1, 2).
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The shape similarity in figure 4 and frequency band overlap in figure 5 consistently associate

(1, 2)s with (1, 2), (1, 3)s with (1, 3), and (1, 4)s with (1, 4). That is, (1, 2)s, (1, 3)s and (1,

4)s are the square-drop versions of the (1, 2), (1, 3) and (1, 4), respectively. Large and medium

square drops thus resonate like circular drops. This is not surprising.

We have thus far discussed spherical modes of sessile drops only in terms of the three

modes in figure 4. These modes are chosen because of their relatively simple shapes and low

frequencies. The simple shape facilitates mode identification, especially for the modes deformed

by the square footprint. Identifying a complicated mode on a circular drop is already non-

trivial. It would be more difficult to identify the same complicated mode disturbed by a square

footprint. Modes with lower frequencies are also preferred in these experiments. Low frequency

modes exhibit less spectral crowding [22] which means that coexistence and competition of

modes are less likely. This favours isolated pure modes and unambiguous modal identification.

In figure 5, the frequency bands of (1, 2)s, (1, 3)s and (1, 4)s terminate at larger volumes

than those of (1, 2), (1, 3) and (1, 4), respectively. As a square drop’s volume decreases,

the constraint of footprint geometry gradually prevails in influence over the drop’s resonance

dynamics. A new family of modes emerge as a result, as described in the following section.

4 Grid Modes

Small square drops have free surface deflections that resemble those of a flat and square surface.

On a flat surface pinned at x = 0, y = 0, x = L and y = L, any standing wave can be expressed

as a 2D Fourier series whose components, or modes, are

zpq(x, y, t) = sin
pπx

L
sin

qπy

L
cos(2πfpqt) (1)

where p and q are any positive integers, and fpq the resonance frequency. Twelve such modes

are presented in figure 6. For each mode, the deflection according to equation (1) is rendered as

the greyscale map on the left. The brightness represents the local height of the pinned square

film. That is, bright and dark regions are peaks and troughs, respectively. On the right is an

experimental snapshot of the corresponding mode on a square drop. We denote these modes

as grid modes since their nodal lines form rectangular grids. A video of selected grid modes is
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Figure 6: A partial catalog of observed grid modes paired with simulated patterns. For each
pair, to the left is shown the mode shape on a pinned, flat square film according to equation
(1). The brightness indicates the height. To the right is shown the corresponding snapshot on
a square drop, from experiment. The drops are 10 - 16µL. Among the observations, (1, 3), (1,
5) and (1, 7) are harmonic modes which oscillate at their forcing frequencies. All others are
half-frequency subharmonics. Marked with an X as missing is the mode (p, q) = (2, 3) because
it has never been observed in our experiments. A video of selected grid modes is provided in
our supplementary materials [46].

provided in our supplementary materials [46]. For square drops, we note that p = q = 1 cannot

occur as it corresponds to a volume oscillation mode.

In our experiments, grid modes appear on small and medium square drops. In the snapshots

of figure 6, the mesh is locally magnified if it lies underneath a wave peak. Conversely, the

drop’s free surface shrinks the mesh wherever it is concave. As an example, (p, q) = (1, 3)

shrinks the underlying mesh in the middle but magnifies it to the left and right. Therefore, the

instantaneous profile of (1, 3) is a middle trough sandwiched by ridges to the left and right.

The corresponding greyscale map also depicts this. Other grid modes can be identified with

the same scheme.

We note that, ideally, our square pinning footprint has equal length and width. If this were

the case, however, (1, 3) and (3, 1) should resonate at exactly the same frequency and hence

coexist or compete. So should any other grid mode and its transposed twin. Relevant observa-

tions have been reported by Douady and Fauve [24], in which each mode of a square Faraday

wave coexists or competes with its transpose depending on the ratio of the two wavelengths.

Our experiments are free from such modal interactions, because the length and width of our

‘square’ pinning footprint differ, if only by approximately 2.5%. This is an imperfection of pin-
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ning footprint preparation. However, the imperfection separates the frequency bands of (1, 3)

and (3, 1) enough that (1, 3) resonates within a lower frequency range. The slight imperfection

also separates other modes from their transposes. Thanks to this imperfection, we are able to

observe the isolated pure modes in figure 6.

Few of our grid modes oscillate at the forcing frequency of our mechanical oscillator. In fact,

most of them are half-frequency subharmonic modes. Harmonic modes are (p, q) = (1, 2w− 1)

and their transposes, where w is any positive integer. In our experiments, the only harmonic

modes are (1, 3), (1, 5), (1, 7) and their transposes; all others are half-frequency subharmonics.

Now we characterize the frequencies of grid modes. The six relevant, independent variables

are observed frequency f , dimensionless wavenumber k̄ ≡ π ×
√

p2 + q2, drop volume V ,

footprint area A0, liquid density ρ and surface tension σ. For convenience, we replace A0 and

V by two length scales L and H as

L ≡
√

A0, H ≡
V

A0

(2)

which leaves the following list of relevant variables

{f, k̄, H, L, ρ, σ}. (3)

Dimensional reasoning leads to scaled frequencies that depend on two groups,

(2πf)2
ρL2H

σ
= Y (k̄,

H

L
) (4)

where Y is an unknown function under construction. To proceed, we assessed the scaling

between f and k̄ with a least-square fit and obtained f ∼ k̄1.965 ≈ k̄2. Accordingly, we re-write

Y = k̄4 × h̄× (H/L)n where h̄ and n are undetermined. For simplicity, we take n = 1, which

gives

f =
1

2π

√

σ

ρL3
k̄4 × h̄. (5)

We then use h̄ as a fitting parameter to capture the variation of frequency with drop volume.
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Figure 7: (Color online) Dispersion relation of grid modes for square drops of 10 - 20 µL. (a)
Observed (©) and predicted (∆) frequencies. (b) The fitting parameter h̄ for different drop
volumes.

For our observations of each drop volume, we calculate h̄ that minimizes the error function

ǫ(h̄) =
∑

i

[

fi −
1

2π

√

σ

ρL3
× h̄k̄4

i

]2

. (6)

where fi and k̄i are the frequency and dimensionless wavenumber of our i−th observation. Then

we find the scaling h̄ = h̄(H/L) = a× (H/L)b. We note that taking n = 1 in equation (4) does

not constrain the scaling between frequency f and H/L. The true scaling is f ∼ (H/L)b/2, and

the exponent b will be given by our fit.

Figure 7 shows the results of our fit. In figure 7(a), the mean observed frequency (©) is

plotted with the prediction (∆) from equation (5) for each mode and each drop volume. The

experimental data is provided in the supplementary materials [47]. The multiple frequencies

for each mode are the observations and the predictions for square drops of different volumes.

The average fitting error is by 5.8% with a standard deviation of 4.3%. In figure 7(b), h̄ is

plotted against H/L. A least-square fit suggests h̄ ∼ (H/L)−0.6. Recall that drop volume

V = HL2 and L is fixed. Therefore, h̄ ∼ (H/L)−0.6 means h̄ ∼ V −0.6. This is consistent

with our observations: the larger the drop volume, the lower the frequency for each grid mode.

Finally, we note that in the dimensionless form,

h̄ = 0.069
[H

L

]

−0.6

. (7)

Grid modes are closely related to the natural modes of square Faraday waves. Faraday
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waves are capillary-gravity waves generated by plane-normal oscillations of a liquid bath. At

rest, the bath is of uniform depth h held in a right cylinder. The observed Faraday waves are

those governed by the classical capillary-gravity dispersion relation

(2πf)2 = (gk +
σ

ρ
k3) tanh(kh), (8)

where g is the gravitational acceleration and k the physical wavenumber. In their classical work

on Faraday waves, Benjamin and Ursell used these natural frequencies to scale their paramet-

rically forced resonance modes [37]. We shall refer to natural modes with these frequencies

as BU modes. In what follows, we shall consider grid and BU modes on a liquid of the same

footprint/planform area A0 whenever we compare these modes. BU modes belong to flat free

surfaces with a fully mobile contact line and a constant, 90◦ contact angle. In contrast, grid

modes occur on square drops which have curved free surfaces, pinned contact lines and no depth

below the contact lines. Despite these differences, the two families of resonance dynamics share

common features in their shape and frequency responses. In what follows, we first associate

grid and BU modes by shape. Then we compare and contrast how their frequencies scale with

wavenumber k and drop volume V .

A one-to-one shape correspondence exists between grid and BU modes. For a liquid bath

in a right square cylinder, the shapes of BU modes are [37]

Suv = cos
(uπx

L

)

cos
(vπy

L

)

(9)

where u and v are non-negative integers, and L2 = A0 the bath’s planform area. If we compare

grid and BU modes with the same indices, equations (1) and (9) lead to

(u, v) = (p, q) or (u, v) = (q, p). (10)

We restrict our discussion to BU modes with u×v > 1 since p×q > 1 for our grid modes. For a

grid mode and a BU mode related by (10), they have the same dimensionless wavenumbers, and

their shapes differ only as sine differs from cosine. This establishes a one-to-one correspondence

to uniquely associate each grid modes to a BU mode by shape. A natural next question is how

the frequencies of corresponding grid and BU modes compare.
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Grid modes exhibit an almost identical dispersion relation as certain BU modes do. Consider

equation (8) for BU modes. If the liquid bath is shallow, tanh(kh) ≈ kh. Additionally, if

capillarity dominates, ρg/σk2 ≪ 1, and equation (8) becomes

f =
1

2π

√

(

gk +
σ

ρ
k3

)

tanh(kh) ≈
1

2π

√

σ

ρ
k3 tanh(kh) ≈

1

2π

√

σ

ρ
k4h =

1

2π

√

σk̄4

ρL3

h

L
. (11)

This would be identical to equation (5) if we take h̄ = h/L. In this way, we uniquely associate

each grid mode with a BU mode: for any grid mode (p, q) with frequency f on a square drop

of ‘depth’ H and footprint area A0, there exists a BU mode (u, v) = (p, q) that also oscillates

at f on a bath of depth h = h̄ × L and planform area A0. Recall that h relates to H as

h = 0.069 × H−0.6 × L0.4. Are grid modes simply square Faraday waves transplanted onto a

sessile drop?

The answer is no, because the frequencies of grid and BU modes vary with liquid volume in

opposite ways. In experiments, each grid mode has a lower frequency on a larger drop. This

is a typical drop-like behavior reported for experiments with sessile [11, 22, 48], pendent [49]

and levitated [50] drops. In contrast, each mode of Faraday waves is known to possess a

higher frequency on a deeper bath [27]. Such bath-like behavior is not shared by grid modes.

Interestingly, grid modes are simultaneously bath-like in shape and frequency-wavenumber

scaling but drop-like in frequency-volume scaling. The mixed features suggest grid modes as a

family of transitional dynamics between the resonance of sessile drops and liquid baths.

Before proceeding, we note that equation (5) helps us rationalize the absence of (2, 3) mode,

cf. figure 6. According to equation (5),

f =
1

2π

√

σ

ρL3
× h̄k̄4 = s× (p2 + q2) (12)

where

s ≡
π

2

√

σ

ρL3
× h̄.

For each grid mode (p, q), equation (12) means that the forcing frequencies f ∗ should be

f ∗ = s× (p2 + q2)
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for harmonic modes and

f ∗ = 2s× (p2 + q2)

for half-frequency subharmonic modes. In experiments, observed modes with p = 2 or q = 2

are half-frequency subharmonics. As such, (2, 3) is presumably half-frequency subharmonic,

and the forcing frequency would scale as 2× (22+32) = 26 which equals 12+52 of (1, 5). Recall

that (1, 5) is harmonic. Therefore, (2, 3) and (1, 5) correspond to the same (range of) forcing

frequency. In our experiments, however, harmonic modes always require less acceleration to

excite. As a result, (1, 5) prevails to dominate the drop’s resonance and masks the (2, 3)

response.

5 Spherical vs. Grid Modes

Spherical modes and grid modes differ in shapes as already discussed with figures 4 and 6.

Now we contrast their frequency responses using classical dispersion relations. In this section,

the term wavenumber refers to dimensionless wavenumber k̄ unless otherwise specified.

Here we include data from our prior work [22] and experiments first reported here. All grid

modes from new experiments are included, and recall that the wavenumber k̄ = π ×
√

p2 + q2.

Among all spherical modes, we only consider zonal and sectoral modes. The first five zonal

modes (n, l) = (2, 0), (3, 0), ..., (6, 0) from [22] are considered, and the number of layers n is

used as the wavenumber. For sectoral modes, we combine data for (n, l) = (1, 5), (1, 7) and

(1, 9) from [22] and (n, l) = (1, 2), (1, 3) and (1, 4) from new experiments, and the number of

sectors l is used as the wavenumber. Tesseral modes are excluded owing to the ambiguity in

describing such 2D waves with a single wavenumber.

We compare the selected modes by how their frequencies f scale with wavenumber k̄. For

the comparison, pairs of (f, k̄) are least-square fit by f = λk̄β for each type of mode and each

drop volume V . The modes are compared in terms of β in figure 8. As an example, the square

of V = 10µL is obtained from fitting all data points (f, k̄) for grid modes observed on a 10µL

square drop.

According to figure 8, dispersive travelling waves underlie all selected modes. Standing

waves can result from the superposition of two counter-progagating waves, as is well known.
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Figure 8: (Color online) Exponent β for sessile drop modes. Grid/Sqr: grid modes on square
drops. Sectoral/Cir: sectoral modes on circular drops. Zonal/Cir: zonal modes on circular
drops.

Recall that a non-dispersive wave has a linear dispersion relation (i.e. β = 1), and its wavefront

travels without distortion [51]. In contrast, a dispersive wave has many phase velocities which

depend on the wavelength. As such, the wavefront deforms as it propagates. In figure 8,

it’s not surprising that all observed modes are dispersive. This is because their wavefronts

must adapt to fit the equilibrium drop shapes as they propagate. Spherical modes disperse

presumably because their polar waveforms are Legendre functions instead of sine waves. The

polar waveforms must deform to conserve the drop’s volume as they travel. For grid modes,

the wavefronts propagate on surfaces curving both parallel and perpendicular to the wavefront.

This means the wavefronts constantly experience variation of liquid depth which refracts the

waves and smears the wavefronts.

Figure 8 also indicates distinct dispersions for grid and spherical modes. The difference

apparently trends with how their wavefronts smear. Spherical modes possess sinusoidal az-

imuthal waves which do not deform as they propagate. They are dispersive only in the polar

direction. In contrast, the wavefronts of grid modes are constantly smeared both parallel and

perpendicular to the direction of propagation. Consequently, the one-dimensionally dispersive

spherical modes disperse much less than grid modes which are two-dimensionally dispersive.

A final remark on dispersion: figure 8 is consistent with our prior work [21] for zonal and

sectoral modes. Namely, the resonance frequency does not scale with wavenumber as Rayleigh-

Lamb theory would predict (f ∼ k̄1.5) [38, 39]. In figure 8, β of zonal and sectoral modes

varies between 1.22 and 1.26 but never approaches 1.5. This agrees with the overprediction of

Rayleigh-Lamb theory already reported [21] where Rayleigh-Lamb predictions are tested only
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Figure 9: (Color online) Continuum of rest shapes with corresponding resonance modes la-
beled below. From spherical harmonic waves on free drops, Rayleigh capillary waves [38], to
rectangular waves on flat surfaces in rectangular containers, Faraday waves [13]. The dashed
line segments denote the transition between spherical and grid modes at contact angles of
approximately 75◦ - 85◦.

for drops of one volume and a limited range of contact angles. Figure 8 further validates the

conclusion for a broader range of the parameters.

Contrasting observation of grid and spherical modes reveals the different extents to which

the square footprint influences a drop’s resonance. Our large square drops resemble spherical

caps and exhibit spherical modes. This means that large square drops resemble large circular

drops both statically and dynamically, which in turn implies an insignificant effect of footprint

geometry for large sessile drops. As such, spherical modes are mainly the consequence of a

dominating capillary force. For the same reason, these modes can be regarded as a sessile drop’s

characteristic. In contrast, our small square drops resemble flat square surfaces and perform grid

modes. However, small circular drops remain spherical caps and perform spherical modes [22].

The difference highlights the dominant effect of footprint geometry over capillary force for small

square drops. As such, grid modes are a footprint-influenced, constrained response. Finally, our

medium square drops exhibit both spherical and grid modes and suggests comparable influences

of capillarity and footprint geometry. A gradual transition between the two families of modes

occurs. A main result of this paper is the determination of the transition regime to be 75◦ -

85◦ in terms of a square drop’s contact angle (cf. appendix).

Responses can be related to Rayleigh capillary and Faraday waves. With figure 9, we con-

sider the resonance of a liquid under different extents of constraint by a support. Unconstrained

free drops form spheres, and their natural modes are spherical harmonics [38, 39]. Spherical

harmonics can thus be thought of as the free drop characteristic, because they occur solely

due to the drop’s inertia and surface tension without any constraint. A free drop becomes a

circular drop if it is brought in contact with a homogeneous substrate. The constraint of the
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substrate modifies the drop’s resonance spectrum [21] such that its natural modes are no longer

spherical harmonics but what we here call spherical modes. As discussed, these modes occur

when capillary force dominates and effects of footprint geometry are insignificant. We have

identified spherical modes as the characteristic of sessile drops. Relative to the Rayleigh free

drop, however, spherical modes are also a constrained response because they are influenced by

the substrate presence.

Our square pinning footprint constrains square drops not only with a liquid-solid contact,

but also with a footprint symmetry exotic to the Rayleigh drop. As such, our large square drops

show spherical modes with fixed azimuthal orientations. Planform selects orientation as well

as wavenumber in this case. These spherical modes are in fact the sessile drop characteristic

with a ‘square accent.’ For small square drops, the footprint constraint dictates the drop’s res-

onance. Grid modes appear as a result. Our characterization has enabled one to quantitatively

associate grid modes with square Faraday waves. Overall, our square drop experiments provide

a link between Rayleigh capillary waves and Faraday waves. To summarize, figure 9 presents a

continuum of surface waves for liquid drops under different extents of constraint.

6 Conclusion

In this work, resonance of square drops is experimentally examined in terms of the shape and

frequency responses. Depending on volume, a square drop exhibits either spherical modes like

a circular drop or grid modes like a flat square surface. The spherical modes on square drops

are identified by comparing their shapes and frequencies with resonating circular drops [12,22].

For grid modes, ways to identify their shapes and predict their frequencies are proposed. The

absence of (2, 3) mode is also rationalized using this viewpoint. These modes are further

associated with square Faraday waves. Our subsequent discussion on dispersion quantitatively

distinguishes spherical and grid modes. We then compare the overlap of modes to identify

spherical modes as a characteristic of sessile drops whereas grid modes as a constrained response

of square drops. Finally, we discuss constrained response in a broader context. We end up

ordering resonance of different drops into a continuum by the varying extent by which the

drops are constrained.

The experiments reported here may be viewed as probing a 2-parameter continuum of driven
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droplet resonance problems. Footprint geometry can be continuously deformed from a circular

to a square shape. Independently, droplet volume can be varied to yield drop heights from

shallow to fat. The endpoint problems of the spherical cap drop with circular planform and

the square bath with flat surface have traditionally be modeled somewhat differently. The res-

onance of driven circular drops has been successfully modeled as a linear stability problem with

time-independent coefficients (free response) while the resonance of driven Faraday baths has

been successfully modeled as a linear stability problem with time-dependent coefficient (para-

metric response) leading to a Mathieu-type equation wherein the forcing amplitude appears

as parameter. Clearly, a modeling framework that encompasses both extremes is needed. A

successful encompassing theoretical framework would answer the question: for a specified foot-

print, drop volume and amplitude of excitation, will a particular mode respond harmonically

or subharmonically? We have demonstrated that, when both are possible, harmonic dominates

subharmonic response consistent with the larger excitation amplitude needed for subharmonics.

One also expects a cross-over from harmonic to subharmonic response for any particular mode

as one deforms in the direction of the driven Faraday bath. These are open questions, however.

We conclude by answering our motivating question. Capillary force and footprint constraint

compete to determine a sessile drop’s driven response at resonance. Different surface waves arise

accordingly. For square drops, a dominating effect of footprint constraint leads to grid modes;

otherwise, the drops exhibit spherical modes, the characteristic of sessile drops.
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8 Appendix

Figure 10 relates a sessile drop’s volume and contact angle. For a square drop, the contact

angle is calculated at the midpoint of the drop’s edge, where it is least affected by the squared

corners. It is obtained by finding the drop’s meridian profile with Surface Evolver [52], fitting

the first 10 points from the endpoint to a polynomial, and calculating the slope at the endpoint.

The contact angles for circular drops are calculated analytically for spherical caps, i.e. assuming

zero gravity.
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Figure 10: (Color online) Variations of contact angle with the volume of a sessile drop. For
square drops, the contact angle is calculated at the midpoint of a square drop’s edge.
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