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We report on the nature of flow events for the gravity-driven discharge of glass beads through a
hole that is small enough that the hopper is susceptible to clogging. In particular, we measure the
average and standard deviation of the distribution of discharged masses as a function of both hole
and grain sizes. We do so in air, which is usual, but also with the system entirely submerged under
water. This damps the grain dynamics and could be expected to dramatically affect the distribution
of the flow events, which are described in prior work as avalanche-like. Though the flow is slower and
the events last longer, we find that the average discharge mass is only slightly reduced for submerged
grains. Furthermore, we find that the shape of the distribution remains exponential, implying that
clogging is still a Poisson process even for immersed grains. Per Thomas and Durian, Phys. Rev.
Lett. 114, 178001 (2015), this allows interpretation of the average discharge mass in terms of the
fraction of flow microstates that precede, i.e. that effectively cause, a stable clog to form. Since this
fraction is barely altered by water, we conclude that the crucial microscopic variables are the grain
positions; grain momenta play only a secondary role in destabilizing weak incipient arches. These
insights should aid on-going efforts to understand the susceptibility of granular hoppers to clogging.

PACS numbers: 47.57.Gc, 47.56.+r, 47.55.Kf

INTRODUCTION

The flow of grains in an hourglass or hopper is an
iconic granular phenomenon, strikingly different from the
gravity-driven flow of fluid from a small hole in the bot-
tom of a bucket [1]. At the top free surface, the grains
are not level but form a conical depression. Below the
hole, the stream of grains fans out and does not break up
into droplets because there is no surface tension. And the
growing mass of grains collected underneath is not level,
but forms a conical pile down which the added grains
avalanche. Another striking difference is that the dis-
charge rate of grains is constant, as long-described by
the empirical Beverloo equation [1, 2], and sometimes
can even increase with time [3, 4]; by contrast, the fluid
discharge rate always decreases with time as the bucket
empties and the gravitational pressure head goes down.
But an even bigger difference is that grains can clog [5–7].
Though the flow may appear smooth, it can suddenly and
unexpectedly halt due to the formation of a mechanically
stable arch or dome of grains spanning the hole. How to
predict the susceptibility of a given granular system to
clogging [8], and how to anticipate that a clog is about
to form [9], are active research topics.

Clogging is a generic feature of granular hopper flow, as
reviewed in Refs. [10, 11], which happens less frequently
for larger holes and is unavoidable for holes smaller than
about 4-5 grains across. Details depend on grain shape,
e.g. [12–15], and similar phenomena arise in other con-
texts ranging from transport in electronic [16] and par-
ticulate [17, 18] systems with spatially-distributed pin-
ning sites to grains in channels and pipes [19, 20], grains
driven by fluid flow [21, 22], and even grains with brains:
pedestrians [23], traffic [24], and livestock [25]. For non-

cohesive compact grains, in air or vacuum, there is gen-
eral agreement that clogging statistics are Poissonian
[6, 7, 13, 26, 27]. Namely, there is an exponential dis-
tribution of flow times, and hence also an exponential
distribution for the amount of material discharged be-
tween successive clogs. Thus there is a well-defined av-
erage “avalanche” size, as measured either from the av-
erage flow duration 〈τ〉 or from the average mass 〈m〉
discharged before a clog occurs. These are related by
〈m〉 = ρAv〈τ〉 where ρ is the mass density of the pack-
ing, v is the exit speed of grains at the hole, A = π(D/2)2

is the hole area, and D is the hole diameter.

A crucial open question is whether or not a sharp clog-
ging transition exists: Is there a critical hole diameter Dc

above which the system will never clog, or instead does
clogging become so improbable for larger holes as to be
essentially unobservable on human time scales? This is
difficult to answer definitively by experiment or simula-
tion because 〈m〉 grows very rapidly with hole size, e.g.
by five order of magnitude as the hole diameter increases
by a factor of three. In particular, data can be equally-
well described by both exponential [6, 28, 29] and diverg-
ing power-law [7, 13, 28, 29] forms:

〈m〉 = mg exp[c (D/d)3 + b] (1)

〈m〉 = mg/[α(Dc −D)/d]γ (2)

where mg is the average grain mass, d is the average grain
diameter, and {c, b, α, γ} as well as the putative critical
hole size Dc are fitting parameters. This is also true for
two-dimensional hoppers, where the average mass grows
as either a critical power-law or as an exponential in
(D/d)2 [6, 28]. While the competing fits may be equally
good, we prefer exponential form for several reasons. As
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FIG. 1: When time advances by one sampling time, τo, there is a new configuration of grains near the hole and a new chance
to clog. In this cartoon, N distinct flow states are sampled prior to the formation of a stable clog. The fraction of microstates
that similarly cause clogging is F = 1/〈N〉, where 〈N〉 equals the average flow duration divided by τo.

negative points against the power-law, fitting results for
the exponent γ are oddly large and published results vary
widely. There is no established theory for the expected
value of γ, or for the putative critical hole size Dc. In
principle, stable arches can be constructed of arbitrar-
ily large size. Furthermore, in spite of explicit searches,
no critical signature such as a kink in either the average
discharge rate [13] or in grain velocity fluctuations [30]
has been found that could be used to locate Dc as the
hole size is decreased toward the putative transition from
above. Lastly, the exponential form and its dependence
on dimensionality both follow naturally from a simple
model based on consideration of clogging as a Poisson
process in which microstates are randomly sampled [29].

The first step in the model of Ref. [29], and the in-
spiration for the present paper, is the realization that
the fraction F of all accessible microstates that precede
a clog can be found from measurement of 〈m〉. Since
clogging is a Poisson process, the act of flow can be in-
terpreted as bringing new configurations into the region
of the hole, so that with time different configurations are
sampled at random until one arises that causes a clog to
form. We call ` the sampling length, which is how far
the grains near the hole must flow in order to produce
a new configuration. It is of order one grain diameter,
and the corresponding sampling time is τo = v`. This
is illustrated in Fig. 1. The average discharge mass may
then be rewritten as 〈m〉 = ρAv〈τ〉 = ρA`〈τ〉/τo. In this
expression, we recognize 〈τ〉/τo as the number of distinct
configurations sampled in the average flow event, and
hence F = τo/〈τ〉 as the fraction of flow configurations
that precede a clog. Thus the fraction of flow microstates
that cause a clog is

F = ρA`/〈m〉, (3)

and can be deduced from measurement of 〈m〉, somewhat
miraculously, without need to measure the actual grain
positions, momenta, or contact forces.

In this paper we now ask about the nature of the mi-
crostates that causes clogging. For s spatial dimensions,
what is it about the positions, momenta, and/or contact
forces of the O(D/d)s grains in the hole region that leads
to a clog? In principle this could be addressed by simula-
tion, where these microscopic quantities are all perfectly

known. As a different approach, we measure and com-
pare clogging behavior versus hole size for experimental
systems that are identical but for one major difference: In
one the grains are in air and have collisional/inertial dy-
namics, and in the other the grains are totally submerged
in water and have overdamped viscous dynamics as well
as reduced friction. Once a clog forms, the stability crite-
ria for the grains in the arch/dome are the same; however,
the dynamics of arch formation must be very different.
As shown below, we find that the clogging statistics are
not strongly affected. Therefore, we conclude that grain
positions are key to predicting clogging probabilities.

MATERIALS AND METHODS

The experimental granular system consist of three sizes
of technical quality glass beads (Potters Industries A-
series) with material density ρg = 2.54±0.01 g/cm3. The
grain diameter distributions are measured using a Retch
Technology Camsizer. Results are displayed in Fig. 2
along with the mean, d, and standard deviation, σd. As
shown, the grains have a 5 − 10% polydispersity, and
will be referred to by their nominal diameter values of
d = 0.5, 1.0 and 2.0 mm. Twenty to thirty percent of the
d = 1.0 mm beads have multiple sharp edges, by visual
inspection. The other beads can be described as round.
This does not seem to affect the clogging results found
below, and neither does the larger relative polydispersity
for the d = 1.0 mm grains. Nevertheless, the clogging
analysis is highly sensitive to the size of the particles
relative to the hole, in light of Eqs. (1-2). In both dry and
submerged cases the grain volume fraction is measured
to be φ = 0.58± 0.04, which is close to expectation [31].
Therefore, the mass density of the packing is ρ = φρg =
1.47± 0.10 g/cm3. The draining angle of repose is about
24◦ when the grains are dry, and about 21◦ when they
are fully immersed in water [3].

In the dry experiments, air conditions are controlled by
standard laboratory air handling with humidity ranging
between 20− 50 rH and temperature between 20− 25 C.
In submerged experiments, the fluid is filtered tap water
with standard textbook properties: density ρf = 1.00 ±
0.01 g/cm3 and viscosity η = 1.00±0.01 mPa. With these
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system parameters, the Reynolds number based on bead
size and single-grain terminal falling speed in water are
Re = ρfvtd/η = {40, 150, 500} for the three grain sizes.
The Stokes number is St = (1/9)ρgvtd/η, which here is
about Re/3. It refers specifically to grain inertia [31], the
importance of which is overestimated by using vt since
the discharge speed is smaller in water than in air [3, 4]
and also since the relative speed of neighboring grains
in the coarse-grained flow field is smaller still. Even so,
Ref. [31] shows that sedimenting grains need to have St >
30 in order for their inertia to jar a loose packing into a
dense packing. Therefore, we can expect very different
dynamics for submerged versus dry grains.
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FIG. 2: Normalized distribution of particle diameters for glass
beads, measured by a Retch Technology Camsizer and labeled
by average and standard deviation.

The apparatus for clogging measurements is shown
schematically in Figure 3, and is similar to that in
Ref. [4]. The hopper consists of a flat bottomed cylin-
der with inner diameter Dh = 195 ± 0.5 mm and height
h = 250 ± 1 mm. The top is open, and is completely
underwater for the submerged experiments. The bottom
has a depression that is fitted with an adjustable iris that
serves as the hole through which the grains exit. The
hole diameter is measured with a caliper, and is circular
to within ∆D = 0.1 mm. This is the largest source of
uncertainty, especially for small orifice diameters. There-
fore we also perform additional runs where the iris is re-
placed by an Aluminum disk with a precision-machined
hole, to rule out systematic errors. The entire hopper
hangs from a digital balance (Ohaus Valor 7000) that
records the change in mass with 10 Hz frequency and
1.0 g repeatability. Alternatively, for avalanches smaller
than about 10 g, the grains are collected in a cup that is
weighed with a more accurate balance (Ohaus Navigator,
0.1 g repeatability).

When a clog forms, the flow is re-started using one of
the three methods. In the submerged case, a stream of
water is directed underneath the hole in order to break
the clog. Alternatively, the clog is broken by poking it
with a stick either manually or via stepper motor. This
is used in all the dry cases, and in some of the submerged
cases. For these two methods, the water pump and the

FIG. 3: Schematic illustration of the clogging apparatus,
shown in vertical cross section. The hopper (gray) is cylindri-
cal and hangs from a digital balance (black). An orifice with
adjustable diameter, D, fits into a depression in the bottom
plate. The walls and bottom plate are made of polycarbonate,
respectively 6 mm and 13 mm thick. The flowing grains are
indicated with brownish shading. The dry case is identical,
except that the fluid (light blue) is absent. Note that the top
of the hopper is open, so that there is no back-flow of air or
water into the hopper as the grains exit.

stepper motor are connected to the same computer that
is interfaced to the balance, so that the system is fully
automated as in Ref. [26]. A third method is to manually
tap to the side of the hopper. This is useful for the d =
0.5 mm grains, where the orifice size can be less than
2 mm in diameter and hence difficult to poke. In all
cases, the procedure is to initiate flow, to measure the
total mass of grains that is discharged before a clog forms,
and to repeat as desired for a large number of discharge
events. No difference in behavior was noticed for the
three unclogging methods or the two hole types.

DISCHARGE MASS STATISTICS

The first question is whether or not clogging remains
a Poisson process when the grains are submerged. In
particular, the distribution of discharge masses is expo-
nential in air and vacuum, but could very well be different
under water. To investigate this, as well as the fraction
F of flow microstates that cause a clog, we measure the
discharge masses for a large number of flow events, for all
three grain sizes, and for hole sizes ranging from slightly
larger than one grain to as large as was reasonably feasi-
ble. The upper limit on hole size is such that the average
discharge mass is O(1000 g), which is ten times smaller
than the capacity of the hopper. This allows sampling
of long-duration events without need for re-filling, which
is infeasible for the submerged cases. In dry cases, the
upper limit is also set by the accuracy with which we
could change the hole size. Only a very slight increase
in hole diameter is needed to increase the average flow
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duration from several hours to several days or weeks, i.e.
from barely feasible to not possible. Altogether for dry
and submerged cases, and for the three grain sizes, we ex-
amined 46 different hole sizes and thousands of discharge
events. The goal of the experimental procedure was to
measure at least 30 discharge events for each combina-
tion of D and d. The average number of events is 104
for each measurement point. Half of the measurements
have more than 52 events and the largest measurement
consists of 1172 events. There are only three measure-
ment points with less than 10 discharge events, all for
very long duration (nearly infeasible) runs at the largest
D/d ratio.

To reveal the nature of all the discharge distributions,
we compute both the average 〈m〉 and the standard de-
viation σm of the discharged masses, for a given set of
conditions, and plot one versus the other in Fig. 4. The
data points fall on the line σm = 〈m〉, where 〈m〉 varies by
almost six orders of magnitude as the hole and grain sizes
are changed. This is consistent with an exponential dis-
tribution. In addition, we also collected greater statistics
for a couple of specific grain / hole size combinations and
directly confirmed that the distributions are nearly expo-
nential. In Fig.!5, we plot the cumulative distribution for
the one representative set with a large number discharges
and the combined submerged and dry cases for d = 1 mm
grains. The combined sets are first normalized with av-
erage m before combining. The distributions are linear
in semilog scale over a wide range, indicating that indeed
we have exponential behavior. Thus, we conclude that
clogging is also a Poisson process for submerged grains.
This is the first such demonstration, to our knowledge.
Importantly, it permits us to analyze 〈m〉 in terms of F ,
below.
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FIG. 4: Standard deviation versus mean for the distribution
of discharge masses, for all measured combinations of hole and
grain sizes, under both dry and submerged conditions. The
data fall on the line y = x, which implies that the distributions
are exponential and that clogging is a Poisson process. This
figure has two less data points than seen in later figures, where
〈m〉 but not σm were measured by collecting multiple events
into a cup and weighing.

The next question concerns how the average mass
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FIG. 5: One minus the cumulative distribution function ver-
sus scaled discharge event mass for d = 1 mm diameter grains.
Solid circles represent the submerged dataset with the largest
number of events (1172); crosses and diamonds represent all
datasets for submerged and dry cases, respectively. The solid
line labeled y = exp(−x) is the expectation for an exponential
distribution of discharge masses; its good agreement with the
data demonstrates that clogging is a Poisson process.

varies with hole diameter. To investigate, results for 〈m〉
versus D are plotted two different ways in Fig. 6. The top
plot is a log-linear version of the raw data. For the dry
grains, it shows a very rapid increase that can be well-fit
by both the exponential and diverging power-law forms,
Eqs. (1-2), as expected. Fitting parameters are collected
in Table I. Also as expected, doubling the grain size re-
quires doubling the hole size to achieve the same average
discharge mass. For submerged grains, our new result is
that the average discharge mass is slightly reduced, com-
pared to the dry case at a given hole size. Furthermore,
the functional form appears to be unaltered, in that good
fits are also obtained using Eqs. (1-2). To highlight the
exponential form, the average mass data are scaled by the
grain mass mg and are shown as a log-linear plot versus
D3 in Fig. 6b. This causes the data to fall onto straight
lines, which is the expectation for the Eq. (1) form that
grows exponentially in D3. Note, too, that these fits ex-
trapolate close to 〈m〉/mg = 1 as the hole size decreases
toward zero: For the smallest holes, only a few grains
escape before a clog forms.

As further remarks on fitting, first note that the diverg-
ing power-law fits in Fig. 6 assume the exponent to be
γ = 5. This value is taken from Ref. [13], and is roughly
in the middle of the range of values reported by others.
Similarly good fits can be obtained by adjusting γ at a
fixed critical hole size of Dc = 5d for dry grains and 10%
larger for submerged grains. Either way, the uncertain-
ties in fitting parameters are quite large (and larger than
for {c, b} in the exponential fits). Even better-looking
power-law fits can be obtained by adjusting all three pa-
rameters, {Dc, γ, α}; however, the parameter uncertain-
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FIG. 6: The average discharge mass versus hole diameter (a),
and scaled by grain mass and plotted versus the cube of hole
diameter (b). In both plots, the solid curves represent fits to
Eq. (1) while the dashed curves represent fits to a diverging
power law Eq. (2) with exponent taken to be γ = 5. The for-
mer is exponential in D3 and hence comes out as a straight
line in the bottom plot. Fitting parameters are given in Ta-
ble I.

ties are unacceptably large. Similarly, the exponent may
be adjusted in the form 〈m〉 ∝ exp[c(D/d)s]; however,
the fitted values are close to 3, which is expected based
on the model of Ref. [29] where s naturally equals the
number of spatial dimensions. Overall, the relative qual-
ity of the two fitting forms is comparable, but the smaller
uncertainties and the clear physical meaning of the ex-
ponent point in favor of the exponential form. In con-
sequence, we reinforce the belief that there is no sharp
clogging transition, i.e. that all granular hoppers are sus-
ceptible to clogging (though perhaps with unobservable
probability).

ANALYSIS OF FLOW MICROSTATES

We now use Eq. (3) to analyze the average discharge
mass data in terms of the fraction F = ρA`/〈m〉 of
flow microstates that precede, i.e. that cause, the for-
mation of a stable clog. In this expression, all quanti-
ties on the right-hand side are known from the measure-
ments discussed above except for the sampling length,
`. This is the average downward displacement of grains
in the hole region that is needed to create a new con-

TABLE I: Parameters for the fits displayed in Fig. 6 to
Eqs. (1-2), obtained using the Fortran ODRPACK algorithm
[32]. Error estimates are given by the square root of diagonal
elements of the covariance matrix. For Eq. (1), the exponent
is fixed to γ = 5.

d (mm) dry submerged

0.5 0.13± 0.03 0.09± 0.03

c 1.0 0.13± 0.01 0.11± 0.03

2.0 0.16± 0.01 0.14± 0.01

0.5 10± 2 11± 3

b 1.0 8.8± 0.6 9± 2

2.0 7.2± 0.6 7.7± 0.6

0.5 2± 1 3± 2

Dc 1.0 4.8± 0.8 5.0± 0.9

2.0 9± 1 9± 0.6

0.5 0.03± 0.09 0.02± 0.10

α 1.0 0.05± 0.04 0.04± 0.05

2.0 0.07± 0.05 0.06± 0.04

figuration and hence a new chance to clog. We take it
to be ` = (0.75 ± 0.20)d, as measured by two meth-
ods in Ref. [29]. The resulting behavior for F versus
(D/d)3 is shown by log-linear plot in Fig. 7. Note that
this causes the data to collapse onto two straight lines,
one for dry grains and one for submerged. These decay
rapidly, since the susceptibility to clogging decreases dra-
matically with increasing hole size. Both cases may be
fit to F = exp{−C[(D/d)3 − 1]}, which has the correct
form and is also correctly normalized to F = 1 at D = d.
By adjusting only the decay rate constant, C, we obtain
very good fits as shown. The fitting uncertainty is about
3%, and the decay constant for the dry grains is about
20% larger than for the submerged grains.
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FIG. 7: The fraction of flow configurations that cause a clog
versus the cube of hole diameter divided by grain diameter.
Experimental results are for three grain sizes, and under both
dry and submerged conditions. The solid lines represent fits
to F = exp{−C[(D/d)3 − 1]}, and the dashed lines represent
the range of fitting functions given by the quoted value and
uncertainty in the fitting parameter C.
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Since the decay of F is faster for the dry grains, they
are slightly less susceptible to clogging. This is counter
to our initial expectation, which was that lubrication
forces between approaching grains and reduced friction
between contacting grains (vis-à-vis the smaller repose
angle) would both render submerged grains less suscepti-
ble to clogging. This points to grain inertia, which has a
destabilizing effect on arch formation and is much larger
for the dry grains. Intuitively, to form a stable clog, an in-
cipient arch much be strong enough to withstand collision
from the grains colliding with it from above. Of all possi-
ble arches, fewer can be stably formed in air because they
must be stronger. Conversely, a greater variety of arches
can be stably formed under water since weaker ones are
additionally allowed, rendering submerged grains more
susceptible to clogging. This ties in with the conclusion
of Ref. [31] that the Stokes number controls the volume
fraction of random loose packings, such that looser more
delicate packings may be formed when grain inertia is
absent. This also ties in with the intuition of Ref. [8]
that incipient arches must be strong enough to dissipate
the kinetic energy of the grains raining down from above.

CONCLUSIONS

In summary, we have systematically measured clogging
statistics for grains being discharged from submerged
hoppers, and compared them with identical but dry ex-
periments. We find that immersing the grains does not
affect the Poissonian character of clogging, and it leads
to a slightly enhanced susceptibility of clogging. Our
data reinforce the notion that a sharp clogging transi-
tion does not exist, i.e. that all hoppers may eventually
clog given sufficient time. Our analysis demonstrates the
utility of interpreting the average discharge mass in terms
of the fraction F of flow configurations that cause clog
formation [29]. In particular we find that F decays ex-
ponentially in (D/d)3, which is roughly the number of
grains in the hole region that must cooperate in order
to form a stable arch (dome, really) across the hole, for
both dry as well as submerged grains. The decay rate
is about 20% slower for the submerged grains, reflecting
the increase in the number of flow configurations that
can form a stable clog. Since this change is not great, we
conclude that grain positions play a far more important
role than grain momenta. Due to the sign of the effect,
we also conclude that it cannot be due to lubrication or
friction forces. Rather, grain inertia has some limited
capacity to break incipient arches in the dry case, and
this is totally removed for the submerged grains mak-
ing them slightly more susceptible to clogging. Though
this picture is physically intuitive and consistent with
Refs. [8, 31], it is still somewhat speculative since it as-
sumes that the position microstates during flow are un-
affected by immersion in water. This could be tested

by computer simulation, or perhaps by experiments in a
quasi-two dimensional geometry.
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