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Abstract	

The	mechanical	 behavior	 of	 3D	 cross-linked	 random	 fiber	 networks	 composed	 from	 fibers	 of	

non-circular	cross-section	characterized	by	 two	principal	moments	of	 inertia	 is	 studied	 in	 this	

work.	 Such	 fibers	 store	 energy	 in	 the	 axial	 deformation	 mode	 and	 two	 bending	 modes	 of	

unequal	 stiffness.	 We	 show	 that	 the	 torsional	 stiffness	 of	 fibers	 becomes	 important	 as	 it	

determines	the	relative	contribution	of	the	two	bending	modes	to	the	overall	deformation.	The	

scaling	of	the	small	strain	modulus	with	the	network	parameters	is	established.	The	large	strain	

deformation	of	these	structures	is	less	sensitive	to	the	shape	of	the	cross-section.		
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1. Introduction	

Various	natural	materials	are	made	from	fibers	arranged	randomly	to	form	multifunctional	and	

complex	structures.	Connective	tissue	is	composed	from	collagen	fibrils	which	bundle	together	

to	form	fibers	[1].	These	are	connected	on	 larger	scales	either	randomly,	as	 in	cartilage,	or	 in	

even	 larger	bundles,	as	 in	 tendons.	 Fibrous	networks	are	also	a	 common	occurrence	 in	man-

made	materials	such	as	felt,	paper,	textiles	etc	[2].	Nonwovens	composed	of	entangled,	slender	

fibers	are	used	for	thermal	and	acoustic	insulation.	They	are	also	used	for	liquid	absorption	in	

hygiene	 products,	 hence	 finding	 application	 in	 personal	 care	 products,	 baby	 diapers	 etc.	 A	

special	 type	 of	 random	 fiber	 networks	 (Voronoi	 networks)	 is	 structurally	 similar	 to	 open-cell	

foams.	These	are	used	in	packaging	materials,	automobile	seats	and	as	filters	in	air-conditioning	

systems	[3].	In	all	these	applications,	fibers	are	too	large	to	be	affected	by	thermal	fluctuations	

and	hence	these	networks	are	athermal.		

A	 fiber	 network	 can	 be	 described	 by	 a	 number	 of	 parameters	 important	 in	 the	 overall	

mechanical	behavior	of	the	material.	The	structure	of	the	network	 is	usually	described	by	the	

network	 density, ρ,	 computed	 as	 the	 total	 fiber	 length	 per	 unit	 volume.	 If	 fibers	 are	

preferentially	oriented,	the	orientation	tensor	can	be	also	used	as	a	structural	descriptor.	Other	

parameters,	 such	as	 the	 spatial	 fluctuations	of	 the	density,	 orientation	and	 cross-link	density	

may	be	important,	but	are	rarely	considered	when	discussing	the	relationship	between	network	

structure	and	properties.	In	addition,	the	fibers	properties	are	essential.	These	include	the	area,	

𝐴,	and	the	moments	of	inertia	of	the	fiber	cross-section.	In	random	networks	the	fiber	segment	

length	(i.e.	length	of	the	segment	between	successive	cross-links)	is	Poisson	distributed	and	the	

mean	of	this	distribution,	𝑙!,	is	directly	related	to	the	network	density,	ρ, as	𝑙!~1/𝐷𝜌,	where	D	

is	the	fiber	diameter	[4].	The	fiber	slenderness	is	defined	as	 𝐴 𝑙!.		

In	most	 studies	 to	 date	 all	 fibers	 in	 the	network	 are	 considered	of	 the	 same	 type	 [5,6,7,8,9]	

(networks	made	from	dissimilar	fibers	are	studied	in	[10])	and	are,	in	general,	of	circular	cross-

section.	However,	many	athermal	fibers	have	non-circular	sections	which	are	characterized	by	

two	principal	moments	of	inertia,	𝐼!"#	and	𝐼!"#.	Notoriously,	the	cellulose	fibers	of	paper	are	

ribbon-like	[11].	If	fibers	can	be	considered	beams,	the	polar	moment	of	inertia,	J,	is	given	by	J	
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= 𝐼!"# + 𝐼!"#	 .	 On	 the	 other	 hand,	 the	 effective	 axial,	 bending	 and	 torsional	 behaviors	 of	

molecular	 filaments	 (e.g.	 tropocollagen	 filaments	 large	enough	to	behave	athermally)	are	not	

controlled	by	the	dimensions	of	the	effective	“filament	cross-section”,	rather	are	defined	by	the	

intra-molecular	interactions	and	by	the	size	and	position	of	the	side	groups	which	may	lead	to	

anisotropic	behavior	in	the	plane	perpendicular	to	the	filament	axis.		

These	 observations	 motivate	 the	 present	 study	 of	 athermal	 networks	 of	 fibers	 having	 non-

circular	section.	We	compare	this	class	of	materials	with	the	more	commonly	studied	networks	

of	fibers	with	circular	section	and	having	same	network	architecture.	For	networks	of	cylindrical	

fibers,	 it	 has	 been	 established	 that	 the	 key	 parameters	 are	 the	 network	 density,	 𝜌,	 and	 a	

parameter	with	units	of	length,	𝑙! = 𝐸!𝐼 𝐸!𝐴,	where	𝐸!	is	the	fiber	material	elastic	modulus	

[5,7,8].	 Parameter	 𝑙!	 indicates	 the	 relative	 importance	 of	 the	 bending	 and	 axial	 deformation	

modes	of	fibers	in	the	overall	mechanics	of	the	network.	For	large	𝜌	and	𝑙!	values,	the	network	

deformation	is	close	to	affine	(local	strains	are	identical	to	the	far	field	applied	strains)	and	the	

majority	 of	 the	 strain	 energy	 is	 stored	 in	 the	 axial	 deformation	mode	 of	 fibers.	When	 these	

parameters	 have	 small	 values,	 the	 deformation	 is	 non-affine	 and	 the	 energy	 is	 stored	 in	 the	

bending	 deformation	 mode.	 Hence,	 the	 network	 stores	 energy	 in	 the	 softest	 available	

deformation	mode	[5,7].	Consequently,	the	effective	modulus	of	the	network,	E,	is	proportional	

to	𝐸!𝐴	in	the	affine	regime	and	to	𝐸!𝐼	in	the	non-affine	regime.	In	the	affine	regime	𝐸~𝜌,	while	

in	 the	non-affine	 regime	𝐸~𝜌!,	where	 the	 exponent	x	 depends	on	 the	network	 architecture	

and	embedding	space	dimensionality	and	takes	values	from	2	[12]	to	8	[5,7,8].	Open	cell	foams	

have	 a	 similar	 behavior,	 with	 x	 =	 2	 in	 the	 non-affine	 regime	 [13].	 Furthermore,	 it	 has	 been	

established	that	the	torsional	rigidity	of	fibers	of	circular	section,	which	is	proportional	to	J,	 is	

not	 of	 central	 importance,	 as	 the	 network	 of	 such	 fibers	 does	 not	 store	much	 energy	 in	 the	

torsional	mode	for	any	range	of	the	network	parameters.	This	implies	that	E	is	not	a	function	of	

J	in	any	deformation	regime.		

If	the	fiber	cross-section	is	not	circular,	the	existence	of	two	principal	moments	of	inertia,	𝐼!"#	

and	𝐼!"#,	indicates	that	bending	can	take	place	in	either	a	softer	or	a	stiffer	mode.	Two	limits	of	

the	problem	can	be	identified.	Denote	by	𝑙!! 	the	value	of	parameter	𝑙!	which	corresponds	to	the	
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transition	from	the	bending	dominated	to	the	axial	dominated	deformation	of	the	network	for	

given	 density.	 If	 𝑙! !"# = 𝐸!𝐼!"# 𝐸!𝐴 > 𝑙!! ,	 the	 bending	 stiffness	 of	 fibers	 is	 less	 important	

and	the	affine	deformation	regime	is	recovered.	If	𝑙! !"# = 𝐸!𝐼!"# 𝐸!𝐴 < 𝑙!! ,	the	axial	mode	

is	 less	 important	 and	 the	non-affine	 regime	described	above	 is	 recovered.	 In	 this	 case,	 if	 the	

fibers	were	free	to	twist,	the	behavior	would	be	controlled	by	𝐸!𝐼!"#	and	the	discussion	would	

be	 identical	 to	 that	 of	 fibers	 with	 circular	 section	 and	 with	 𝑙! = 𝑙! !"# = 𝐸!𝐼!"# 𝐸!𝐴.	

However,	fibers	have	a	non-zero	torsional	stiffness	which	prevents	them	from	rotating	freely	to	

enable	 the	 softest	 bending	 mode.	 Therefore,	 for	 the	 more	 interesting	 range	 𝑙! !"# ≤ 𝑙!! ≤

𝑙! !"#,	 parameter	𝐺!𝐽,	which	 is	 proportional	 to	 the	 torsional	 stiffness,	 should	matter.	 In	 this	

work	we	identify	the	effect	of	these	parameters	on	the	small	strain	modulus	of	the	network,	E,	

and	on	the	large	deformation	tensile	behavior.		

	

2. Model	and	simulation	details	

Three	types	of	three-dimensional	networks,	Voronoi,	diluted	Voronoi	and	Delaunay,	are	used	in	

this	study.	Realizations	of	each	of	these	types	are	shown	in	Fig.	1.	All	networks	are	generated	by	

initially	selecting	a	number	of	randomly	positioned	points	 in	a	cubic	domain	of	edge	length	L,	

which	are	then	used	as	seeds	for	the	Voronoi	tessellation	of	the	respective	volume.	To	generate	

the	Voronoi	 network,	 the	edges	of	 the	polyhedra	 resulting	 from	 the	 tessellation	 [14,	 15]	 are	

retained	 as	 fibers.	 The	 fibers	 result	 with	 random	 orientations	 in	 space	 and	 the	 bulk	

coordination	 number	 is	 𝑧 = 4.	 	 Diluted	 Voronoi	 networks	 are	 generated	 from	 the	 Voronoi	

networks	by	eliminating	a	fraction	of	the	fibers,	such	that	the	mean	coordination	number	in	the	

bulk	is	reduced	to	𝑧 = 3.	Delaunay	networks	are	the	duals	of	the	Voronoi	networks	and	have	a	

much	higher	fiber	density	and	connectivity	(mean	coordination	number	of	15).		

The	Voronoi	networks	considered	are	below	the	 isostaticity	 limit	 in	3D.	 In	all	cases	the	cross-

links	 are	 considered	 welded	 joints	 and	 transmit	 both	 forces	 and	 moments	 between	 the	

filaments	 they	 connect.	 The	 finite	 bending	 stiffness	 of	 filaments	 renders	 the	 network	 stable	
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despite	the	fact	that	the	coordination	number	is	smaller	than	the	minimum	value	required	by	

the	Maxwell	structural	stability	relation	[16].	

The	number	of	points	selected	in	the	respective	volume	defines	the	network	density.	The	non-

dimensional	group	𝜌𝐴	is	used	here	in	place	of	the	density,	𝜌.	Parameter	𝜌𝐴	is	also	the	volume	

fraction	occupied	by	the	network	in	the	𝐿!	volume	of	the	model.		

							

Figure	1.	Realizations	of	the	three	types	of	three-dimensional	networks	considered:	(a)	Voronoi,	

(b)	diluted	Voronoi,	and	(c)	Delaunay.		

The	fiber	cross-section	is	defined	by	the	area,	A,	and	two	principal	moments	of	inertia,	𝐼!"#	and	

𝐼!"#.	 The	 principal	 directions	 of	 inertia	 are	 taken	 to	 be	 randomly	 oriented	 in	 the	 plane	

perpendicular	to	the	fiber	axis	and	uncorrelated	with	the	fiber	axis	direction	and	from	fiber	to	

fiber.	All	fibers	in	the	model	are	of	the	same	type.	We	do	not	focus	here	on	the	effect	of	fiber	

crimp	(discussed	in	a	number	of	other	works	[e.g.	6,17,18])	and	hence	all	fibers	are	considered	

straight	in	the	undeformed	configuration.		

Table	1	shows	the	parameters	of	all	Voronoi	networks	considered	 in	this	work.	These	 include	

the	 normalized	 density,	 𝜌𝐴	 and	 ranges	 for	 the	 two	 values	 of	 the	 bending	 length,	 𝑙! !"# =

𝐸!𝐼!"# 𝐸!𝐴	and	𝑙! !"# = 𝐸!𝐼!"# 𝐸!𝐴.	The	range	of	the	corresponding	values	of	𝐼!"# 𝐼!"#	

=	 𝑙! !"# 𝑙! !"#
!	 are	 also	 listed	 for	 reference.	 For	 each	 situation,	 cases	 with	 very	 small	

torsional	stiffness 𝐺!𝐽 ≪  𝐸!𝐼!"#,	and	large	torsional	stiffness,	𝐺!𝐽 ≫  𝐸!𝐼!"# ,	are	considered	as	
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limit	 situations.	 For	 beams	 with	 rectangular	 section	 of	 edge	 lengths	 b	 and	 h,	 with	 𝑏 > ℎ,	

𝑙! !"# = ℎ 2 3,	 𝑙! !"# = 𝑏 2 3,	 𝐼!"# 𝐼!"# = ℎ 𝑏 !	 and	 𝐺!𝐽 𝐸!𝐼!"# = 12𝐺!𝛽(𝑏 ℎ)/𝐸!,	

where	𝛽(𝑏 ℎ)	depends	weakly	on	𝑏 ℎ	as	the	variable	increases	from	1	to	10	[19],	which	is	the	

range	of	cross-section	aspect	ratios	of	practical	interest.	Such	cases	are	also	included	in	Table	1.	

Table	2	shows	the	parameters	of	the	diluted	Voronoi	and	Delaunay	networks	studied.		

	

Table	1.	Parameters	of	Voronoi	networks	considered	in	this	study.	

Regime	 𝝆𝑨	 𝒍𝒃 𝒎𝒊𝒏/√𝑨	 𝒍𝒃 𝒎𝒂𝒙/√𝑨	 𝑰𝒎𝒊𝒏 𝑰𝒎𝒂𝒙	
Bending	
dominated	 3.29	10-4	to	1.65	106	 5.77	10-7	to	0.0913	 5.77	10-7	to	5.4	 0.00286	to	1	
Transition	 32.9	to	9.88	104	 3.04	10-4	to	0.913	 3.04	10-4	to	0.913	 0.0025	to	1	
Axially	
dominated	 3.29	10-4	to	32.9	 0.04	to	2.49	104	 0.913	to	5.4	104	 0.002	to	1	
Rectangular1	 3.66	10-5	to	7.32	10-4	 0.0645	to	0.289	 0.289	to	1.29	 0.0025	to	1	
Rectangular2	 3.66	10-3	to	7.32	10-2	 0.0645	to	0.289	 0.289	to	1.29	 0.0025	to	1	
	

Table	2.	Parameters	of	diluted	Voronoi	and	Delaunay	networks	considered	in	this	study	

Network	 𝝆𝑨	 𝒍𝒃 𝒎𝒊𝒏/√𝑨	 𝒍𝒃 𝒎𝒂𝒙/√𝑨	 𝑰𝒎𝒊𝒏 𝑰𝒎𝒂𝒙	
Diluted	
Voronoi	 4.98	10-6	to	0.050	 0.0645	to	0.289	 0.282	to	1.291	 0.0025	to	1	
Delaunay	 3.22	10-7	to	6.44	10-6	 0.0645	to	0.289	 0.289	to	1.291	 0.0025	to	1	
	

	

Fibers	 are	modeled	using	 Timoshenko	beams	of	 generalized	 cross-section.	 The	energy	of	 the	

structure	 is	 computed	 by	 summing	 up	 the	 axial,	 bending	 and	 torsional	 strain	 energies	 of	 all	

filaments	 as	 described	 in	 [8].	 The	 boundary	 conditions	 applied	 mimic	 uniaxial	 tension.	 Two	

opposite	faces	of	the	model	are	displaced	relative	to	each	other	by	specifying	displacements	in	

the	loading	direction.	The	other	degrees	of	freedom	of	the	same	nodes	are	left	free.	The	lateral	

faces	are	constrained	to	remain	planar,	but	are	free	to	move	in	the	direction	of	their	normal,	

therefore	allowing	for	Poisson	contraction.	The	rotational	degrees	of	freedom	of	all	boundary	

nodes	are	kept	free.	The	model	is	solved	using	the	finite	element	solver	ABAQUS	Implicit	when	

only	small	strains	are	applied	and	ABAQUS	Explicit	for	the	large	strains	regime.		
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3. Results	

Consider	 first	 the	 linear	 elastic	 deformation	 of	 the	 network	 subjected	 to	 small	 strains.	 The	

elastic	modulus	𝐸	is	a	function	of	all	parameters	listed	in	Tables	1	and	2	and	a	broad	range	of	

values	results	for	all	these	systems.	In	line	with	the	previous	literature	[e.g.	5,8],	the	data	was	

collapsed	on	a	master	curve	by	properly	selecting	relevant	non-dimensional	groups.	We	discuss	

first	 the	 results	 for	Voronoi	 networks.	 These	 are	 grouped	 in	 two	 categories:	 (i)	 systems	with	

small	torsional	fiber	stiffness,	𝐺!𝐽 ≪  𝐸!𝐼!"#,	and	(ii)	systems	with	large	fiber	torsional	stiffness,	

𝐺!𝐽 ≫  𝐸!𝐼!"#.	For	each	of	these	categories,	all	entries	in	Table	1	(over	150	systems)	have	been	

considered,	with	small	and	large	values	for	𝐺!𝐽		in	cases	(i)	and	(ii),	respectively.	

	Figure	2	shows	the	collapsed	data	for	the	first	category,	(i),	i.e.	systems	in	which	fiber	torsion	

requires	 little	energy	compared	with	 the	energy	stored	 in	 the	other	deformation	modes.	The	

vertical	 axis	 shows	 the	 network	 modulus,	 𝐸,	 normalized	 with	 𝛼(𝜌𝐴)𝐸!,	 where	 α	 is	 a	 non-

dimensional	parameter	of	order	unity	which	depends	weakly	on	the	network	architecture.	The	

same	 value	 of	 α	 is	 used	 for	 all	 data	 corresponding	 to	 given	 network	 type.	 Three	 non-

dimensional	groups	are	used	on	the	horizontal	axis,	i.e.	𝜌𝐴,	𝑙! !"# 𝐴	and	𝑙! !"# 𝐴.	The	data	

collapses	 onto	 a	 master	 curve	 once	 the	 variable	 on	 the	 horizontal	 axis	 is	 selected	 as	𝑤 =

𝜌𝐴 𝑙! !"# 𝐴 
!
𝑙! !"# 𝐴 

!!!
= 𝜌 𝑙! !"#

! 𝑙! !"# !!!,	with	𝑥 = 1.3.	
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Figure	2.	Master	curve	for	the	small	strain	network	modulus,	E,	for	Voronoi,	diluted	Voronoi	
and	Delaunay	systems	with	fibers	having	small	torsional	stiffness,	𝐺!𝐽 ≪  𝐸!𝐼!"#,	case	(i).		

	

The	curve	 is	similar	to	that	obtained	for	networks	of	 fibers	with	circular	section,	 i.e.	 indicates	

that	 for	 large	 densities	 and	when	both	 characteristic	 lengths	 𝑙! !"#	 and	 𝑙! !"#	 are	 large,	 the	

network	modulus	is	proportional	to	(𝜌𝐴)𝐸!.	In	this	regime	the	deformation	is	largely	affine.	For	

small	values	of	w,	the	curve	has	slope	1	and	𝐸~𝜌!,	which	is	similar	to	the	results	reported	for	

3D	 open	 cell	 foams	 [13],	 and	𝐸~𝐸!𝐼!"# 𝐼!"# 𝐼!"# !!!/!.	 In	 this	 regime	 the	 deformation	 is	

non-affine.		

As	 in	 the	case	of	networks	of	 fibers	with	circular	section,	 the	dominant	deformation	mode	 in	

the	 non-affine	 regime	 is	 bending.	 If	 all	 fibers	would	 be	 free	 to	 rotate	 such	 to	 deform	 in	 the	

softest	bending	mode,	one	would	expect	𝐸~𝐸!𝐼!"#.	The	correction	 term	 𝐼!"# 𝐼!"# !!!/! =

𝐼!"# 𝐼!"# !.!"	represents	the	effect	of	the	constraint	imposed	by	the	structure	on	fiber	twist,	

which	prevents	full	rotation	and	bending	in	the	softest	mode.		
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In	order	to	test	the	generality	of	these	conclusions,	we	perform	a	similar	analysis	with	Delaunay	

and	with	diluted	Voronoi	networks	of	mean	coordination	𝑧 = 3.	The	results	are	shown	in	Fig.	2	

and	include	the	reference	case	of	fibers	with	circular	cross-section,	as	well	as	all	cases	of	fibers	

with	 non-circular	 section	 listed	 in	 Table	 2.	 The	 data	 collapse	 on	 the	 same	 master	 curve	

indicating	 similar	 behavior	 of	 these	 network	 architectures.	 We	 used	 α	 =	 1	 for	 the	 Voronoi	

network,	α	=	0.52	for	the	diluted	Voronoi	and	α	=	0.27	for	the	Delaunay	networks.	The	same	

value	of	α	is	used	for	all	networks	of	given	type,	including	for	those	of	fibers	with	circular	cross-

section.		

To	 further	 evaluate	 the	 effect	 of	 the	 torsional	 stiffness	 of	 fibers	 on	 exponent	 x,	 Voronoi	

networks	 with	 𝐺!𝐽 ≫ 𝐸!𝐼!"#	 and	 with	 the	 various	 parameter	 sets	 listed	 in	 Table	 1	 are	

considered,	case	(ii).	In	this	situation	the	energy	cost	associated	with	filament	twist	should	force	

bending	 in	 both	 hard	 and	 soft	 modes,	 as	 dictated	 by	 the	 local	 geometry	 and	 initial	

configuration.	The	results	for	these	models	are	presented	 in	Fig.	3.	 In	this	case,	 it	 is	observed	

that	 data	 collapse	 results	 for	 𝑥 = 1,	 which	 indicates	 that	 both	 bending	 modes	 contribute	

equally	to	the	mechanics	of	the	network.		
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Figure	3.	Master	curve	for	network	modulus,	E,	for	Voronoi	networks	of	fibers	with	large	
torsional	stiffness,	𝐺!𝐽 ≫  𝐸!𝐼!"#,	case	(ii).	Parameter	α	used	in	Fig.	2	is	equal	to	1	for	Voronoi	
networks.		

	

Further,	 we	 verify	 that	 the	 effect	 of	 the	 torsional	 stiffness	 of	 filaments	 is	 restricted	 to	 that	

described	 above,	 i.e.	 it	 controls	 the	 relative	 contribution	 of	 the	 two	 bending	 modes	 to	 the	

network	 elasticity.	 To	 this	 end,	 Voronoi	 networks	 with	 𝐼!"# = 𝐼!"#	 are	 considered	 and	 J	 is	

varied	independently	in	a	broad	range.	This	situation	appears	inconsistent	with	the	behavior	of	

beams,	 but	 may	 apply	 to	 molecular	 filaments	 and	 serves	 the	 purpose	 of	 testing	 the	 stated	

conjecture.	 No	 J-dominated	 regime	 of	 the	 network	 elasticity	 emerges,	 even	 for	 very	 small	

values	of	the	torsional	stiffness.	This	result	is	not	new.	However,	it	is	useful	to	compare	it	with	

the	 situation	 in	 which	 the	 shear	 stiffness	 𝐺!𝐴	 is	 artificially	 reduced,	 case	 in	 which	 a	 shear	

dominated	regime	appears	and	the	network	modulus	becomes	proportional	to	𝐺!𝐴	 [20].	This	

limit	case	has	only	a	theoretical	importance	since	this	type	of	deformation	may	take	place	only	

in	beams	(not	in	molecular	filaments),	but	the	range	of	parameters	for	which	the	shear	mode	

dominates	is	unreachable	in	practical	applications,	for	beams	of	realistic	cross-sections.		

Further,	 it	 is	 interesting	to	 inquire	to	what	extent	the	behavior	described	above	for	the	small	

strain	 modulus	 extends	 to	 large	 deformations.	 To	 investigate	 this	 issue,	 multiple	 Voronoi	

networks	of	 fibers	with	 rectangular	 cross-section	and	a	broad	 range	of	 cross-sectional	aspect	

ratios	 ℎ 𝑏 =  𝑙! !"# 𝑙! !"#	 ,	 1/40 < ℎ 𝑏 < 1,	 are	 considered.	 All	 these	 configurations	

correspond	 to	 the	 same	 value	 of	 parameter	w,	 (𝑤 = 𝑙𝑜𝑔!"(𝜌 𝑙! !"#
!.! 𝑙! !"#

!.! ) =  −4.45,	 which	

places	them	in	the	bending-dominated,	non-affine	range,	all	belong	to	type	(i)	discussed	above	

and	 have	 the	 same	 value	 of	 ratio	𝐺!𝐽/ 𝐸!𝐼!"# ~  1/12.	 Therefore,	 all	 networks	 used	 for	 this	

purpose	have	the	same	small	strain	modulus.		

These	 networks	 are	 deformed	 uniaxially	 into	 the	 strain	 stiffening	 range	 of	 strains.	 Figure	 4	

shows	the	tangent	stiffness-stress	plot	for	systems	with	ℎ 𝑏	=	1,	1/10,	1/20	and	1/40.	It	is	seen	

that	the	curves	overlap	in	both	the	small	strain	(which	is	expected	since	all	these	systems	have	

same	value	of	w)	and	the	 large	deformations	regimes.	As	previously	observed	for	this	type	of	

networks	[21,22],	the	large	strain	branch	of	the	stress-strain	curve	is	exponential	and	hence	the	
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tangent	stiffness	varies	linearly	with	the	stress.	The	data	in	Fig.	4	indicate	that	the	aspect	ratio	

of	the	cross-section,	ℎ 𝑏,	has	no	effect	on	the	large	strain	behavior.		

	

	

Figure	4.	Tangent	stiffness	(𝐸! =  𝜕𝜎 𝜕𝜀)	for	Voronoi	networks	of	fibers	with	different	
cross-sections.	The	cross-section	aspect	ratio,	h/b,	varies	from	1/40	to	1.	

	

4. Conclusions	

In	 this	 work	 we	 consider	 random	 fiber	 networks	 of	 three	 different	 architectures,	 composed	

from	 fibers	having	 cross-sections	 characterized	by	 two	unequal	 principal	moments	of	 inertia.	

Such	fibers	may	deform	either	axially	or	in	two,	hard	and	soft,	bending	modes.	We	investigate	

the	 effect	 of	 the	 presence	 of	 two	 bending	 modes	 on	 the	 small	 and	 large	 strain	 network	

behavior.	The	small	strain	modulus	is	described	in	terms	of	the	network	parameters	through	a	

master	plot	similar	to	that	previously	discussed	in	the	literature	for	random	networks	of	fibers	

with	 circular	 cross-section.	 The	 exponents	 leading	 to	 data	 collapse	 depend	 on	 the	 torsional	

stiffness	 of	 the	 filaments.	 If	 this	 parameter	 is	 small,	 fibers	 tend	 to	 rotate	 such	 to	 allow	

deformation	 in	 the	 soft	bending	mode,	which	 increases	 the	 importance	of	 𝑙! !"#.	 If	 torsional	

stiffness	 is	 large,	 fibers	bend	with	equal	 probability	 in	 the	 soft	 and	hard	bending	modes	 and	
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hence	𝑙! !"#	and	𝑙! !"#	are	equally	important.	This	observation	holds	for	all	three	architectures	

studied.	The	large	deformation	behavior	is	controlled	by	the	transition	from	the	bending	to	the	

axial	deformation	modes	and	hence	the	distinction	between	the	soft	and	hard	bending	modes	

has	little	effect	at	large	strains.		
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